File: fold-real.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (363 lines) | stat: -rw-r--r-- 16,097 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
//===-- lib/Evaluate/fold-real.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "fold-implementation.h"
#include "fold-reduction.h"

namespace Fortran::evaluate {

template <typename T>
static Expr<T> FoldTransformationalBessel(
    FunctionRef<T> &&funcRef, FoldingContext &context) {
  CHECK(funcRef.arguments().size() == 3);
  /// Bessel runtime functions use `int` integer arguments. Convert integer
  /// arguments to Int4, any overflow error will be reported during the
  /// conversion folding.
  using Int4 = Type<TypeCategory::Integer, 4>;
  if (auto args{
          GetConstantArguments<Int4, Int4, T>(context, funcRef.arguments())}) {
    const std::string &name{std::get<SpecificIntrinsic>(funcRef.proc().u).name};
    if (auto elementalBessel{GetHostRuntimeWrapper<T, Int4, T>(name)}) {
      std::vector<Scalar<T>> results;
      int n1{static_cast<int>(
          std::get<0>(*args)->GetScalarValue().value().ToInt64())};
      int n2{static_cast<int>(
          std::get<1>(*args)->GetScalarValue().value().ToInt64())};
      Scalar<T> x{std::get<2>(*args)->GetScalarValue().value()};
      for (int i{n1}; i <= n2; ++i) {
        results.emplace_back((*elementalBessel)(context, Scalar<Int4>{i}, x));
      }
      return Expr<T>{Constant<T>{
          std::move(results), ConstantSubscripts{std::max(n2 - n1 + 1, 0)}}};
    } else {
      context.messages().Say(
          "%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_warn_en_US,
          name, T::kind);
    }
  }
  return Expr<T>{std::move(funcRef)};
}

template <int KIND>
Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction(
    FoldingContext &context,
    FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) {
  using T = Type<TypeCategory::Real, KIND>;
  using ComplexT = Type<TypeCategory::Complex, KIND>;
  using Int4 = Type<TypeCategory::Integer, 4>;
  ActualArguments &args{funcRef.arguments()};
  auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
  CHECK(intrinsic);
  std::string name{intrinsic->name};
  if (name == "acos" || name == "acosh" || name == "asin" || name == "asinh" ||
      (name == "atan" && args.size() == 1) || name == "atanh" ||
      name == "bessel_j0" || name == "bessel_j1" || name == "bessel_y0" ||
      name == "bessel_y1" || name == "cos" || name == "cosh" || name == "erf" ||
      name == "erfc" || name == "erfc_scaled" || name == "exp" ||
      name == "gamma" || name == "log" || name == "log10" ||
      name == "log_gamma" || name == "sin" || name == "sinh" || name == "tan" ||
      name == "tanh") {
    CHECK(args.size() == 1);
    if (auto callable{GetHostRuntimeWrapper<T, T>(name)}) {
      return FoldElementalIntrinsic<T, T>(
          context, std::move(funcRef), *callable);
    } else {
      context.messages().Say(
          "%s(real(kind=%d)) cannot be folded on host"_warn_en_US, name, KIND);
    }
  } else if (name == "amax0" || name == "amin0" || name == "amin1" ||
      name == "amax1" || name == "dmin1" || name == "dmax1") {
    return RewriteSpecificMINorMAX(context, std::move(funcRef));
  } else if (name == "atan" || name == "atan2") {
    std::string localName{name == "atan" ? "atan2" : name};
    CHECK(args.size() == 2);
    if (auto callable{GetHostRuntimeWrapper<T, T, T>(localName)}) {
      return FoldElementalIntrinsic<T, T, T>(
          context, std::move(funcRef), *callable);
    } else {
      context.messages().Say(
          "%s(real(kind=%d), real(kind%d)) cannot be folded on host"_warn_en_US,
          name, KIND, KIND);
    }
  } else if (name == "bessel_jn" || name == "bessel_yn") {
    if (args.size() == 2) { // elemental
      // runtime functions use int arg
      if (auto callable{GetHostRuntimeWrapper<T, Int4, T>(name)}) {
        return FoldElementalIntrinsic<T, Int4, T>(
            context, std::move(funcRef), *callable);
      } else {
        context.messages().Say(
            "%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_warn_en_US,
            name, KIND);
      }
    } else {
      return FoldTransformationalBessel<T>(std::move(funcRef), context);
    }
  } else if (name == "abs") { // incl. zabs & cdabs
    // Argument can be complex or real
    if (auto *x{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
      return FoldElementalIntrinsic<T, T>(
          context, std::move(funcRef), &Scalar<T>::ABS);
    } else if (auto *z{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
      return FoldElementalIntrinsic<T, ComplexT>(context, std::move(funcRef),
          ScalarFunc<T, ComplexT>([&name, &context](
                                      const Scalar<ComplexT> &z) -> Scalar<T> {
            ValueWithRealFlags<Scalar<T>> y{z.ABS()};
            if (y.flags.test(RealFlag::Overflow)) {
              context.messages().Say(
                  "complex ABS intrinsic folding overflow"_warn_en_US, name);
            }
            return y.value;
          }));
    } else {
      common::die(" unexpected argument type inside abs");
    }
  } else if (name == "aimag") {
    if (auto *zExpr{UnwrapExpr<Expr<ComplexT>>(args[0])}) {
      return Fold(context, Expr<T>{ComplexComponent{true, std::move(*zExpr)}});
    }
  } else if (name == "aint" || name == "anint") {
    // ANINT rounds ties away from zero, not to even
    common::RoundingMode mode{name == "aint"
            ? common::RoundingMode::ToZero
            : common::RoundingMode::TiesAwayFromZero};
    return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
        ScalarFunc<T, T>(
            [&name, &context, mode](const Scalar<T> &x) -> Scalar<T> {
              ValueWithRealFlags<Scalar<T>> y{x.ToWholeNumber(mode)};
              if (y.flags.test(RealFlag::Overflow)) {
                context.messages().Say(
                    "%s intrinsic folding overflow"_warn_en_US, name);
              }
              return y.value;
            }));
  } else if (name == "dim") {
    return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
        ScalarFunc<T, T, T>([&context](const Scalar<T> &x,
                                const Scalar<T> &y) -> Scalar<T> {
          ValueWithRealFlags<Scalar<T>> result{x.DIM(y)};
          if (result.flags.test(RealFlag::Overflow)) {
            context.messages().Say("DIM intrinsic folding overflow"_warn_en_US);
          }
          return result.value;
        }));
  } else if (name == "dot_product") {
    return FoldDotProduct<T>(context, std::move(funcRef));
  } else if (name == "dprod") {
    if (auto scalars{GetScalarConstantArguments<T, T>(context, args)}) {
      return Fold(context,
          Expr<T>{Multiply<T>{
              Expr<T>{std::get<0>(*scalars)}, Expr<T>{std::get<1>(*scalars)}}});
    }
  } else if (name == "epsilon") {
    return Expr<T>{Scalar<T>::EPSILON()};
  } else if (name == "fraction") {
    return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
        ScalarFunc<T, T>(
            [](const Scalar<T> &x) -> Scalar<T> { return x.FRACTION(); }));
  } else if (name == "huge") {
    return Expr<T>{Scalar<T>::HUGE()};
  } else if (name == "hypot") {
    CHECK(args.size() == 2);
    return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
        ScalarFunc<T, T, T>(
            [&](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
              ValueWithRealFlags<Scalar<T>> result{x.HYPOT(y)};
              if (result.flags.test(RealFlag::Overflow)) {
                context.messages().Say(
                    "HYPOT intrinsic folding overflow"_warn_en_US);
              }
              return result.value;
            }));
  } else if (name == "max") {
    return FoldMINorMAX(context, std::move(funcRef), Ordering::Greater);
  } else if (name == "maxval") {
    return FoldMaxvalMinval<T>(context, std::move(funcRef),
        RelationalOperator::GT, T::Scalar::HUGE().Negate());
  } else if (name == "merge") {
    return FoldMerge<T>(context, std::move(funcRef));
  } else if (name == "min") {
    return FoldMINorMAX(context, std::move(funcRef), Ordering::Less);
  } else if (name == "minval") {
    return FoldMaxvalMinval<T>(
        context, std::move(funcRef), RelationalOperator::LT, T::Scalar::HUGE());
  } else if (name == "mod") {
    CHECK(args.size() == 2);
    return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
        ScalarFunc<T, T, T>(
            [&context](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
              auto result{x.MOD(y)};
              if (result.flags.test(RealFlag::DivideByZero)) {
                context.messages().Say(
                    "second argument to MOD must not be zero"_warn_en_US);
              }
              return result.value;
            }));
  } else if (name == "modulo") {
    CHECK(args.size() == 2);
    return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
        ScalarFunc<T, T, T>(
            [&context](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
              auto result{x.MODULO(y)};
              if (result.flags.test(RealFlag::DivideByZero)) {
                context.messages().Say(
                    "second argument to MODULO must not be zero"_warn_en_US);
              }
              return result.value;
            }));
  } else if (name == "nearest") {
    if (const auto *sExpr{UnwrapExpr<Expr<SomeReal>>(args[1])}) {
      return common::visit(
          [&](const auto &sVal) {
            using TS = ResultType<decltype(sVal)>;
            return FoldElementalIntrinsic<T, T, TS>(context, std::move(funcRef),
                ScalarFunc<T, T, TS>([&](const Scalar<T> &x,
                                         const Scalar<TS> &s) -> Scalar<T> {
                  if (s.IsZero()) {
                    context.messages().Say(
                        "NEAREST: S argument is zero"_warn_en_US);
                  }
                  auto result{x.NEAREST(!s.IsNegative())};
                  if (result.flags.test(RealFlag::Overflow)) {
                    context.messages().Say(
                        "NEAREST intrinsic folding overflow"_warn_en_US);
                  } else if (result.flags.test(RealFlag::InvalidArgument)) {
                    context.messages().Say(
                        "NEAREST intrinsic folding: bad argument"_warn_en_US);
                  }
                  return result.value;
                }));
          },
          sExpr->u);
    }
  } else if (name == "product") {
    auto one{Scalar<T>::FromInteger(value::Integer<8>{1}).value};
    return FoldProduct<T>(context, std::move(funcRef), one);
  } else if (name == "real" || name == "dble") {
    if (auto *expr{args[0].value().UnwrapExpr()}) {
      return ToReal<KIND>(context, std::move(*expr));
    }
  } else if (name == "rrspacing") {
    return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
        ScalarFunc<T, T>(
            [](const Scalar<T> &x) -> Scalar<T> { return x.RRSPACING(); }));
  } else if (name == "scale") {
    if (const auto *byExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}) {
      return common::visit(
          [&](const auto &byVal) {
            using TBY = ResultType<decltype(byVal)>;
            return FoldElementalIntrinsic<T, T, TBY>(context,
                std::move(funcRef),
                ScalarFunc<T, T, TBY>(
                    [&](const Scalar<T> &x, const Scalar<TBY> &y) -> Scalar<T> {
                      ValueWithRealFlags<Scalar<T>> result{x.
// MSVC chokes on the keyword "template" here in a call to a
// member function template.
#ifndef _MSC_VER
                                                           template
#endif
                                                           SCALE(y)};
                      if (result.flags.test(RealFlag::Overflow)) {
                        context.messages().Say(
                            "SCALE intrinsic folding overflow"_warn_en_US);
                      }
                      return result.value;
                    }));
          },
          byExpr->u);
    }
  } else if (name == "set_exponent") {
    if (const auto *iExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}) {
      return common::visit(
          [&](const auto &iVal) {
            using TY = ResultType<decltype(iVal)>;
            return FoldElementalIntrinsic<T, T, TY>(context, std::move(funcRef),
                ScalarFunc<T, T, TY>(
                    [&](const Scalar<T> &x, const Scalar<TY> &i) -> Scalar<T> {
                      return x.SET_EXPONENT(i.ToInt64());
                    }));
          },
          iExpr->u);
    }
  } else if (name == "sign") {
    return FoldElementalIntrinsic<T, T, T>(
        context, std::move(funcRef), &Scalar<T>::SIGN);
  } else if (name == "spacing") {
    return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
        ScalarFunc<T, T>(
            [](const Scalar<T> &x) -> Scalar<T> { return x.SPACING(); }));
  } else if (name == "sqrt") {
    return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
        ScalarFunc<T, T>(
            [](const Scalar<T> &x) -> Scalar<T> { return x.SQRT().value; }));
  } else if (name == "sum") {
    return FoldSum<T>(context, std::move(funcRef));
  } else if (name == "tiny") {
    return Expr<T>{Scalar<T>::TINY()};
  } else if (name == "__builtin_fma") {
    CHECK(args.size() == 3);
  } else if (name == "__builtin_ieee_next_after") {
    if (const auto *yExpr{UnwrapExpr<Expr<SomeReal>>(args[1])}) {
      return common::visit(
          [&](const auto &yVal) {
            using TY = ResultType<decltype(yVal)>;
            return FoldElementalIntrinsic<T, T, TY>(context, std::move(funcRef),
                ScalarFunc<T, T, TY>([&](const Scalar<T> &x,
                                         const Scalar<TY> &y) -> Scalar<T> {
                  bool upward{true};
                  switch (x.Compare(Scalar<T>::Convert(y).value)) {
                  case Relation::Unordered:
                    context.messages().Say(
                        "IEEE_NEXT_AFTER intrinsic folding: bad argument"_warn_en_US);
                    return x;
                  case Relation::Equal:
                    return x;
                  case Relation::Less:
                    upward = true;
                    break;
                  case Relation::Greater:
                    upward = false;
                    break;
                  }
                  auto result{x.NEAREST(upward)};
                  if (result.flags.test(RealFlag::Overflow)) {
                    context.messages().Say(
                        "IEEE_NEXT_AFTER intrinsic folding overflow"_warn_en_US);
                  }
                  return result.value;
                }));
          },
          yExpr->u);
    }
  } else if (name == "__builtin_ieee_next_up" ||
      name == "__builtin_ieee_next_down") {
    bool upward{name == "__builtin_ieee_next_up"};
    const char *iName{upward ? "IEEE_NEXT_UP" : "IEEE_NEXT_DOWN"};
    return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
        ScalarFunc<T, T>([&](const Scalar<T> &x) -> Scalar<T> {
          auto result{x.NEAREST(upward)};
          if (result.flags.test(RealFlag::Overflow)) {
            context.messages().Say(
                "%s intrinsic folding overflow"_warn_en_US, iName);
          } else if (result.flags.test(RealFlag::InvalidArgument)) {
            context.messages().Say(
                "%s intrinsic folding: bad argument"_warn_en_US, iName);
          }
          return result.value;
        }));
  }
  // TODO: dot_product, matmul, norm2
  return Expr<T>{std::move(funcRef)};
}

#ifdef _MSC_VER // disable bogus warning about missing definitions
#pragma warning(disable : 4661)
#endif
FOR_EACH_REAL_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeReal>;
} // namespace Fortran::evaluate