1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
//===-- lib/Evaluate/fold-real.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "fold-reduction.h"
namespace Fortran::evaluate {
template <typename T>
static Expr<T> FoldTransformationalBessel(
FunctionRef<T> &&funcRef, FoldingContext &context) {
CHECK(funcRef.arguments().size() == 3);
/// Bessel runtime functions use `int` integer arguments. Convert integer
/// arguments to Int4, any overflow error will be reported during the
/// conversion folding.
using Int4 = Type<TypeCategory::Integer, 4>;
if (auto args{
GetConstantArguments<Int4, Int4, T>(context, funcRef.arguments())}) {
const std::string &name{std::get<SpecificIntrinsic>(funcRef.proc().u).name};
if (auto elementalBessel{GetHostRuntimeWrapper<T, Int4, T>(name)}) {
std::vector<Scalar<T>> results;
int n1{static_cast<int>(
std::get<0>(*args)->GetScalarValue().value().ToInt64())};
int n2{static_cast<int>(
std::get<1>(*args)->GetScalarValue().value().ToInt64())};
Scalar<T> x{std::get<2>(*args)->GetScalarValue().value()};
for (int i{n1}; i <= n2; ++i) {
results.emplace_back((*elementalBessel)(context, Scalar<Int4>{i}, x));
}
return Expr<T>{Constant<T>{
std::move(results), ConstantSubscripts{std::max(n2 - n1 + 1, 0)}}};
} else {
context.messages().Say(
"%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_warn_en_US,
name, T::kind);
}
}
return Expr<T>{std::move(funcRef)};
}
template <int KIND>
Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) {
using T = Type<TypeCategory::Real, KIND>;
using ComplexT = Type<TypeCategory::Complex, KIND>;
using Int4 = Type<TypeCategory::Integer, 4>;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
if (name == "acos" || name == "acosh" || name == "asin" || name == "asinh" ||
(name == "atan" && args.size() == 1) || name == "atanh" ||
name == "bessel_j0" || name == "bessel_j1" || name == "bessel_y0" ||
name == "bessel_y1" || name == "cos" || name == "cosh" || name == "erf" ||
name == "erfc" || name == "erfc_scaled" || name == "exp" ||
name == "gamma" || name == "log" || name == "log10" ||
name == "log_gamma" || name == "sin" || name == "sinh" || name == "tan" ||
name == "tanh") {
CHECK(args.size() == 1);
if (auto callable{GetHostRuntimeWrapper<T, T>(name)}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(real(kind=%d)) cannot be folded on host"_warn_en_US, name, KIND);
}
} else if (name == "amax0" || name == "amin0" || name == "amin1" ||
name == "amax1" || name == "dmin1" || name == "dmax1") {
return RewriteSpecificMINorMAX(context, std::move(funcRef));
} else if (name == "atan" || name == "atan2") {
std::string localName{name == "atan" ? "atan2" : name};
CHECK(args.size() == 2);
if (auto callable{GetHostRuntimeWrapper<T, T, T>(localName)}) {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(real(kind=%d), real(kind%d)) cannot be folded on host"_warn_en_US,
name, KIND, KIND);
}
} else if (name == "bessel_jn" || name == "bessel_yn") {
if (args.size() == 2) { // elemental
// runtime functions use int arg
if (auto callable{GetHostRuntimeWrapper<T, Int4, T>(name)}) {
return FoldElementalIntrinsic<T, Int4, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_warn_en_US,
name, KIND);
}
} else {
return FoldTransformationalBessel<T>(std::move(funcRef), context);
}
} else if (name == "abs") { // incl. zabs & cdabs
// Argument can be complex or real
if (auto *x{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), &Scalar<T>::ABS);
} else if (auto *z{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
return FoldElementalIntrinsic<T, ComplexT>(context, std::move(funcRef),
ScalarFunc<T, ComplexT>([&name, &context](
const Scalar<ComplexT> &z) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> y{z.ABS()};
if (y.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"complex ABS intrinsic folding overflow"_warn_en_US, name);
}
return y.value;
}));
} else {
common::die(" unexpected argument type inside abs");
}
} else if (name == "aimag") {
if (auto *zExpr{UnwrapExpr<Expr<ComplexT>>(args[0])}) {
return Fold(context, Expr<T>{ComplexComponent{true, std::move(*zExpr)}});
}
} else if (name == "aint" || name == "anint") {
// ANINT rounds ties away from zero, not to even
common::RoundingMode mode{name == "aint"
? common::RoundingMode::ToZero
: common::RoundingMode::TiesAwayFromZero};
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[&name, &context, mode](const Scalar<T> &x) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> y{x.ToWholeNumber(mode)};
if (y.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"%s intrinsic folding overflow"_warn_en_US, name);
}
return y.value;
}));
} else if (name == "dim") {
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>([&context](const Scalar<T> &x,
const Scalar<T> &y) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> result{x.DIM(y)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say("DIM intrinsic folding overflow"_warn_en_US);
}
return result.value;
}));
} else if (name == "dot_product") {
return FoldDotProduct<T>(context, std::move(funcRef));
} else if (name == "dprod") {
if (auto scalars{GetScalarConstantArguments<T, T>(context, args)}) {
return Fold(context,
Expr<T>{Multiply<T>{
Expr<T>{std::get<0>(*scalars)}, Expr<T>{std::get<1>(*scalars)}}});
}
} else if (name == "epsilon") {
return Expr<T>{Scalar<T>::EPSILON()};
} else if (name == "fraction") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.FRACTION(); }));
} else if (name == "huge") {
return Expr<T>{Scalar<T>::HUGE()};
} else if (name == "hypot") {
CHECK(args.size() == 2);
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>(
[&](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> result{x.HYPOT(y)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"HYPOT intrinsic folding overflow"_warn_en_US);
}
return result.value;
}));
} else if (name == "max") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Greater);
} else if (name == "maxval") {
return FoldMaxvalMinval<T>(context, std::move(funcRef),
RelationalOperator::GT, T::Scalar::HUGE().Negate());
} else if (name == "merge") {
return FoldMerge<T>(context, std::move(funcRef));
} else if (name == "min") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Less);
} else if (name == "minval") {
return FoldMaxvalMinval<T>(
context, std::move(funcRef), RelationalOperator::LT, T::Scalar::HUGE());
} else if (name == "mod") {
CHECK(args.size() == 2);
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>(
[&context](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
auto result{x.MOD(y)};
if (result.flags.test(RealFlag::DivideByZero)) {
context.messages().Say(
"second argument to MOD must not be zero"_warn_en_US);
}
return result.value;
}));
} else if (name == "modulo") {
CHECK(args.size() == 2);
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>(
[&context](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
auto result{x.MODULO(y)};
if (result.flags.test(RealFlag::DivideByZero)) {
context.messages().Say(
"second argument to MODULO must not be zero"_warn_en_US);
}
return result.value;
}));
} else if (name == "nearest") {
if (const auto *sExpr{UnwrapExpr<Expr<SomeReal>>(args[1])}) {
return common::visit(
[&](const auto &sVal) {
using TS = ResultType<decltype(sVal)>;
return FoldElementalIntrinsic<T, T, TS>(context, std::move(funcRef),
ScalarFunc<T, T, TS>([&](const Scalar<T> &x,
const Scalar<TS> &s) -> Scalar<T> {
if (s.IsZero()) {
context.messages().Say(
"NEAREST: S argument is zero"_warn_en_US);
}
auto result{x.NEAREST(!s.IsNegative())};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"NEAREST intrinsic folding overflow"_warn_en_US);
} else if (result.flags.test(RealFlag::InvalidArgument)) {
context.messages().Say(
"NEAREST intrinsic folding: bad argument"_warn_en_US);
}
return result.value;
}));
},
sExpr->u);
}
} else if (name == "product") {
auto one{Scalar<T>::FromInteger(value::Integer<8>{1}).value};
return FoldProduct<T>(context, std::move(funcRef), one);
} else if (name == "real" || name == "dble") {
if (auto *expr{args[0].value().UnwrapExpr()}) {
return ToReal<KIND>(context, std::move(*expr));
}
} else if (name == "rrspacing") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.RRSPACING(); }));
} else if (name == "scale") {
if (const auto *byExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}) {
return common::visit(
[&](const auto &byVal) {
using TBY = ResultType<decltype(byVal)>;
return FoldElementalIntrinsic<T, T, TBY>(context,
std::move(funcRef),
ScalarFunc<T, T, TBY>(
[&](const Scalar<T> &x, const Scalar<TBY> &y) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> result{x.
// MSVC chokes on the keyword "template" here in a call to a
// member function template.
#ifndef _MSC_VER
template
#endif
SCALE(y)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"SCALE intrinsic folding overflow"_warn_en_US);
}
return result.value;
}));
},
byExpr->u);
}
} else if (name == "set_exponent") {
if (const auto *iExpr{UnwrapExpr<Expr<SomeInteger>>(args[1])}) {
return common::visit(
[&](const auto &iVal) {
using TY = ResultType<decltype(iVal)>;
return FoldElementalIntrinsic<T, T, TY>(context, std::move(funcRef),
ScalarFunc<T, T, TY>(
[&](const Scalar<T> &x, const Scalar<TY> &i) -> Scalar<T> {
return x.SET_EXPONENT(i.ToInt64());
}));
},
iExpr->u);
}
} else if (name == "sign") {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), &Scalar<T>::SIGN);
} else if (name == "spacing") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.SPACING(); }));
} else if (name == "sqrt") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.SQRT().value; }));
} else if (name == "sum") {
return FoldSum<T>(context, std::move(funcRef));
} else if (name == "tiny") {
return Expr<T>{Scalar<T>::TINY()};
} else if (name == "__builtin_fma") {
CHECK(args.size() == 3);
} else if (name == "__builtin_ieee_next_after") {
if (const auto *yExpr{UnwrapExpr<Expr<SomeReal>>(args[1])}) {
return common::visit(
[&](const auto &yVal) {
using TY = ResultType<decltype(yVal)>;
return FoldElementalIntrinsic<T, T, TY>(context, std::move(funcRef),
ScalarFunc<T, T, TY>([&](const Scalar<T> &x,
const Scalar<TY> &y) -> Scalar<T> {
bool upward{true};
switch (x.Compare(Scalar<T>::Convert(y).value)) {
case Relation::Unordered:
context.messages().Say(
"IEEE_NEXT_AFTER intrinsic folding: bad argument"_warn_en_US);
return x;
case Relation::Equal:
return x;
case Relation::Less:
upward = true;
break;
case Relation::Greater:
upward = false;
break;
}
auto result{x.NEAREST(upward)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"IEEE_NEXT_AFTER intrinsic folding overflow"_warn_en_US);
}
return result.value;
}));
},
yExpr->u);
}
} else if (name == "__builtin_ieee_next_up" ||
name == "__builtin_ieee_next_down") {
bool upward{name == "__builtin_ieee_next_up"};
const char *iName{upward ? "IEEE_NEXT_UP" : "IEEE_NEXT_DOWN"};
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>([&](const Scalar<T> &x) -> Scalar<T> {
auto result{x.NEAREST(upward)};
if (result.flags.test(RealFlag::Overflow)) {
context.messages().Say(
"%s intrinsic folding overflow"_warn_en_US, iName);
} else if (result.flags.test(RealFlag::InvalidArgument)) {
context.messages().Say(
"%s intrinsic folding: bad argument"_warn_en_US, iName);
}
return result.value;
}));
}
// TODO: dot_product, matmul, norm2
return Expr<T>{std::move(funcRef)};
}
#ifdef _MSC_VER // disable bogus warning about missing definitions
#pragma warning(disable : 4661)
#endif
FOR_EACH_REAL_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeReal>;
} // namespace Fortran::evaluate
|