1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
|
//===-- lib/Evaluate/check-expression.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Evaluate/type.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include <set>
#include <string>
namespace Fortran::evaluate {
// Constant expression predicates IsConstantExpr() & IsScopeInvariantExpr().
// This code determines whether an expression is a "constant expression"
// in the sense of section 10.1.12. This is not the same thing as being
// able to fold it (yet) into a known constant value; specifically,
// the expression may reference derived type kind parameters whose values
// are not yet known.
//
// The variant form (IsScopeInvariantExpr()) also accepts symbols that are
// INTENT(IN) dummy arguments without the VALUE attribute.
template <bool INVARIANT>
class IsConstantExprHelper
: public AllTraverse<IsConstantExprHelper<INVARIANT>, true> {
public:
using Base = AllTraverse<IsConstantExprHelper, true>;
IsConstantExprHelper() : Base{*this} {}
using Base::operator();
// A missing expression is not considered to be constant.
template <typename A> bool operator()(const std::optional<A> &x) const {
return x && (*this)(*x);
}
bool operator()(const TypeParamInquiry &inq) const {
return INVARIANT || semantics::IsKindTypeParameter(inq.parameter());
}
bool operator()(const semantics::Symbol &symbol) const {
const auto &ultimate{GetAssociationRoot(symbol)};
return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) ||
IsInitialProcedureTarget(ultimate) ||
ultimate.has<semantics::TypeParamDetails>() ||
(INVARIANT && IsIntentIn(symbol) && !IsOptional(symbol) &&
!symbol.attrs().test(semantics::Attr::VALUE));
}
bool operator()(const CoarrayRef &) const { return false; }
bool operator()(const semantics::ParamValue ¶m) const {
return param.isExplicit() && (*this)(param.GetExplicit());
}
bool operator()(const ProcedureRef &) const;
bool operator()(const StructureConstructor &constructor) const {
for (const auto &[symRef, expr] : constructor) {
if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) {
return false;
}
}
return true;
}
bool operator()(const Component &component) const {
return (*this)(component.base());
}
// Forbid integer division by zero in constants.
template <int KIND>
bool operator()(
const Divide<Type<TypeCategory::Integer, KIND>> &division) const {
using T = Type<TypeCategory::Integer, KIND>;
if (const auto divisor{GetScalarConstantValue<T>(division.right())}) {
return !divisor->IsZero() && (*this)(division.left());
} else {
return false;
}
}
bool operator()(const Constant<SomeDerived> &) const { return true; }
bool operator()(const DescriptorInquiry &x) const {
const Symbol &sym{x.base().GetLastSymbol()};
return INVARIANT && !IsAllocatable(sym) &&
(!IsDummy(sym) ||
(IsIntentIn(sym) && !IsOptional(sym) &&
!sym.attrs().test(semantics::Attr::VALUE)));
}
private:
bool IsConstantStructureConstructorComponent(
const Symbol &, const Expr<SomeType> &) const;
bool IsConstantExprShape(const Shape &) const;
};
template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::IsConstantStructureConstructorComponent(
const Symbol &component, const Expr<SomeType> &expr) const {
if (IsAllocatable(component)) {
return IsNullObjectPointer(expr);
} else if (IsPointer(component)) {
return IsNullPointer(expr) || IsInitialDataTarget(expr) ||
IsInitialProcedureTarget(expr);
} else {
return (*this)(expr);
}
}
template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::operator()(
const ProcedureRef &call) const {
// LBOUND, UBOUND, and SIZE with truly constant DIM= arguments will have
// been rewritten into DescriptorInquiry operations.
if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) {
if (intrinsic->name == "kind" ||
intrinsic->name == IntrinsicProcTable::InvalidName ||
call.arguments().empty() || !call.arguments()[0]) {
// kind is always a constant, and we avoid cascading errors by considering
// invalid calls to intrinsics to be constant
return true;
} else if (intrinsic->name == "lbound") {
auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())};
return base && IsConstantExprShape(GetLBOUNDs(*base));
} else if (intrinsic->name == "ubound") {
auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())};
return base && IsConstantExprShape(GetUBOUNDs(*base));
} else if (intrinsic->name == "shape" || intrinsic->name == "size") {
auto shape{GetShape(call.arguments()[0]->UnwrapExpr())};
return shape && IsConstantExprShape(*shape);
}
// TODO: STORAGE_SIZE
}
return false;
}
template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::IsConstantExprShape(
const Shape &shape) const {
for (const auto &extent : shape) {
if (!(*this)(extent)) {
return false;
}
}
return true;
}
template <typename A> bool IsConstantExpr(const A &x) {
return IsConstantExprHelper<false>{}(x);
}
template bool IsConstantExpr(const Expr<SomeType> &);
template bool IsConstantExpr(const Expr<SomeInteger> &);
template bool IsConstantExpr(const Expr<SubscriptInteger> &);
template bool IsConstantExpr(const StructureConstructor &);
// IsScopeInvariantExpr()
template <typename A> bool IsScopeInvariantExpr(const A &x) {
return IsConstantExprHelper<true>{}(x);
}
template bool IsScopeInvariantExpr(const Expr<SomeType> &);
template bool IsScopeInvariantExpr(const Expr<SomeInteger> &);
template bool IsScopeInvariantExpr(const Expr<SubscriptInteger> &);
// IsActuallyConstant()
struct IsActuallyConstantHelper {
template <typename A> bool operator()(const A &) { return false; }
template <typename T> bool operator()(const Constant<T> &) { return true; }
template <typename T> bool operator()(const Parentheses<T> &x) {
return (*this)(x.left());
}
template <typename T> bool operator()(const Expr<T> &x) {
return common::visit([=](const auto &y) { return (*this)(y); }, x.u);
}
bool operator()(const Expr<SomeType> &x) {
return common::visit([this](const auto &y) { return (*this)(y); }, x.u);
}
bool operator()(const StructureConstructor &x) {
for (const auto &pair : x) {
const Expr<SomeType> &y{pair.second.value()};
if (!(*this)(y) && !IsNullPointer(y)) {
return false;
}
}
return true;
}
template <typename A> bool operator()(const A *x) { return x && (*this)(*x); }
template <typename A> bool operator()(const std::optional<A> &x) {
return x && (*this)(*x);
}
};
template <typename A> bool IsActuallyConstant(const A &x) {
return IsActuallyConstantHelper{}(x);
}
template bool IsActuallyConstant(const Expr<SomeType> &);
template bool IsActuallyConstant(const Expr<SomeInteger> &);
template bool IsActuallyConstant(const Expr<SubscriptInteger> &);
template bool IsActuallyConstant(const std::optional<Expr<SubscriptInteger>> &);
// Object pointer initialization checking predicate IsInitialDataTarget().
// This code determines whether an expression is allowable as the static
// data address used to initialize a pointer with "=> x". See C765.
class IsInitialDataTargetHelper
: public AllTraverse<IsInitialDataTargetHelper, true> {
public:
using Base = AllTraverse<IsInitialDataTargetHelper, true>;
using Base::operator();
explicit IsInitialDataTargetHelper(parser::ContextualMessages *m)
: Base{*this}, messages_{m} {}
bool emittedMessage() const { return emittedMessage_; }
bool operator()(const BOZLiteralConstant &) const { return false; }
bool operator()(const NullPointer &) const { return true; }
template <typename T> bool operator()(const Constant<T> &) const {
return false;
}
bool operator()(const semantics::Symbol &symbol) {
// This function checks only base symbols, not components.
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *assoc{
ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
if (const auto &expr{assoc->expr()}) {
if (IsVariable(*expr)) {
return (*this)(*expr);
} else if (messages_) {
messages_->Say(
"An initial data target may not be an associated expression ('%s')"_err_en_US,
ultimate.name());
emittedMessage_ = true;
}
}
return false;
} else if (!ultimate.attrs().test(semantics::Attr::TARGET)) {
if (messages_) {
messages_->Say(
"An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US,
ultimate.name());
emittedMessage_ = true;
}
return false;
} else if (!IsSaved(ultimate)) {
if (messages_) {
messages_->Say(
"An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US,
ultimate.name());
emittedMessage_ = true;
}
return false;
} else {
return CheckVarOrComponent(ultimate);
}
}
bool operator()(const StaticDataObject &) const { return false; }
bool operator()(const TypeParamInquiry &) const { return false; }
bool operator()(const Triplet &x) const {
return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
IsConstantExpr(x.stride());
}
bool operator()(const Subscript &x) const {
return common::visit(common::visitors{
[&](const Triplet &t) { return (*this)(t); },
[&](const auto &y) {
return y.value().Rank() == 0 &&
IsConstantExpr(y.value());
},
},
x.u);
}
bool operator()(const CoarrayRef &) const { return false; }
bool operator()(const Component &x) {
return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base());
}
bool operator()(const Substring &x) const {
return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
(*this)(x.parent());
}
bool operator()(const DescriptorInquiry &) const { return false; }
template <typename T> bool operator()(const ArrayConstructor<T> &) const {
return false;
}
bool operator()(const StructureConstructor &) const { return false; }
template <typename D, typename R, typename... O>
bool operator()(const Operation<D, R, O...> &) const {
return false;
}
template <typename T> bool operator()(const Parentheses<T> &x) const {
return (*this)(x.left());
}
bool operator()(const ProcedureRef &x) const {
if (const SpecificIntrinsic * intrinsic{x.proc().GetSpecificIntrinsic()}) {
return intrinsic->characteristics.value().attrs.test(
characteristics::Procedure::Attr::NullPointer);
}
return false;
}
bool operator()(const Relational<SomeType> &) const { return false; }
private:
bool CheckVarOrComponent(const semantics::Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (IsAllocatable(ultimate)) {
if (messages_) {
messages_->Say(
"An initial data target may not be a reference to an ALLOCATABLE '%s'"_err_en_US,
ultimate.name());
emittedMessage_ = true;
}
return false;
} else if (ultimate.Corank() > 0) {
if (messages_) {
messages_->Say(
"An initial data target may not be a reference to a coarray '%s'"_err_en_US,
ultimate.name());
emittedMessage_ = true;
}
return false;
}
return true;
}
parser::ContextualMessages *messages_;
bool emittedMessage_{false};
};
bool IsInitialDataTarget(
const Expr<SomeType> &x, parser::ContextualMessages *messages) {
IsInitialDataTargetHelper helper{messages};
bool result{helper(x)};
if (!result && messages && !helper.emittedMessage()) {
messages->Say(
"An initial data target must be a designator with constant subscripts"_err_en_US);
}
return result;
}
bool IsInitialProcedureTarget(const semantics::Symbol &symbol) {
const auto &ultimate{symbol.GetUltimate()};
return common::visit(
common::visitors{
[](const semantics::SubprogramDetails &subp) {
return !subp.isDummy();
},
[](const semantics::SubprogramNameDetails &) { return true; },
[&](const semantics::ProcEntityDetails &proc) {
return !semantics::IsPointer(ultimate) && !proc.isDummy();
},
[](const auto &) { return false; },
},
ultimate.details());
}
bool IsInitialProcedureTarget(const ProcedureDesignator &proc) {
if (const auto *intrin{proc.GetSpecificIntrinsic()}) {
return !intrin->isRestrictedSpecific;
} else if (proc.GetComponent()) {
return false;
} else {
return IsInitialProcedureTarget(DEREF(proc.GetSymbol()));
}
}
bool IsInitialProcedureTarget(const Expr<SomeType> &expr) {
if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) {
return IsInitialProcedureTarget(*proc);
} else {
return IsNullProcedurePointer(expr);
}
}
// Converts, folds, and then checks type, rank, and shape of an
// initialization expression for a named constant, a non-pointer
// variable static initialization, a component default initializer,
// a type parameter default value, or instantiated type parameter value.
std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol,
Expr<SomeType> &&x, FoldingContext &context,
const semantics::Scope *instantiation) {
CHECK(!IsPointer(symbol));
if (auto symTS{
characteristics::TypeAndShape::Characterize(symbol, context)}) {
auto xType{x.GetType()};
auto converted{ConvertToType(symTS->type(), Expr<SomeType>{x})};
if (!converted &&
symbol.owner().context().IsEnabled(
common::LanguageFeature::LogicalIntegerAssignment)) {
converted = DataConstantConversionExtension(context, symTS->type(), x);
if (converted &&
symbol.owner().context().ShouldWarn(
common::LanguageFeature::LogicalIntegerAssignment)) {
context.messages().Say(
"nonstandard usage: initialization of %s with %s"_port_en_US,
symTS->type().AsFortran(), x.GetType().value().AsFortran());
}
}
if (converted) {
auto folded{Fold(context, std::move(*converted))};
if (IsActuallyConstant(folded)) {
int symRank{GetRank(symTS->shape())};
if (IsImpliedShape(symbol)) {
if (folded.Rank() == symRank) {
return ArrayConstantBoundChanger{
std::move(*AsConstantExtents(
context, GetRawLowerBounds(context, NamedEntity{symbol})))}
.ChangeLbounds(std::move(folded));
} else {
context.messages().Say(
"Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US,
symbol.name(), symRank, folded.Rank());
}
} else if (auto extents{AsConstantExtents(context, symTS->shape())}) {
if (folded.Rank() == 0 && symRank == 0) {
// symbol and constant are both scalars
return {std::move(folded)};
} else if (folded.Rank() == 0 && symRank > 0) {
// expand the scalar constant to an array
return ScalarConstantExpander{std::move(*extents),
AsConstantExtents(
context, GetRawLowerBounds(context, NamedEntity{symbol}))}
.Expand(std::move(folded));
} else if (auto resultShape{GetShape(context, folded)}) {
if (CheckConformance(context.messages(), symTS->shape(),
*resultShape, CheckConformanceFlags::None,
"initialized object", "initialization expression")
.value_or(false /*fail if not known now to conform*/)) {
// make a constant array with adjusted lower bounds
return ArrayConstantBoundChanger{
std::move(*AsConstantExtents(context,
GetRawLowerBounds(context, NamedEntity{symbol})))}
.ChangeLbounds(std::move(folded));
}
}
} else if (IsNamedConstant(symbol)) {
if (IsExplicitShape(symbol)) {
context.messages().Say(
"Named constant '%s' array must have constant shape"_err_en_US,
symbol.name());
} else {
// Declaration checking handles other cases
}
} else {
context.messages().Say(
"Shape of initialized object '%s' must be constant"_err_en_US,
symbol.name());
}
} else if (IsErrorExpr(folded)) {
} else if (IsLenTypeParameter(symbol)) {
return {std::move(folded)};
} else if (IsKindTypeParameter(symbol)) {
if (instantiation) {
context.messages().Say(
"Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US,
symbol.name(), folded.AsFortran());
} else {
return {std::move(folded)};
}
} else if (IsNamedConstant(symbol)) {
context.messages().Say(
"Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US,
symbol.name(), folded.AsFortran());
} else {
context.messages().Say(
"Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US,
symbol.name(), folded.AsFortran());
}
} else if (xType) {
context.messages().Say(
"Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US,
symbol.name(), xType->AsFortran());
} else {
context.messages().Say(
"Initialization expression cannot be converted to declared type of '%s'"_err_en_US,
symbol.name());
}
}
return std::nullopt;
}
static bool IsNonLocal(const semantics::Symbol &symbol) {
return semantics::IsDummy(symbol) || symbol.has<semantics::UseDetails>() ||
symbol.owner().kind() == semantics::Scope::Kind::Module ||
semantics::FindCommonBlockContaining(symbol) ||
symbol.has<semantics::HostAssocDetails>();
}
static bool IsPermissibleInquiry(const semantics::Symbol &firstSymbol,
const semantics::Symbol &lastSymbol, DescriptorInquiry::Field field,
const semantics::Scope &localScope) {
if (IsNonLocal(firstSymbol)) {
return true;
}
if (&localScope != &firstSymbol.owner()) {
return true;
}
// Inquiries on local objects may not access a deferred bound or length.
// (This code used to be a switch, but it proved impossible to write it
// thus without running afoul of bogus warnings from different C++
// compilers.)
if (field == DescriptorInquiry::Field::Rank) {
return true; // always known
}
const auto *object{lastSymbol.detailsIf<semantics::ObjectEntityDetails>()};
if (field == DescriptorInquiry::Field::LowerBound ||
field == DescriptorInquiry::Field::Extent ||
field == DescriptorInquiry::Field::Stride) {
return object && !object->shape().CanBeDeferredShape();
}
if (field == DescriptorInquiry::Field::Len) {
return object && object->type() &&
object->type()->category() == semantics::DeclTypeSpec::Character &&
!object->type()->characterTypeSpec().length().isDeferred();
}
return false;
}
// Specification expression validation (10.1.11(2), C1010)
class CheckSpecificationExprHelper
: public AnyTraverse<CheckSpecificationExprHelper,
std::optional<std::string>> {
public:
using Result = std::optional<std::string>;
using Base = AnyTraverse<CheckSpecificationExprHelper, Result>;
explicit CheckSpecificationExprHelper(
const semantics::Scope &s, FoldingContext &context)
: Base{*this}, scope_{s}, context_{context} {}
using Base::operator();
Result operator()(const CoarrayRef &) const { return "coindexed reference"; }
Result operator()(const semantics::Symbol &symbol) const {
const auto &ultimate{symbol.GetUltimate()};
if (const auto *assoc{
ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
return (*this)(assoc->expr());
} else if (semantics::IsNamedConstant(ultimate) ||
ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) {
return std::nullopt;
} else if (scope_.IsDerivedType() &&
IsVariableName(ultimate)) { // C750, C754
return "derived type component or type parameter value not allowed to "
"reference variable '"s +
ultimate.name().ToString() + "'";
} else if (IsDummy(ultimate)) {
if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) {
return "reference to OPTIONAL dummy argument '"s +
ultimate.name().ToString() + "'";
} else if (!inInquiry_ &&
ultimate.attrs().test(semantics::Attr::INTENT_OUT)) {
return "reference to INTENT(OUT) dummy argument '"s +
ultimate.name().ToString() + "'";
} else if (ultimate.has<semantics::ObjectEntityDetails>()) {
return std::nullopt;
} else {
return "dummy procedure argument";
}
} else if (&symbol.owner() != &scope_ || &ultimate.owner() != &scope_) {
return std::nullopt; // host association is in play
} else if (const auto *object{
ultimate.detailsIf<semantics::ObjectEntityDetails>()}) {
if (object->commonBlock()) {
return std::nullopt;
}
}
if (inInquiry_) {
return std::nullopt;
} else {
return "reference to local entity '"s + ultimate.name().ToString() + "'";
}
}
Result operator()(const Component &x) const {
// Don't look at the component symbol.
return (*this)(x.base());
}
Result operator()(const ArrayRef &x) const {
if (auto result{(*this)(x.base())}) {
return result;
}
// The subscripts don't get special protection for being in a
// specification inquiry context;
auto restorer{common::ScopedSet(inInquiry_, false)};
return (*this)(x.subscript());
}
Result operator()(const Substring &x) const {
if (auto result{(*this)(x.parent())}) {
return result;
}
// The bounds don't get special protection for being in a
// specification inquiry context;
auto restorer{common::ScopedSet(inInquiry_, false)};
if (auto result{(*this)(x.lower())}) {
return result;
}
return (*this)(x.upper());
}
Result operator()(const DescriptorInquiry &x) const {
// Many uses of SIZE(), LBOUND(), &c. that are valid in specification
// expressions will have been converted to expressions over descriptor
// inquiries by Fold().
// Catch REAL, ALLOCATABLE :: X(:); REAL :: Y(SIZE(X))
if (IsPermissibleInquiry(x.base().GetFirstSymbol(),
x.base().GetLastSymbol(), x.field(), scope_)) {
auto restorer{common::ScopedSet(inInquiry_, true)};
return (*this)(x.base());
} else if (IsConstantExpr(x)) {
return std::nullopt;
} else {
return "non-constant descriptor inquiry not allowed for local object";
}
}
Result operator()(const TypeParamInquiry &inq) const {
if (scope_.IsDerivedType() && !IsConstantExpr(inq) &&
inq.base() /* X%T, not local T */) { // C750, C754
return "non-constant reference to a type parameter inquiry not "
"allowed for derived type components or type parameter values";
}
return std::nullopt;
}
Result operator()(const ProcedureRef &x) const {
bool inInquiry{false};
if (const auto *symbol{x.proc().GetSymbol()}) {
const Symbol &ultimate{symbol->GetUltimate()};
if (!semantics::IsPureProcedure(ultimate)) {
return "reference to impure function '"s + ultimate.name().ToString() +
"'";
}
if (semantics::IsStmtFunction(ultimate)) {
return "reference to statement function '"s +
ultimate.name().ToString() + "'";
}
if (scope_.IsDerivedType()) { // C750, C754
return "reference to function '"s + ultimate.name().ToString() +
"' not allowed for derived type components or type parameter"
" values";
}
if (auto procChars{
characteristics::Procedure::Characterize(x.proc(), context_)}) {
const auto iter{std::find_if(procChars->dummyArguments.begin(),
procChars->dummyArguments.end(),
[](const characteristics::DummyArgument &dummy) {
return std::holds_alternative<characteristics::DummyProcedure>(
dummy.u);
})};
if (iter != procChars->dummyArguments.end()) {
return "reference to function '"s + ultimate.name().ToString() +
"' with dummy procedure argument '" + iter->name + '\'';
}
}
// References to internal functions are caught in expression semantics.
// TODO: other checks for standard module procedures
} else { // intrinsic
const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())};
inInquiry = context_.intrinsics().GetIntrinsicClass(intrin.name) ==
IntrinsicClass::inquiryFunction;
if (scope_.IsDerivedType()) { // C750, C754
if ((context_.intrinsics().IsIntrinsic(intrin.name) &&
badIntrinsicsForComponents_.find(intrin.name) !=
badIntrinsicsForComponents_.end())) {
return "reference to intrinsic '"s + intrin.name +
"' not allowed for derived type components or type parameter"
" values";
}
if (inInquiry && !IsConstantExpr(x)) {
return "non-constant reference to inquiry intrinsic '"s +
intrin.name +
"' not allowed for derived type components or type"
" parameter values";
}
}
// Type-determined inquiries (DIGITS, HUGE, &c.) will have already been
// folded and won't arrive here. Inquiries that are represented with
// DescriptorInquiry operations (LBOUND) are checked elsewhere. If a
// call that makes it to here satisfies the requirements of a constant
// expression (as Fortran defines it), it's fine.
if (IsConstantExpr(x)) {
return std::nullopt;
}
if (intrin.name == "present") {
return std::nullopt; // always ok
}
// Catch CHARACTER(:), ALLOCATABLE :: X; CHARACTER(LEN(X)) :: Y
if (inInquiry && x.arguments().size() >= 1) {
if (const auto &arg{x.arguments().at(0)}) {
if (auto dataRef{ExtractDataRef(*arg, true, true)}) {
if (intrin.name == "allocated" || intrin.name == "associated" ||
intrin.name == "is_contiguous") { // ok
} else if (intrin.name == "len" &&
IsPermissibleInquiry(dataRef->GetFirstSymbol(),
dataRef->GetLastSymbol(), DescriptorInquiry::Field::Len,
scope_)) { // ok
} else if (intrin.name == "lbound" &&
IsPermissibleInquiry(dataRef->GetFirstSymbol(),
dataRef->GetLastSymbol(),
DescriptorInquiry::Field::LowerBound, scope_)) { // ok
} else if ((intrin.name == "shape" || intrin.name == "size" ||
intrin.name == "sizeof" ||
intrin.name == "storage_size" ||
intrin.name == "ubound") &&
IsPermissibleInquiry(dataRef->GetFirstSymbol(),
dataRef->GetLastSymbol(), DescriptorInquiry::Field::Extent,
scope_)) { // ok
} else {
return "non-constant inquiry function '"s + intrin.name +
"' not allowed for local object";
}
}
}
}
}
auto restorer{common::ScopedSet(inInquiry_, inInquiry)};
return (*this)(x.arguments());
}
private:
const semantics::Scope &scope_;
FoldingContext &context_;
// Contextual information: this flag is true when in an argument to
// an inquiry intrinsic like SIZE().
mutable bool inInquiry_{false};
const std::set<std::string> badIntrinsicsForComponents_{
"allocated", "associated", "extends_type_of", "present", "same_type_as"};
};
template <typename A>
void CheckSpecificationExpr(
const A &x, const semantics::Scope &scope, FoldingContext &context) {
if (auto why{CheckSpecificationExprHelper{scope, context}(x)}) {
context.messages().Say(
"Invalid specification expression: %s"_err_en_US, *why);
}
}
template void CheckSpecificationExpr(
const Expr<SomeType> &, const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(
const Expr<SomeInteger> &, const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(
const Expr<SubscriptInteger> &, const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &,
const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &,
const semantics::Scope &, FoldingContext &);
template void CheckSpecificationExpr(
const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &,
FoldingContext &);
// IsContiguous() -- 9.5.4
class IsContiguousHelper
: public AnyTraverse<IsContiguousHelper, std::optional<bool>> {
public:
using Result = std::optional<bool>; // tri-state
using Base = AnyTraverse<IsContiguousHelper, Result>;
explicit IsContiguousHelper(FoldingContext &c) : Base{*this}, context_{c} {}
using Base::operator();
Result operator()(const semantics::Symbol &symbol) const {
const auto &ultimate{symbol.GetUltimate()};
if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS)) {
return true;
} else if (ultimate.Rank() == 0) {
// Extension: accept scalars as a degenerate case of
// simple contiguity to allow their use in contexts like
// data targets in pointer assignments with remapping.
return true;
} else if (ultimate.has<semantics::AssocEntityDetails>()) {
return Base::operator()(ultimate); // use expr
} else if (semantics::IsPointer(ultimate) ||
semantics::IsAssumedShape(ultimate) || IsAssumedRank(ultimate)) {
return std::nullopt;
} else if (ultimate.has<semantics::ObjectEntityDetails>()) {
return true;
} else {
return Base::operator()(ultimate);
}
}
Result operator()(const ArrayRef &x) const {
if (x.Rank() == 0) {
return true; // scalars considered contiguous
}
int subscriptRank{0};
auto baseLbounds{GetLBOUNDs(context_, x.base())};
auto baseUbounds{GetUBOUNDs(context_, x.base())};
auto subscripts{CheckSubscripts(
x.subscript(), subscriptRank, &baseLbounds, &baseUbounds)};
if (!subscripts.value_or(false)) {
return subscripts; // subscripts not known to be contiguous
} else if (subscriptRank > 0) {
// a(1)%b(:,:) is contiguous if and only if a(1)%b is contiguous.
return (*this)(x.base());
} else {
// a(:)%b(1,1) is (probably) not contiguous.
return std::nullopt;
}
}
Result operator()(const CoarrayRef &x) const {
int rank{0};
return CheckSubscripts(x.subscript(), rank).has_value();
}
Result operator()(const Component &x) const {
if (x.base().Rank() == 0) {
return (*this)(x.GetLastSymbol());
} else {
// TODO could be true if base contiguous and this is only component, or
// if base has only one element?
return std::nullopt;
}
}
Result operator()(const ComplexPart &x) const {
return x.complex().Rank() == 0;
}
Result operator()(const Substring &) const { return std::nullopt; }
Result operator()(const ProcedureRef &x) const {
if (auto chars{
characteristics::Procedure::Characterize(x.proc(), context_)}) {
if (chars->functionResult) {
const auto &result{*chars->functionResult};
if (!result.IsProcedurePointer()) {
if (result.attrs.test(
characteristics::FunctionResult::Attr::Contiguous)) {
return true;
}
if (!result.attrs.test(
characteristics::FunctionResult::Attr::Pointer)) {
return true;
}
if (const auto *type{result.GetTypeAndShape()};
type && type->Rank() == 0) {
return true; // pointer to scalar
}
// Must be non-CONTIGUOUS pointer to array
}
}
}
return std::nullopt;
}
Result operator()(const NullPointer &) const { return true; }
private:
// Returns "true" for a provably empty or simply contiguous array section;
// return "false" for a provably nonempty discontiguous section or for use
// of a vector subscript.
std::optional<bool> CheckSubscripts(const std::vector<Subscript> &subscript,
int &rank, const Shape *baseLbounds = nullptr,
const Shape *baseUbounds = nullptr) const {
bool anyTriplet{false};
rank = 0;
// Detect any provably empty dimension in this array section, which would
// render the whole section empty and therefore vacuously contiguous.
std::optional<bool> result;
for (auto j{subscript.size()}; j-- > 0;) {
if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) {
++rank;
if (auto stride{ToInt64(triplet->stride())}) {
const Expr<SubscriptInteger> *lowerBound{triplet->GetLower()};
if (!lowerBound && baseLbounds && j < baseLbounds->size()) {
lowerBound = common::GetPtrFromOptional(baseLbounds->at(j));
}
const Expr<SubscriptInteger> *upperBound{triplet->GetUpper()};
if (!upperBound && baseUbounds && j < baseUbounds->size()) {
upperBound = common::GetPtrFromOptional(baseUbounds->at(j));
}
std::optional<ConstantSubscript> lowerVal{lowerBound
? ToInt64(Fold(context_, Expr<SubscriptInteger>{*lowerBound}))
: std::nullopt};
std::optional<ConstantSubscript> upperVal{upperBound
? ToInt64(Fold(context_, Expr<SubscriptInteger>{*upperBound}))
: std::nullopt};
if (lowerVal && upperVal) {
if (*lowerVal < *upperVal) {
if (*stride < 0) {
result = true; // empty dimension
} else if (!result && *stride > 1 &&
*lowerVal + *stride <= *upperVal) {
result = false; // discontiguous if not empty
}
} else if (*lowerVal > *upperVal) {
if (*stride > 0) {
result = true; // empty dimension
} else if (!result && *stride < 0 &&
*lowerVal + *stride >= *upperVal) {
result = false; // discontiguous if not empty
}
}
}
}
} else if (subscript[j].Rank() > 0) {
++rank;
if (!result) {
result = false; // vector subscript
}
}
}
if (rank == 0) {
result = true; // scalar
}
if (result) {
return result;
}
// Not provably discontiguous at this point.
// Return "true" if simply contiguous, otherwise nullopt.
for (auto j{subscript.size()}; j-- > 0;) {
if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) {
auto stride{ToInt64(triplet->stride())};
if (!stride || stride != 1) {
return std::nullopt;
} else if (anyTriplet) {
if (triplet->GetLower() || triplet->GetUpper()) {
// all triplets before the last one must be just ":" for
// simple contiguity
return std::nullopt;
}
} else {
anyTriplet = true;
}
++rank;
} else if (anyTriplet) {
return std::nullopt;
}
}
return true; // simply contiguous
}
FoldingContext &context_;
};
template <typename A>
std::optional<bool> IsContiguous(const A &x, FoldingContext &context) {
if (IsVariable(x)) {
return IsContiguousHelper{context}(x);
} else {
return true; // not a variable
}
}
template std::optional<bool> IsContiguous(
const Expr<SomeType> &, FoldingContext &);
template std::optional<bool> IsContiguous(const ArrayRef &, FoldingContext &);
template std::optional<bool> IsContiguous(const Substring &, FoldingContext &);
template std::optional<bool> IsContiguous(const Component &, FoldingContext &);
template std::optional<bool> IsContiguous(
const ComplexPart &, FoldingContext &);
template std::optional<bool> IsContiguous(const CoarrayRef &, FoldingContext &);
template std::optional<bool> IsContiguous(const Symbol &, FoldingContext &);
// IsErrorExpr()
struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> {
using Result = bool;
using Base = AnyTraverse<IsErrorExprHelper, Result>;
IsErrorExprHelper() : Base{*this} {}
using Base::operator();
bool operator()(const SpecificIntrinsic &x) {
return x.name == IntrinsicProcTable::InvalidName;
}
};
template <typename A> bool IsErrorExpr(const A &x) {
return IsErrorExprHelper{}(x);
}
template bool IsErrorExpr(const Expr<SomeType> &);
// C1577
// TODO: Also check C1579 & C1582 here
class StmtFunctionChecker
: public AnyTraverse<StmtFunctionChecker, std::optional<parser::Message>> {
public:
using Result = std::optional<parser::Message>;
using Base = AnyTraverse<StmtFunctionChecker, Result>;
StmtFunctionChecker(const Symbol &sf, FoldingContext &context)
: Base{*this}, sf_{sf}, context_{context} {}
using Base::operator();
template <typename T> Result operator()(const ArrayConstructor<T> &) const {
return parser::Message{sf_.name(),
"Statement function '%s' should not contain an array constructor"_port_en_US,
sf_.name()};
}
Result operator()(const StructureConstructor &) const {
return parser::Message{sf_.name(),
"Statement function '%s' should not contain a structure constructor"_port_en_US,
sf_.name()};
}
Result operator()(const TypeParamInquiry &) const {
return parser::Message{sf_.name(),
"Statement function '%s' should not contain a type parameter inquiry"_port_en_US,
sf_.name()};
}
Result operator()(const ProcedureDesignator &proc) const {
if (const Symbol * symbol{proc.GetSymbol()}) {
const Symbol &ultimate{symbol->GetUltimate()};
if (const auto *subp{
ultimate.detailsIf<semantics::SubprogramDetails>()}) {
if (subp->stmtFunction() && &ultimate.owner() == &sf_.owner()) {
if (ultimate.name().begin() > sf_.name().begin()) {
return parser::Message{sf_.name(),
"Statement function '%s' may not reference another statement function '%s' that is defined later"_err_en_US,
sf_.name(), ultimate.name()};
}
}
}
if (auto chars{
characteristics::Procedure::Characterize(proc, context_)}) {
if (!chars->CanBeCalledViaImplicitInterface()) {
return parser::Message(sf_.name(),
"Statement function '%s' should not reference function '%s' that requires an explicit interface"_port_en_US,
sf_.name(), symbol->name());
}
}
}
if (proc.Rank() > 0) {
return parser::Message(sf_.name(),
"Statement function '%s' should not reference a function that returns an array"_port_en_US,
sf_.name());
}
return std::nullopt;
}
Result operator()(const ActualArgument &arg) const {
if (const auto *expr{arg.UnwrapExpr()}) {
if (auto result{(*this)(*expr)}) {
return result;
}
if (expr->Rank() > 0 && !UnwrapWholeSymbolOrComponentDataRef(*expr)) {
return parser::Message(sf_.name(),
"Statement function '%s' should not pass an array argument that is not a whole array"_port_en_US,
sf_.name());
}
}
return std::nullopt;
}
private:
const Symbol &sf_;
FoldingContext &context_;
};
std::optional<parser::Message> CheckStatementFunction(
const Symbol &sf, const Expr<SomeType> &expr, FoldingContext &context) {
return StmtFunctionChecker{sf, context}(expr);
}
} // namespace Fortran::evaluate
|