1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
//===-- lib/Evaluate/fold-logical.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "fold-reduction.h"
#include "flang/Evaluate/check-expression.h"
namespace Fortran::evaluate {
template <typename T>
static std::optional<Expr<SomeType>> ZeroExtend(const Constant<T> &c) {
std::vector<Scalar<LargestInt>> exts;
for (const auto &v : c.values()) {
exts.push_back(Scalar<LargestInt>::ConvertUnsigned(v).value);
}
return AsGenericExpr(
Constant<LargestInt>(std::move(exts), ConstantSubscripts(c.shape())));
}
// for ALL, ANY & PARITY
template <typename T>
static Expr<T> FoldAllAnyParity(FoldingContext &context, FunctionRef<T> &&ref,
Scalar<T> (Scalar<T>::*operation)(const Scalar<T> &) const,
Scalar<T> identity) {
static_assert(T::category == TypeCategory::Logical);
using Element = Scalar<T>;
std::optional<int> dim;
if (std::optional<Constant<T>> array{
ProcessReductionArgs<T>(context, ref.arguments(), dim, identity,
/*ARRAY(MASK)=*/0, /*DIM=*/1)}) {
auto accumulator{[&](Element &element, const ConstantSubscripts &at) {
element = (element.*operation)(array->At(at));
}};
return Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)};
}
return Expr<T>{std::move(ref)};
}
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Logical, KIND>> &&funcRef) {
using T = Type<TypeCategory::Logical, KIND>;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
using SameInt = Type<TypeCategory::Integer, KIND>;
if (name == "all") {
return FoldAllAnyParity(
context, std::move(funcRef), &Scalar<T>::AND, Scalar<T>{true});
} else if (name == "any") {
return FoldAllAnyParity(
context, std::move(funcRef), &Scalar<T>::OR, Scalar<T>{false});
} else if (name == "associated") {
bool gotConstant{true};
const Expr<SomeType> *firstArgExpr{args[0]->UnwrapExpr()};
if (!firstArgExpr || !IsNullPointer(*firstArgExpr)) {
gotConstant = false;
} else if (args[1]) { // There's a second argument
const Expr<SomeType> *secondArgExpr{args[1]->UnwrapExpr()};
if (!secondArgExpr || !IsNullPointer(*secondArgExpr)) {
gotConstant = false;
}
}
return gotConstant ? Expr<T>{false} : Expr<T>{std::move(funcRef)};
} else if (name == "bge" || name == "bgt" || name == "ble" || name == "blt") {
static_assert(std::is_same_v<Scalar<LargestInt>, BOZLiteralConstant>);
// The arguments to these intrinsics can be of different types. In that
// case, the shorter of the two would need to be zero-extended to match
// the size of the other. If at least one of the operands is not a constant,
// the zero-extending will be done during lowering. Otherwise, the folding
// must be done here.
std::optional<Expr<SomeType>> constArgs[2];
for (int i{0}; i <= 1; i++) {
if (BOZLiteralConstant * x{UnwrapExpr<BOZLiteralConstant>(args[i])}) {
constArgs[i] = AsGenericExpr(Constant<LargestInt>{std::move(*x)});
} else if (auto *x{UnwrapExpr<Expr<SomeInteger>>(args[i])}) {
common::visit(
[&](const auto &ix) {
using IntT = typename std::decay_t<decltype(ix)>::Result;
if (auto *c{UnwrapConstantValue<IntT>(ix)}) {
constArgs[i] = ZeroExtend(*c);
}
},
x->u);
}
}
if (constArgs[0] && constArgs[1]) {
auto fptr{&Scalar<LargestInt>::BGE};
if (name == "bge") { // done in fptr declaration
} else if (name == "bgt") {
fptr = &Scalar<LargestInt>::BGT;
} else if (name == "ble") {
fptr = &Scalar<LargestInt>::BLE;
} else if (name == "blt") {
fptr = &Scalar<LargestInt>::BLT;
} else {
common::die("missing case to fold intrinsic function %s", name.c_str());
}
for (int i{0}; i <= 1; i++) {
*args[i] = std::move(constArgs[i].value());
}
return FoldElementalIntrinsic<T, LargestInt, LargestInt>(context,
std::move(funcRef),
ScalarFunc<T, LargestInt, LargestInt>(
[&fptr](
const Scalar<LargestInt> &i, const Scalar<LargestInt> &j) {
return Scalar<T>{std::invoke(fptr, i, j)};
}));
} else {
return Expr<T>{std::move(funcRef)};
}
} else if (name == "btest") {
if (const auto *ix{UnwrapExpr<Expr<SomeInteger>>(args[0])}) {
return common::visit(
[&](const auto &x) {
using IT = ResultType<decltype(x)>;
return FoldElementalIntrinsic<T, IT, SameInt>(context,
std::move(funcRef),
ScalarFunc<T, IT, SameInt>(
[&](const Scalar<IT> &x, const Scalar<SameInt> &pos) {
auto posVal{pos.ToInt64()};
if (posVal < 0 || posVal >= x.bits) {
context.messages().Say(
"POS=%jd out of range for BTEST"_err_en_US,
static_cast<std::intmax_t>(posVal));
}
return Scalar<T>{x.BTEST(posVal)};
}));
},
ix->u);
}
} else if (name == "dot_product") {
return FoldDotProduct<T>(context, std::move(funcRef));
} else if (name == "extends_type_of") {
// Type extension testing with EXTENDS_TYPE_OF() ignores any type
// parameters. Returns a constant truth value when the result is known now.
if (args[0] && args[1]) {
auto t0{args[0]->GetType()};
auto t1{args[1]->GetType()};
if (t0 && t1) {
if (auto result{t0->ExtendsTypeOf(*t1)}) {
return Expr<T>{*result};
}
}
}
} else if (name == "isnan" || name == "__builtin_ieee_is_nan") {
// Only replace the type of the function if we can do the fold
if (args[0] && args[0]->UnwrapExpr() &&
IsActuallyConstant(*args[0]->UnwrapExpr())) {
auto restorer{context.messages().DiscardMessages()};
using DefaultReal = Type<TypeCategory::Real, 4>;
return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef),
ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) {
return Scalar<T>{x.IsNotANumber()};
}));
}
} else if (name == "__builtin_ieee_is_negative") {
auto restorer{context.messages().DiscardMessages()};
using DefaultReal = Type<TypeCategory::Real, 4>;
if (args[0] && args[0]->UnwrapExpr() &&
IsActuallyConstant(*args[0]->UnwrapExpr())) {
return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef),
ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) {
return Scalar<T>{x.IsNegative()};
}));
}
} else if (name == "__builtin_ieee_is_normal") {
auto restorer{context.messages().DiscardMessages()};
using DefaultReal = Type<TypeCategory::Real, 4>;
if (args[0] && args[0]->UnwrapExpr() &&
IsActuallyConstant(*args[0]->UnwrapExpr())) {
return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef),
ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) {
return Scalar<T>{x.IsNormal()};
}));
}
} else if (name == "is_contiguous") {
if (args.at(0)) {
if (auto *expr{args[0]->UnwrapExpr()}) {
if (auto contiguous{IsContiguous(*expr, context)}) {
return Expr<T>{*contiguous};
}
} else if (auto *assumedType{args[0]->GetAssumedTypeDummy()}) {
if (auto contiguous{IsContiguous(*assumedType, context)}) {
return Expr<T>{*contiguous};
}
}
}
} else if (name == "lge" || name == "lgt" || name == "lle" || name == "llt") {
// Rewrite LGE/LGT/LLE/LLT into ASCII character relations
auto *cx0{UnwrapExpr<Expr<SomeCharacter>>(args[0])};
auto *cx1{UnwrapExpr<Expr<SomeCharacter>>(args[1])};
if (cx0 && cx1) {
return Fold(context,
ConvertToType<T>(
PackageRelation(name == "lge" ? RelationalOperator::GE
: name == "lgt" ? RelationalOperator::GT
: name == "lle" ? RelationalOperator::LE
: RelationalOperator::LT,
ConvertToType<Ascii>(std::move(*cx0)),
ConvertToType<Ascii>(std::move(*cx1)))));
}
} else if (name == "logical") {
if (auto *expr{UnwrapExpr<Expr<SomeLogical>>(args[0])}) {
return Fold(context, ConvertToType<T>(std::move(*expr)));
}
} else if (name == "merge") {
return FoldMerge<T>(context, std::move(funcRef));
} else if (name == "parity") {
return FoldAllAnyParity(
context, std::move(funcRef), &Scalar<T>::NEQV, Scalar<T>{false});
} else if (name == "same_type_as") {
// Type equality testing with SAME_TYPE_AS() ignores any type parameters.
// Returns a constant truth value when the result is known now.
if (args[0] && args[1]) {
auto t0{args[0]->GetType()};
auto t1{args[1]->GetType()};
if (t0 && t1) {
if (auto result{t0->SameTypeAs(*t1)}) {
return Expr<T>{*result};
}
}
}
} else if (name == "__builtin_ieee_support_datatype" ||
name == "__builtin_ieee_support_denormal" ||
name == "__builtin_ieee_support_divide" ||
name == "__builtin_ieee_support_inf" ||
name == "__builtin_ieee_support_io" ||
name == "__builtin_ieee_support_nan" ||
name == "__builtin_ieee_support_sqrt" ||
name == "__builtin_ieee_support_standard" ||
name == "__builtin_ieee_support_subnormal" ||
name == "__builtin_ieee_support_underflow_control") {
return Expr<T>{true};
}
// TODO: is_iostat_end,
// is_iostat_eor, logical, matmul, out_of_range,
// parity
return Expr<T>{std::move(funcRef)};
}
template <typename T>
Expr<LogicalResult> FoldOperation(
FoldingContext &context, Relational<T> &&relation) {
if (auto array{ApplyElementwise(context, relation,
std::function<Expr<LogicalResult>(Expr<T> &&, Expr<T> &&)>{
[=](Expr<T> &&x, Expr<T> &&y) {
return Expr<LogicalResult>{Relational<SomeType>{
Relational<T>{relation.opr, std::move(x), std::move(y)}}};
}})}) {
return *array;
}
if (auto folded{OperandsAreConstants(relation)}) {
bool result{};
if constexpr (T::category == TypeCategory::Integer) {
result =
Satisfies(relation.opr, folded->first.CompareSigned(folded->second));
} else if constexpr (T::category == TypeCategory::Real) {
result = Satisfies(relation.opr, folded->first.Compare(folded->second));
} else if constexpr (T::category == TypeCategory::Complex) {
result = (relation.opr == RelationalOperator::EQ) ==
folded->first.Equals(folded->second);
} else if constexpr (T::category == TypeCategory::Character) {
result = Satisfies(relation.opr, Compare(folded->first, folded->second));
} else {
static_assert(T::category != TypeCategory::Logical);
}
return Expr<LogicalResult>{Constant<LogicalResult>{result}};
}
return Expr<LogicalResult>{Relational<SomeType>{std::move(relation)}};
}
Expr<LogicalResult> FoldOperation(
FoldingContext &context, Relational<SomeType> &&relation) {
return common::visit(
[&](auto &&x) {
return Expr<LogicalResult>{FoldOperation(context, std::move(x))};
},
std::move(relation.u));
}
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldOperation(
FoldingContext &context, Not<KIND> &&x) {
if (auto array{ApplyElementwise(context, x)}) {
return *array;
}
using Ty = Type<TypeCategory::Logical, KIND>;
auto &operand{x.left()};
if (auto value{GetScalarConstantValue<Ty>(operand)}) {
return Expr<Ty>{Constant<Ty>{!value->IsTrue()}};
}
return Expr<Ty>{x};
}
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldOperation(
FoldingContext &context, LogicalOperation<KIND> &&operation) {
using LOGICAL = Type<TypeCategory::Logical, KIND>;
if (auto array{ApplyElementwise(context, operation,
std::function<Expr<LOGICAL>(Expr<LOGICAL> &&, Expr<LOGICAL> &&)>{
[=](Expr<LOGICAL> &&x, Expr<LOGICAL> &&y) {
return Expr<LOGICAL>{LogicalOperation<KIND>{
operation.logicalOperator, std::move(x), std::move(y)}};
}})}) {
return *array;
}
if (auto folded{OperandsAreConstants(operation)}) {
bool xt{folded->first.IsTrue()}, yt{folded->second.IsTrue()}, result{};
switch (operation.logicalOperator) {
case LogicalOperator::And:
result = xt && yt;
break;
case LogicalOperator::Or:
result = xt || yt;
break;
case LogicalOperator::Eqv:
result = xt == yt;
break;
case LogicalOperator::Neqv:
result = xt != yt;
break;
case LogicalOperator::Not:
DIE("not a binary operator");
}
return Expr<LOGICAL>{Constant<LOGICAL>{result}};
}
return Expr<LOGICAL>{std::move(operation)};
}
#ifdef _MSC_VER // disable bogus warning about missing definitions
#pragma warning(disable : 4661)
#endif
FOR_EACH_LOGICAL_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeLogical>;
} // namespace Fortran::evaluate
|