File: check-expression.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (1048 lines) | stat: -rw-r--r-- 41,230 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
//===-- lib/Evaluate/check-expression.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Evaluate/type.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include <set>
#include <string>

namespace Fortran::evaluate {

// Constant expression predicates IsConstantExpr() & IsScopeInvariantExpr().
// This code determines whether an expression is a "constant expression"
// in the sense of section 10.1.12.  This is not the same thing as being
// able to fold it (yet) into a known constant value; specifically,
// the expression may reference derived type kind parameters whose values
// are not yet known.
//
// The variant form (IsScopeInvariantExpr()) also accepts symbols that are
// INTENT(IN) dummy arguments without the VALUE attribute.
template <bool INVARIANT>
class IsConstantExprHelper
    : public AllTraverse<IsConstantExprHelper<INVARIANT>, true> {
public:
  using Base = AllTraverse<IsConstantExprHelper, true>;
  IsConstantExprHelper() : Base{*this} {}
  using Base::operator();

  // A missing expression is not considered to be constant.
  template <typename A> bool operator()(const std::optional<A> &x) const {
    return x && (*this)(*x);
  }

  bool operator()(const TypeParamInquiry &inq) const {
    return INVARIANT || semantics::IsKindTypeParameter(inq.parameter());
  }
  bool operator()(const semantics::Symbol &symbol) const {
    const auto &ultimate{GetAssociationRoot(symbol)};
    return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) ||
        IsInitialProcedureTarget(ultimate) ||
        ultimate.has<semantics::TypeParamDetails>() ||
        (INVARIANT && IsIntentIn(symbol) && !IsOptional(symbol) &&
            !symbol.attrs().test(semantics::Attr::VALUE));
  }
  bool operator()(const CoarrayRef &) const { return false; }
  bool operator()(const semantics::ParamValue &param) const {
    return param.isExplicit() && (*this)(param.GetExplicit());
  }
  bool operator()(const ProcedureRef &) const;
  bool operator()(const StructureConstructor &constructor) const {
    for (const auto &[symRef, expr] : constructor) {
      if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) {
        return false;
      }
    }
    return true;
  }
  bool operator()(const Component &component) const {
    return (*this)(component.base());
  }
  // Forbid integer division by zero in constants.
  template <int KIND>
  bool operator()(
      const Divide<Type<TypeCategory::Integer, KIND>> &division) const {
    using T = Type<TypeCategory::Integer, KIND>;
    if (const auto divisor{GetScalarConstantValue<T>(division.right())}) {
      return !divisor->IsZero() && (*this)(division.left());
    } else {
      return false;
    }
  }

  bool operator()(const Constant<SomeDerived> &) const { return true; }
  bool operator()(const DescriptorInquiry &x) const {
    const Symbol &sym{x.base().GetLastSymbol()};
    return INVARIANT && !IsAllocatable(sym) &&
        (!IsDummy(sym) ||
            (IsIntentIn(sym) && !IsOptional(sym) &&
                !sym.attrs().test(semantics::Attr::VALUE)));
  }

private:
  bool IsConstantStructureConstructorComponent(
      const Symbol &, const Expr<SomeType> &) const;
  bool IsConstantExprShape(const Shape &) const;
};

template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::IsConstantStructureConstructorComponent(
    const Symbol &component, const Expr<SomeType> &expr) const {
  if (IsAllocatable(component)) {
    return IsNullObjectPointer(expr);
  } else if (IsPointer(component)) {
    return IsNullPointer(expr) || IsInitialDataTarget(expr) ||
        IsInitialProcedureTarget(expr);
  } else {
    return (*this)(expr);
  }
}

template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::operator()(
    const ProcedureRef &call) const {
  // LBOUND, UBOUND, and SIZE with truly constant DIM= arguments will have
  // been rewritten into DescriptorInquiry operations.
  if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) {
    if (intrinsic->name == "kind" ||
        intrinsic->name == IntrinsicProcTable::InvalidName ||
        call.arguments().empty() || !call.arguments()[0]) {
      // kind is always a constant, and we avoid cascading errors by considering
      // invalid calls to intrinsics to be constant
      return true;
    } else if (intrinsic->name == "lbound") {
      auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())};
      return base && IsConstantExprShape(GetLBOUNDs(*base));
    } else if (intrinsic->name == "ubound") {
      auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())};
      return base && IsConstantExprShape(GetUBOUNDs(*base));
    } else if (intrinsic->name == "shape" || intrinsic->name == "size") {
      auto shape{GetShape(call.arguments()[0]->UnwrapExpr())};
      return shape && IsConstantExprShape(*shape);
    }
    // TODO: STORAGE_SIZE
  }
  return false;
}

template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::IsConstantExprShape(
    const Shape &shape) const {
  for (const auto &extent : shape) {
    if (!(*this)(extent)) {
      return false;
    }
  }
  return true;
}

template <typename A> bool IsConstantExpr(const A &x) {
  return IsConstantExprHelper<false>{}(x);
}
template bool IsConstantExpr(const Expr<SomeType> &);
template bool IsConstantExpr(const Expr<SomeInteger> &);
template bool IsConstantExpr(const Expr<SubscriptInteger> &);
template bool IsConstantExpr(const StructureConstructor &);

// IsScopeInvariantExpr()
template <typename A> bool IsScopeInvariantExpr(const A &x) {
  return IsConstantExprHelper<true>{}(x);
}
template bool IsScopeInvariantExpr(const Expr<SomeType> &);
template bool IsScopeInvariantExpr(const Expr<SomeInteger> &);
template bool IsScopeInvariantExpr(const Expr<SubscriptInteger> &);

// IsActuallyConstant()
struct IsActuallyConstantHelper {
  template <typename A> bool operator()(const A &) { return false; }
  template <typename T> bool operator()(const Constant<T> &) { return true; }
  template <typename T> bool operator()(const Parentheses<T> &x) {
    return (*this)(x.left());
  }
  template <typename T> bool operator()(const Expr<T> &x) {
    return common::visit([=](const auto &y) { return (*this)(y); }, x.u);
  }
  bool operator()(const Expr<SomeType> &x) {
    return common::visit([this](const auto &y) { return (*this)(y); }, x.u);
  }
  bool operator()(const StructureConstructor &x) {
    for (const auto &pair : x) {
      const Expr<SomeType> &y{pair.second.value()};
      if (!(*this)(y) && !IsNullPointer(y)) {
        return false;
      }
    }
    return true;
  }
  template <typename A> bool operator()(const A *x) { return x && (*this)(*x); }
  template <typename A> bool operator()(const std::optional<A> &x) {
    return x && (*this)(*x);
  }
};

template <typename A> bool IsActuallyConstant(const A &x) {
  return IsActuallyConstantHelper{}(x);
}

template bool IsActuallyConstant(const Expr<SomeType> &);
template bool IsActuallyConstant(const Expr<SomeInteger> &);
template bool IsActuallyConstant(const Expr<SubscriptInteger> &);
template bool IsActuallyConstant(const std::optional<Expr<SubscriptInteger>> &);

// Object pointer initialization checking predicate IsInitialDataTarget().
// This code determines whether an expression is allowable as the static
// data address used to initialize a pointer with "=> x".  See C765.
class IsInitialDataTargetHelper
    : public AllTraverse<IsInitialDataTargetHelper, true> {
public:
  using Base = AllTraverse<IsInitialDataTargetHelper, true>;
  using Base::operator();
  explicit IsInitialDataTargetHelper(parser::ContextualMessages *m)
      : Base{*this}, messages_{m} {}

  bool emittedMessage() const { return emittedMessage_; }

  bool operator()(const BOZLiteralConstant &) const { return false; }
  bool operator()(const NullPointer &) const { return true; }
  template <typename T> bool operator()(const Constant<T> &) const {
    return false;
  }
  bool operator()(const semantics::Symbol &symbol) {
    // This function checks only base symbols, not components.
    const Symbol &ultimate{symbol.GetUltimate()};
    if (const auto *assoc{
            ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
      if (const auto &expr{assoc->expr()}) {
        if (IsVariable(*expr)) {
          return (*this)(*expr);
        } else if (messages_) {
          messages_->Say(
              "An initial data target may not be an associated expression ('%s')"_err_en_US,
              ultimate.name());
          emittedMessage_ = true;
        }
      }
      return false;
    } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) {
      if (messages_) {
        messages_->Say(
            "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US,
            ultimate.name());
        emittedMessage_ = true;
      }
      return false;
    } else if (!IsSaved(ultimate)) {
      if (messages_) {
        messages_->Say(
            "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US,
            ultimate.name());
        emittedMessage_ = true;
      }
      return false;
    } else {
      return CheckVarOrComponent(ultimate);
    }
  }
  bool operator()(const StaticDataObject &) const { return false; }
  bool operator()(const TypeParamInquiry &) const { return false; }
  bool operator()(const Triplet &x) const {
    return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
        IsConstantExpr(x.stride());
  }
  bool operator()(const Subscript &x) const {
    return common::visit(common::visitors{
                             [&](const Triplet &t) { return (*this)(t); },
                             [&](const auto &y) {
                               return y.value().Rank() == 0 &&
                                   IsConstantExpr(y.value());
                             },
                         },
        x.u);
  }
  bool operator()(const CoarrayRef &) const { return false; }
  bool operator()(const Component &x) {
    return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base());
  }
  bool operator()(const Substring &x) const {
    return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
        (*this)(x.parent());
  }
  bool operator()(const DescriptorInquiry &) const { return false; }
  template <typename T> bool operator()(const ArrayConstructor<T> &) const {
    return false;
  }
  bool operator()(const StructureConstructor &) const { return false; }
  template <typename D, typename R, typename... O>
  bool operator()(const Operation<D, R, O...> &) const {
    return false;
  }
  template <typename T> bool operator()(const Parentheses<T> &x) const {
    return (*this)(x.left());
  }
  bool operator()(const ProcedureRef &x) const {
    if (const SpecificIntrinsic * intrinsic{x.proc().GetSpecificIntrinsic()}) {
      return intrinsic->characteristics.value().attrs.test(
          characteristics::Procedure::Attr::NullPointer);
    }
    return false;
  }
  bool operator()(const Relational<SomeType> &) const { return false; }

private:
  bool CheckVarOrComponent(const semantics::Symbol &symbol) {
    const Symbol &ultimate{symbol.GetUltimate()};
    if (IsAllocatable(ultimate)) {
      if (messages_) {
        messages_->Say(
            "An initial data target may not be a reference to an ALLOCATABLE '%s'"_err_en_US,
            ultimate.name());
        emittedMessage_ = true;
      }
      return false;
    } else if (ultimate.Corank() > 0) {
      if (messages_) {
        messages_->Say(
            "An initial data target may not be a reference to a coarray '%s'"_err_en_US,
            ultimate.name());
        emittedMessage_ = true;
      }
      return false;
    }
    return true;
  }

  parser::ContextualMessages *messages_;
  bool emittedMessage_{false};
};

bool IsInitialDataTarget(
    const Expr<SomeType> &x, parser::ContextualMessages *messages) {
  IsInitialDataTargetHelper helper{messages};
  bool result{helper(x)};
  if (!result && messages && !helper.emittedMessage()) {
    messages->Say(
        "An initial data target must be a designator with constant subscripts"_err_en_US);
  }
  return result;
}

bool IsInitialProcedureTarget(const semantics::Symbol &symbol) {
  const auto &ultimate{symbol.GetUltimate()};
  return common::visit(
      common::visitors{
          [](const semantics::SubprogramDetails &subp) {
            return !subp.isDummy();
          },
          [](const semantics::SubprogramNameDetails &) { return true; },
          [&](const semantics::ProcEntityDetails &proc) {
            return !semantics::IsPointer(ultimate) && !proc.isDummy();
          },
          [](const auto &) { return false; },
      },
      ultimate.details());
}

bool IsInitialProcedureTarget(const ProcedureDesignator &proc) {
  if (const auto *intrin{proc.GetSpecificIntrinsic()}) {
    return !intrin->isRestrictedSpecific;
  } else if (proc.GetComponent()) {
    return false;
  } else {
    return IsInitialProcedureTarget(DEREF(proc.GetSymbol()));
  }
}

bool IsInitialProcedureTarget(const Expr<SomeType> &expr) {
  if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) {
    return IsInitialProcedureTarget(*proc);
  } else {
    return IsNullProcedurePointer(expr);
  }
}

// Converts, folds, and then checks type, rank, and shape of an
// initialization expression for a named constant, a non-pointer
// variable static initialization, a component default initializer,
// a type parameter default value, or instantiated type parameter value.
std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol,
    Expr<SomeType> &&x, FoldingContext &context,
    const semantics::Scope *instantiation) {
  CHECK(!IsPointer(symbol));
  if (auto symTS{
          characteristics::TypeAndShape::Characterize(symbol, context)}) {
    auto xType{x.GetType()};
    auto converted{ConvertToType(symTS->type(), Expr<SomeType>{x})};
    if (!converted &&
        symbol.owner().context().IsEnabled(
            common::LanguageFeature::LogicalIntegerAssignment)) {
      converted = DataConstantConversionExtension(context, symTS->type(), x);
      if (converted &&
          symbol.owner().context().ShouldWarn(
              common::LanguageFeature::LogicalIntegerAssignment)) {
        context.messages().Say(
            "nonstandard usage: initialization of %s with %s"_port_en_US,
            symTS->type().AsFortran(), x.GetType().value().AsFortran());
      }
    }
    if (converted) {
      auto folded{Fold(context, std::move(*converted))};
      if (IsActuallyConstant(folded)) {
        int symRank{GetRank(symTS->shape())};
        if (IsImpliedShape(symbol)) {
          if (folded.Rank() == symRank) {
            return ArrayConstantBoundChanger{
                std::move(*AsConstantExtents(
                    context, GetRawLowerBounds(context, NamedEntity{symbol})))}
                .ChangeLbounds(std::move(folded));
          } else {
            context.messages().Say(
                "Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US,
                symbol.name(), symRank, folded.Rank());
          }
        } else if (auto extents{AsConstantExtents(context, symTS->shape())}) {
          if (folded.Rank() == 0 && symRank == 0) {
            // symbol and constant are both scalars
            return {std::move(folded)};
          } else if (folded.Rank() == 0 && symRank > 0) {
            // expand the scalar constant to an array
            return ScalarConstantExpander{std::move(*extents),
                AsConstantExtents(
                    context, GetRawLowerBounds(context, NamedEntity{symbol}))}
                .Expand(std::move(folded));
          } else if (auto resultShape{GetShape(context, folded)}) {
            if (CheckConformance(context.messages(), symTS->shape(),
                    *resultShape, CheckConformanceFlags::None,
                    "initialized object", "initialization expression")
                    .value_or(false /*fail if not known now to conform*/)) {
              // make a constant array with adjusted lower bounds
              return ArrayConstantBoundChanger{
                  std::move(*AsConstantExtents(context,
                      GetRawLowerBounds(context, NamedEntity{symbol})))}
                  .ChangeLbounds(std::move(folded));
            }
          }
        } else if (IsNamedConstant(symbol)) {
          if (IsExplicitShape(symbol)) {
            context.messages().Say(
                "Named constant '%s' array must have constant shape"_err_en_US,
                symbol.name());
          } else {
            // Declaration checking handles other cases
          }
        } else {
          context.messages().Say(
              "Shape of initialized object '%s' must be constant"_err_en_US,
              symbol.name());
        }
      } else if (IsErrorExpr(folded)) {
      } else if (IsLenTypeParameter(symbol)) {
        return {std::move(folded)};
      } else if (IsKindTypeParameter(symbol)) {
        if (instantiation) {
          context.messages().Say(
              "Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US,
              symbol.name(), folded.AsFortran());
        } else {
          return {std::move(folded)};
        }
      } else if (IsNamedConstant(symbol)) {
        context.messages().Say(
            "Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US,
            symbol.name(), folded.AsFortran());
      } else {
        context.messages().Say(
            "Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US,
            symbol.name(), folded.AsFortran());
      }
    } else if (xType) {
      context.messages().Say(
          "Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US,
          symbol.name(), xType->AsFortran());
    } else {
      context.messages().Say(
          "Initialization expression cannot be converted to declared type of '%s'"_err_en_US,
          symbol.name());
    }
  }
  return std::nullopt;
}

static bool IsNonLocal(const semantics::Symbol &symbol) {
  return semantics::IsDummy(symbol) || symbol.has<semantics::UseDetails>() ||
      symbol.owner().kind() == semantics::Scope::Kind::Module ||
      semantics::FindCommonBlockContaining(symbol) ||
      symbol.has<semantics::HostAssocDetails>();
}

static bool IsPermissibleInquiry(const semantics::Symbol &firstSymbol,
    const semantics::Symbol &lastSymbol, DescriptorInquiry::Field field,
    const semantics::Scope &localScope) {
  if (IsNonLocal(firstSymbol)) {
    return true;
  }
  if (&localScope != &firstSymbol.owner()) {
    return true;
  }
  // Inquiries on local objects may not access a deferred bound or length.
  // (This code used to be a switch, but it proved impossible to write it
  // thus without running afoul of bogus warnings from different C++
  // compilers.)
  if (field == DescriptorInquiry::Field::Rank) {
    return true; // always known
  }
  const auto *object{lastSymbol.detailsIf<semantics::ObjectEntityDetails>()};
  if (field == DescriptorInquiry::Field::LowerBound ||
      field == DescriptorInquiry::Field::Extent ||
      field == DescriptorInquiry::Field::Stride) {
    return object && !object->shape().CanBeDeferredShape();
  }
  if (field == DescriptorInquiry::Field::Len) {
    return object && object->type() &&
        object->type()->category() == semantics::DeclTypeSpec::Character &&
        !object->type()->characterTypeSpec().length().isDeferred();
  }
  return false;
}

// Specification expression validation (10.1.11(2), C1010)
class CheckSpecificationExprHelper
    : public AnyTraverse<CheckSpecificationExprHelper,
          std::optional<std::string>> {
public:
  using Result = std::optional<std::string>;
  using Base = AnyTraverse<CheckSpecificationExprHelper, Result>;
  explicit CheckSpecificationExprHelper(
      const semantics::Scope &s, FoldingContext &context)
      : Base{*this}, scope_{s}, context_{context} {}
  using Base::operator();

  Result operator()(const CoarrayRef &) const { return "coindexed reference"; }

  Result operator()(const semantics::Symbol &symbol) const {
    const auto &ultimate{symbol.GetUltimate()};
    if (const auto *assoc{
            ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
      return (*this)(assoc->expr());
    } else if (semantics::IsNamedConstant(ultimate) ||
        ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) {
      return std::nullopt;
    } else if (scope_.IsDerivedType() &&
        IsVariableName(ultimate)) { // C750, C754
      return "derived type component or type parameter value not allowed to "
             "reference variable '"s +
          ultimate.name().ToString() + "'";
    } else if (IsDummy(ultimate)) {
      if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) {
        return "reference to OPTIONAL dummy argument '"s +
            ultimate.name().ToString() + "'";
      } else if (!inInquiry_ &&
          ultimate.attrs().test(semantics::Attr::INTENT_OUT)) {
        return "reference to INTENT(OUT) dummy argument '"s +
            ultimate.name().ToString() + "'";
      } else if (ultimate.has<semantics::ObjectEntityDetails>()) {
        return std::nullopt;
      } else {
        return "dummy procedure argument";
      }
    } else if (&symbol.owner() != &scope_ || &ultimate.owner() != &scope_) {
      return std::nullopt; // host association is in play
    } else if (const auto *object{
                   ultimate.detailsIf<semantics::ObjectEntityDetails>()}) {
      if (object->commonBlock()) {
        return std::nullopt;
      }
    }
    if (inInquiry_) {
      return std::nullopt;
    } else {
      return "reference to local entity '"s + ultimate.name().ToString() + "'";
    }
  }

  Result operator()(const Component &x) const {
    // Don't look at the component symbol.
    return (*this)(x.base());
  }
  Result operator()(const ArrayRef &x) const {
    if (auto result{(*this)(x.base())}) {
      return result;
    }
    // The subscripts don't get special protection for being in a
    // specification inquiry context;
    auto restorer{common::ScopedSet(inInquiry_, false)};
    return (*this)(x.subscript());
  }
  Result operator()(const Substring &x) const {
    if (auto result{(*this)(x.parent())}) {
      return result;
    }
    // The bounds don't get special protection for being in a
    // specification inquiry context;
    auto restorer{common::ScopedSet(inInquiry_, false)};
    if (auto result{(*this)(x.lower())}) {
      return result;
    }
    return (*this)(x.upper());
  }
  Result operator()(const DescriptorInquiry &x) const {
    // Many uses of SIZE(), LBOUND(), &c. that are valid in specification
    // expressions will have been converted to expressions over descriptor
    // inquiries by Fold().
    // Catch REAL, ALLOCATABLE :: X(:); REAL :: Y(SIZE(X))
    if (IsPermissibleInquiry(x.base().GetFirstSymbol(),
            x.base().GetLastSymbol(), x.field(), scope_)) {
      auto restorer{common::ScopedSet(inInquiry_, true)};
      return (*this)(x.base());
    } else if (IsConstantExpr(x)) {
      return std::nullopt;
    } else {
      return "non-constant descriptor inquiry not allowed for local object";
    }
  }

  Result operator()(const TypeParamInquiry &inq) const {
    if (scope_.IsDerivedType() && !IsConstantExpr(inq) &&
        inq.base() /* X%T, not local T */) { // C750, C754
      return "non-constant reference to a type parameter inquiry not "
             "allowed for derived type components or type parameter values";
    }
    return std::nullopt;
  }

  Result operator()(const ProcedureRef &x) const {
    bool inInquiry{false};
    if (const auto *symbol{x.proc().GetSymbol()}) {
      const Symbol &ultimate{symbol->GetUltimate()};
      if (!semantics::IsPureProcedure(ultimate)) {
        return "reference to impure function '"s + ultimate.name().ToString() +
            "'";
      }
      if (semantics::IsStmtFunction(ultimate)) {
        return "reference to statement function '"s +
            ultimate.name().ToString() + "'";
      }
      if (scope_.IsDerivedType()) { // C750, C754
        return "reference to function '"s + ultimate.name().ToString() +
            "' not allowed for derived type components or type parameter"
            " values";
      }
      if (auto procChars{
              characteristics::Procedure::Characterize(x.proc(), context_)}) {
        const auto iter{std::find_if(procChars->dummyArguments.begin(),
            procChars->dummyArguments.end(),
            [](const characteristics::DummyArgument &dummy) {
              return std::holds_alternative<characteristics::DummyProcedure>(
                  dummy.u);
            })};
        if (iter != procChars->dummyArguments.end()) {
          return "reference to function '"s + ultimate.name().ToString() +
              "' with dummy procedure argument '" + iter->name + '\'';
        }
      }
      // References to internal functions are caught in expression semantics.
      // TODO: other checks for standard module procedures
    } else { // intrinsic
      const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())};
      inInquiry = context_.intrinsics().GetIntrinsicClass(intrin.name) ==
          IntrinsicClass::inquiryFunction;
      if (scope_.IsDerivedType()) { // C750, C754
        if ((context_.intrinsics().IsIntrinsic(intrin.name) &&
                badIntrinsicsForComponents_.find(intrin.name) !=
                    badIntrinsicsForComponents_.end())) {
          return "reference to intrinsic '"s + intrin.name +
              "' not allowed for derived type components or type parameter"
              " values";
        }
        if (inInquiry && !IsConstantExpr(x)) {
          return "non-constant reference to inquiry intrinsic '"s +
              intrin.name +
              "' not allowed for derived type components or type"
              " parameter values";
        }
      }
      // Type-determined inquiries (DIGITS, HUGE, &c.) will have already been
      // folded and won't arrive here.  Inquiries that are represented with
      // DescriptorInquiry operations (LBOUND) are checked elsewhere.  If a
      // call that makes it to here satisfies the requirements of a constant
      // expression (as Fortran defines it), it's fine.
      if (IsConstantExpr(x)) {
        return std::nullopt;
      }
      if (intrin.name == "present") {
        return std::nullopt; // always ok
      }
      // Catch CHARACTER(:), ALLOCATABLE :: X; CHARACTER(LEN(X)) :: Y
      if (inInquiry && x.arguments().size() >= 1) {
        if (const auto &arg{x.arguments().at(0)}) {
          if (auto dataRef{ExtractDataRef(*arg, true, true)}) {
            if (intrin.name == "allocated" || intrin.name == "associated" ||
                intrin.name == "is_contiguous") { // ok
            } else if (intrin.name == "len" &&
                IsPermissibleInquiry(dataRef->GetFirstSymbol(),
                    dataRef->GetLastSymbol(), DescriptorInquiry::Field::Len,
                    scope_)) { // ok
            } else if (intrin.name == "lbound" &&
                IsPermissibleInquiry(dataRef->GetFirstSymbol(),
                    dataRef->GetLastSymbol(),
                    DescriptorInquiry::Field::LowerBound, scope_)) { // ok
            } else if ((intrin.name == "shape" || intrin.name == "size" ||
                           intrin.name == "sizeof" ||
                           intrin.name == "storage_size" ||
                           intrin.name == "ubound") &&
                IsPermissibleInquiry(dataRef->GetFirstSymbol(),
                    dataRef->GetLastSymbol(), DescriptorInquiry::Field::Extent,
                    scope_)) { // ok
            } else {
              return "non-constant inquiry function '"s + intrin.name +
                  "' not allowed for local object";
            }
          }
        }
      }
    }
    auto restorer{common::ScopedSet(inInquiry_, inInquiry)};
    return (*this)(x.arguments());
  }

private:
  const semantics::Scope &scope_;
  FoldingContext &context_;
  // Contextual information: this flag is true when in an argument to
  // an inquiry intrinsic like SIZE().
  mutable bool inInquiry_{false};
  const std::set<std::string> badIntrinsicsForComponents_{
      "allocated", "associated", "extends_type_of", "present", "same_type_as"};
};

template <typename A>
void CheckSpecificationExpr(
    const A &x, const semantics::Scope &scope, FoldingContext &context) {
  if (auto why{CheckSpecificationExprHelper{scope, context}(x)}) {
    context.messages().Say(
        "Invalid specification expression: %s"_err_en_US, *why);
  }
}

template void CheckSpecificationExpr(
    const Expr<SomeType> &, const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(
    const Expr<SomeInteger> &, const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(
    const Expr<SubscriptInteger> &, const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &,
    const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &,
    const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(
    const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &,
    FoldingContext &);

// IsContiguous() -- 9.5.4
class IsContiguousHelper
    : public AnyTraverse<IsContiguousHelper, std::optional<bool>> {
public:
  using Result = std::optional<bool>; // tri-state
  using Base = AnyTraverse<IsContiguousHelper, Result>;
  explicit IsContiguousHelper(FoldingContext &c) : Base{*this}, context_{c} {}
  using Base::operator();

  Result operator()(const semantics::Symbol &symbol) const {
    const auto &ultimate{symbol.GetUltimate()};
    if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS)) {
      return true;
    } else if (ultimate.Rank() == 0) {
      // Extension: accept scalars as a degenerate case of
      // simple contiguity to allow their use in contexts like
      // data targets in pointer assignments with remapping.
      return true;
    } else if (ultimate.has<semantics::AssocEntityDetails>()) {
      return Base::operator()(ultimate); // use expr
    } else if (semantics::IsPointer(ultimate) ||
        semantics::IsAssumedShape(ultimate) || IsAssumedRank(ultimate)) {
      return std::nullopt;
    } else if (ultimate.has<semantics::ObjectEntityDetails>()) {
      return true;
    } else {
      return Base::operator()(ultimate);
    }
  }

  Result operator()(const ArrayRef &x) const {
    if (x.Rank() == 0) {
      return true; // scalars considered contiguous
    }
    int subscriptRank{0};
    auto baseLbounds{GetLBOUNDs(context_, x.base())};
    auto baseUbounds{GetUBOUNDs(context_, x.base())};
    auto subscripts{CheckSubscripts(
        x.subscript(), subscriptRank, &baseLbounds, &baseUbounds)};
    if (!subscripts.value_or(false)) {
      return subscripts; // subscripts not known to be contiguous
    } else if (subscriptRank > 0) {
      // a(1)%b(:,:) is contiguous if and only if a(1)%b is contiguous.
      return (*this)(x.base());
    } else {
      // a(:)%b(1,1) is (probably) not contiguous.
      return std::nullopt;
    }
  }
  Result operator()(const CoarrayRef &x) const {
    int rank{0};
    return CheckSubscripts(x.subscript(), rank).has_value();
  }
  Result operator()(const Component &x) const {
    if (x.base().Rank() == 0) {
      return (*this)(x.GetLastSymbol());
    } else {
      // TODO could be true if base contiguous and this is only component, or
      // if base has only one element?
      return std::nullopt;
    }
  }
  Result operator()(const ComplexPart &x) const {
    return x.complex().Rank() == 0;
  }
  Result operator()(const Substring &) const { return std::nullopt; }

  Result operator()(const ProcedureRef &x) const {
    if (auto chars{
            characteristics::Procedure::Characterize(x.proc(), context_)}) {
      if (chars->functionResult) {
        const auto &result{*chars->functionResult};
        if (!result.IsProcedurePointer()) {
          if (result.attrs.test(
                  characteristics::FunctionResult::Attr::Contiguous)) {
            return true;
          }
          if (!result.attrs.test(
                  characteristics::FunctionResult::Attr::Pointer)) {
            return true;
          }
          if (const auto *type{result.GetTypeAndShape()};
              type && type->Rank() == 0) {
            return true; // pointer to scalar
          }
          // Must be non-CONTIGUOUS pointer to array
        }
      }
    }
    return std::nullopt;
  }

  Result operator()(const NullPointer &) const { return true; }

private:
  // Returns "true" for a provably empty or simply contiguous array section;
  // return "false" for a provably nonempty discontiguous section or for use
  // of a vector subscript.
  std::optional<bool> CheckSubscripts(const std::vector<Subscript> &subscript,
      int &rank, const Shape *baseLbounds = nullptr,
      const Shape *baseUbounds = nullptr) const {
    bool anyTriplet{false};
    rank = 0;
    // Detect any provably empty dimension in this array section, which would
    // render the whole section empty and therefore vacuously contiguous.
    std::optional<bool> result;
    for (auto j{subscript.size()}; j-- > 0;) {
      if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) {
        ++rank;
        if (auto stride{ToInt64(triplet->stride())}) {
          const Expr<SubscriptInteger> *lowerBound{triplet->GetLower()};
          if (!lowerBound && baseLbounds && j < baseLbounds->size()) {
            lowerBound = common::GetPtrFromOptional(baseLbounds->at(j));
          }
          const Expr<SubscriptInteger> *upperBound{triplet->GetUpper()};
          if (!upperBound && baseUbounds && j < baseUbounds->size()) {
            upperBound = common::GetPtrFromOptional(baseUbounds->at(j));
          }
          std::optional<ConstantSubscript> lowerVal{lowerBound
                  ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*lowerBound}))
                  : std::nullopt};
          std::optional<ConstantSubscript> upperVal{upperBound
                  ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*upperBound}))
                  : std::nullopt};
          if (lowerVal && upperVal) {
            if (*lowerVal < *upperVal) {
              if (*stride < 0) {
                result = true; // empty dimension
              } else if (!result && *stride > 1 &&
                  *lowerVal + *stride <= *upperVal) {
                result = false; // discontiguous if not empty
              }
            } else if (*lowerVal > *upperVal) {
              if (*stride > 0) {
                result = true; // empty dimension
              } else if (!result && *stride < 0 &&
                  *lowerVal + *stride >= *upperVal) {
                result = false; // discontiguous if not empty
              }
            }
          }
        }
      } else if (subscript[j].Rank() > 0) {
        ++rank;
        if (!result) {
          result = false; // vector subscript
        }
      }
    }
    if (rank == 0) {
      result = true; // scalar
    }
    if (result) {
      return result;
    }
    // Not provably discontiguous at this point.
    // Return "true" if simply contiguous, otherwise nullopt.
    for (auto j{subscript.size()}; j-- > 0;) {
      if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) {
        auto stride{ToInt64(triplet->stride())};
        if (!stride || stride != 1) {
          return std::nullopt;
        } else if (anyTriplet) {
          if (triplet->GetLower() || triplet->GetUpper()) {
            // all triplets before the last one must be just ":" for
            // simple contiguity
            return std::nullopt;
          }
        } else {
          anyTriplet = true;
        }
        ++rank;
      } else if (anyTriplet) {
        return std::nullopt;
      }
    }
    return true; // simply contiguous
  }

  FoldingContext &context_;
};

template <typename A>
std::optional<bool> IsContiguous(const A &x, FoldingContext &context) {
  if (IsVariable(x)) {
    return IsContiguousHelper{context}(x);
  } else {
    return true; // not a variable
  }
}

template std::optional<bool> IsContiguous(
    const Expr<SomeType> &, FoldingContext &);
template std::optional<bool> IsContiguous(const ArrayRef &, FoldingContext &);
template std::optional<bool> IsContiguous(const Substring &, FoldingContext &);
template std::optional<bool> IsContiguous(const Component &, FoldingContext &);
template std::optional<bool> IsContiguous(
    const ComplexPart &, FoldingContext &);
template std::optional<bool> IsContiguous(const CoarrayRef &, FoldingContext &);
template std::optional<bool> IsContiguous(const Symbol &, FoldingContext &);

// IsErrorExpr()
struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> {
  using Result = bool;
  using Base = AnyTraverse<IsErrorExprHelper, Result>;
  IsErrorExprHelper() : Base{*this} {}
  using Base::operator();

  bool operator()(const SpecificIntrinsic &x) {
    return x.name == IntrinsicProcTable::InvalidName;
  }
};

template <typename A> bool IsErrorExpr(const A &x) {
  return IsErrorExprHelper{}(x);
}

template bool IsErrorExpr(const Expr<SomeType> &);

// C1577
// TODO: Also check C1579 & C1582 here
class StmtFunctionChecker
    : public AnyTraverse<StmtFunctionChecker, std::optional<parser::Message>> {
public:
  using Result = std::optional<parser::Message>;
  using Base = AnyTraverse<StmtFunctionChecker, Result>;
  StmtFunctionChecker(const Symbol &sf, FoldingContext &context)
      : Base{*this}, sf_{sf}, context_{context} {}
  using Base::operator();

  template <typename T> Result operator()(const ArrayConstructor<T> &) const {
    return parser::Message{sf_.name(),
        "Statement function '%s' should not contain an array constructor"_port_en_US,
        sf_.name()};
  }
  Result operator()(const StructureConstructor &) const {
    return parser::Message{sf_.name(),
        "Statement function '%s' should not contain a structure constructor"_port_en_US,
        sf_.name()};
  }
  Result operator()(const TypeParamInquiry &) const {
    return parser::Message{sf_.name(),
        "Statement function '%s' should not contain a type parameter inquiry"_port_en_US,
        sf_.name()};
  }
  Result operator()(const ProcedureDesignator &proc) const {
    if (const Symbol * symbol{proc.GetSymbol()}) {
      const Symbol &ultimate{symbol->GetUltimate()};
      if (const auto *subp{
              ultimate.detailsIf<semantics::SubprogramDetails>()}) {
        if (subp->stmtFunction() && &ultimate.owner() == &sf_.owner()) {
          if (ultimate.name().begin() > sf_.name().begin()) {
            return parser::Message{sf_.name(),
                "Statement function '%s' may not reference another statement function '%s' that is defined later"_err_en_US,
                sf_.name(), ultimate.name()};
          }
        }
      }
      if (auto chars{
              characteristics::Procedure::Characterize(proc, context_)}) {
        if (!chars->CanBeCalledViaImplicitInterface()) {
          return parser::Message(sf_.name(),
              "Statement function '%s' should not reference function '%s' that requires an explicit interface"_port_en_US,
              sf_.name(), symbol->name());
        }
      }
    }
    if (proc.Rank() > 0) {
      return parser::Message(sf_.name(),
          "Statement function '%s' should not reference a function that returns an array"_port_en_US,
          sf_.name());
    }
    return std::nullopt;
  }
  Result operator()(const ActualArgument &arg) const {
    if (const auto *expr{arg.UnwrapExpr()}) {
      if (auto result{(*this)(*expr)}) {
        return result;
      }
      if (expr->Rank() > 0 && !UnwrapWholeSymbolOrComponentDataRef(*expr)) {
        return parser::Message(sf_.name(),
            "Statement function '%s' should not pass an array argument that is not a whole array"_port_en_US,
            sf_.name());
      }
    }
    return std::nullopt;
  }

private:
  const Symbol &sf_;
  FoldingContext &context_;
};

std::optional<parser::Message> CheckStatementFunction(
    const Symbol &sf, const Expr<SomeType> &expr, FoldingContext &context) {
  return StmtFunctionChecker{sf, context}(expr);
}

} // namespace Fortran::evaluate