File: fold-reduction.h

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (315 lines) | stat: -rw-r--r-- 12,752 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//===-- lib/Evaluate/fold-reduction.h -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// TODO: NORM2, PARITY

#ifndef FORTRAN_EVALUATE_FOLD_REDUCTION_H_
#define FORTRAN_EVALUATE_FOLD_REDUCTION_H_

#include "fold-implementation.h"

namespace Fortran::evaluate {

// DOT_PRODUCT
template <typename T>
static Expr<T> FoldDotProduct(
    FoldingContext &context, FunctionRef<T> &&funcRef) {
  using Element = typename Constant<T>::Element;
  auto args{funcRef.arguments()};
  CHECK(args.size() == 2);
  Folder<T> folder{context};
  Constant<T> *va{folder.Folding(args[0])};
  Constant<T> *vb{folder.Folding(args[1])};
  if (va && vb) {
    CHECK(va->Rank() == 1 && vb->Rank() == 1);
    if (va->size() != vb->size()) {
      context.messages().Say(
          "Vector arguments to DOT_PRODUCT have distinct extents %zd and %zd"_err_en_US,
          va->size(), vb->size());
      return MakeInvalidIntrinsic(std::move(funcRef));
    }
    Element sum{};
    bool overflow{false};
    if constexpr (T::category == TypeCategory::Complex) {
      std::vector<Element> conjugates;
      for (const Element &x : va->values()) {
        conjugates.emplace_back(x.CONJG());
      }
      Constant<T> conjgA{
          std::move(conjugates), ConstantSubscripts{va->shape()}};
      Expr<T> products{Fold(
          context, Expr<T>{std::move(conjgA)} * Expr<T>{Constant<T>{*vb}})};
      Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
      Element correction; // Use Kahan summation for greater precision.
      const auto &rounding{context.targetCharacteristics().roundingMode()};
      for (const Element &x : cProducts.values()) {
        auto next{correction.Add(x, rounding)};
        overflow |= next.flags.test(RealFlag::Overflow);
        auto added{sum.Add(next.value, rounding)};
        overflow |= added.flags.test(RealFlag::Overflow);
        correction = added.value.Subtract(sum, rounding)
                         .value.Subtract(next.value, rounding)
                         .value;
        sum = std::move(added.value);
      }
    } else if constexpr (T::category == TypeCategory::Logical) {
      Expr<T> conjunctions{Fold(context,
          Expr<T>{LogicalOperation<T::kind>{LogicalOperator::And,
              Expr<T>{Constant<T>{*va}}, Expr<T>{Constant<T>{*vb}}}})};
      Constant<T> &cConjunctions{DEREF(UnwrapConstantValue<T>(conjunctions))};
      for (const Element &x : cConjunctions.values()) {
        if (x.IsTrue()) {
          sum = Element{true};
          break;
        }
      }
    } else if constexpr (T::category == TypeCategory::Integer) {
      Expr<T> products{
          Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
      Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
      for (const Element &x : cProducts.values()) {
        auto next{sum.AddSigned(x)};
        overflow |= next.overflow;
        sum = std::move(next.value);
      }
    } else { // T::category == TypeCategory::Real
      Expr<T> products{
          Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
      Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
      Element correction; // Use Kahan summation for greater precision.
      const auto &rounding{context.targetCharacteristics().roundingMode()};
      for (const Element &x : cProducts.values()) {
        auto next{correction.Add(x, rounding)};
        overflow |= next.flags.test(RealFlag::Overflow);
        auto added{sum.Add(next.value, rounding)};
        overflow |= added.flags.test(RealFlag::Overflow);
        correction = added.value.Subtract(sum, rounding)
                         .value.Subtract(next.value, rounding)
                         .value;
        sum = std::move(added.value);
      }
    }
    if (overflow) {
      context.messages().Say(
          "DOT_PRODUCT of %s data overflowed during computation"_warn_en_US,
          T::AsFortran());
    }
    return Expr<T>{Constant<T>{std::move(sum)}};
  }
  return Expr<T>{std::move(funcRef)};
}

// Fold and validate a DIM= argument.  Returns false on error.
bool CheckReductionDIM(std::optional<int> &dim, FoldingContext &,
    ActualArguments &, std::optional<int> dimIndex, int rank);

// Fold and validate a MASK= argument.  Return null on error, absent MASK=, or
// non-constant MASK=.
Constant<LogicalResult> *GetReductionMASK(
    std::optional<ActualArgument> &maskArg, const ConstantSubscripts &shape,
    FoldingContext &);

// Common preprocessing for reduction transformational intrinsic function
// folding.  If the intrinsic can have DIM= &/or MASK= arguments, extract
// and check them.  If a MASK= is present, apply it to the array data and
// substitute identity values for elements corresponding to .FALSE. in
// the mask.  If the result is present, the intrinsic call can be folded.
template <typename T>
static std::optional<Constant<T>> ProcessReductionArgs(FoldingContext &context,
    ActualArguments &arg, std::optional<int> &dim, const Scalar<T> &identity,
    int arrayIndex, std::optional<int> dimIndex = std::nullopt,
    std::optional<int> maskIndex = std::nullopt) {
  if (arg.empty()) {
    return std::nullopt;
  }
  Constant<T> *folded{Folder<T>{context}.Folding(arg[arrayIndex])};
  if (!folded || folded->Rank() < 1) {
    return std::nullopt;
  }
  if (!CheckReductionDIM(dim, context, arg, dimIndex, folded->Rank())) {
    return std::nullopt;
  }
  if (maskIndex && static_cast<std::size_t>(*maskIndex) < arg.size() &&
      arg[*maskIndex]) {
    if (const Constant<LogicalResult> *mask{
            GetReductionMASK(arg[*maskIndex], folded->shape(), context)}) {
      // Apply the mask in place to the array
      std::size_t n{folded->size()};
      std::vector<typename Constant<T>::Element> elements;
      if (auto scalarMask{mask->GetScalarValue()}) {
        if (scalarMask->IsTrue()) {
          return Constant<T>{*folded};
        } else { // MASK=.FALSE.
          elements = std::vector<typename Constant<T>::Element>(n, identity);
        }
      } else { // mask is an array; test its elements
        elements = std::vector<typename Constant<T>::Element>(n, identity);
        ConstantSubscripts at{folded->lbounds()};
        for (std::size_t j{0}; j < n; ++j, folded->IncrementSubscripts(at)) {
          if (mask->values()[j].IsTrue()) {
            elements[j] = folded->At(at);
          }
        }
      }
      if constexpr (T::category == TypeCategory::Character) {
        return Constant<T>{static_cast<ConstantSubscript>(identity.size()),
            std::move(elements), ConstantSubscripts{folded->shape()}};
      } else {
        return Constant<T>{
            std::move(elements), ConstantSubscripts{folded->shape()}};
      }
    } else {
      return std::nullopt;
    }
  } else {
    return Constant<T>{*folded};
  }
}

// Generalized reduction to an array of one dimension fewer (w/ DIM=)
// or to a scalar (w/o DIM=).
template <typename T, typename ACCUMULATOR, typename ARRAY>
static Constant<T> DoReduction(const Constant<ARRAY> &array,
    std::optional<int> &dim, const Scalar<T> &identity,
    ACCUMULATOR &accumulator) {
  ConstantSubscripts at{array.lbounds()};
  std::vector<typename Constant<T>::Element> elements;
  ConstantSubscripts resultShape; // empty -> scalar
  if (dim) { // DIM= is present, so result is an array
    resultShape = array.shape();
    resultShape.erase(resultShape.begin() + (*dim - 1));
    ConstantSubscript dimExtent{array.shape().at(*dim - 1)};
    ConstantSubscript &dimAt{at[*dim - 1]};
    ConstantSubscript dimLbound{dimAt};
    for (auto n{GetSize(resultShape)}; n-- > 0;
         IncrementSubscripts(at, array.shape())) {
      dimAt = dimLbound;
      elements.push_back(identity);
      for (ConstantSubscript j{0}; j < dimExtent; ++j, ++dimAt) {
        accumulator(elements.back(), at);
      }
    }
  } else { // no DIM=, result is scalar
    elements.push_back(identity);
    for (auto n{array.size()}; n-- > 0;
         IncrementSubscripts(at, array.shape())) {
      accumulator(elements.back(), at);
    }
  }
  if constexpr (T::category == TypeCategory::Character) {
    return {static_cast<ConstantSubscript>(identity.size()),
        std::move(elements), std::move(resultShape)};
  } else {
    return {std::move(elements), std::move(resultShape)};
  }
}

// MAXVAL & MINVAL
template <typename T>
static Expr<T> FoldMaxvalMinval(FoldingContext &context, FunctionRef<T> &&ref,
    RelationalOperator opr, const Scalar<T> &identity) {
  static_assert(T::category == TypeCategory::Integer ||
      T::category == TypeCategory::Real ||
      T::category == TypeCategory::Character);
  using Element = Scalar<T>;
  std::optional<int> dim;
  if (std::optional<Constant<T>> array{
          ProcessReductionArgs<T>(context, ref.arguments(), dim, identity,
              /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
    auto accumulator{[&](Element &element, const ConstantSubscripts &at) {
      Expr<LogicalResult> test{PackageRelation(opr,
          Expr<T>{Constant<T>{array->At(at)}}, Expr<T>{Constant<T>{element}})};
      auto folded{GetScalarConstantValue<LogicalResult>(
          test.Rewrite(context, std::move(test)))};
      CHECK(folded.has_value());
      if (folded->IsTrue()) {
        element = array->At(at);
      }
    }};
    return Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)};
  }
  return Expr<T>{std::move(ref)};
}

// PRODUCT
template <typename T>
static Expr<T> FoldProduct(
    FoldingContext &context, FunctionRef<T> &&ref, Scalar<T> identity) {
  static_assert(T::category == TypeCategory::Integer ||
      T::category == TypeCategory::Real ||
      T::category == TypeCategory::Complex);
  using Element = typename Constant<T>::Element;
  std::optional<int> dim;
  if (std::optional<Constant<T>> array{
          ProcessReductionArgs<T>(context, ref.arguments(), dim, identity,
              /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
    bool overflow{false};
    auto accumulator{[&](Element &element, const ConstantSubscripts &at) {
      if constexpr (T::category == TypeCategory::Integer) {
        auto prod{element.MultiplySigned(array->At(at))};
        overflow |= prod.SignedMultiplicationOverflowed();
        element = prod.lower;
      } else { // Real & Complex
        auto prod{element.Multiply(array->At(at))};
        overflow |= prod.flags.test(RealFlag::Overflow);
        element = prod.value;
      }
    }};
    auto result{Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)}};
    if (overflow) {
      context.messages().Say(
          "PRODUCT() of %s data overflowed"_warn_en_US, T::AsFortran());
    }
    return result;
  }
  return Expr<T>{std::move(ref)};
}

// SUM
template <typename T>
static Expr<T> FoldSum(FoldingContext &context, FunctionRef<T> &&ref) {
  static_assert(T::category == TypeCategory::Integer ||
      T::category == TypeCategory::Real ||
      T::category == TypeCategory::Complex);
  using Element = typename Constant<T>::Element;
  std::optional<int> dim;
  Element identity{}, correction{};
  if (std::optional<Constant<T>> array{
          ProcessReductionArgs<T>(context, ref.arguments(), dim, identity,
              /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
    bool overflow{false};
    auto accumulator{[&](Element &element, const ConstantSubscripts &at) {
      if constexpr (T::category == TypeCategory::Integer) {
        auto sum{element.AddSigned(array->At(at))};
        overflow |= sum.overflow;
        element = sum.value;
      } else { // Real & Complex: use Kahan summation
        const auto &rounding{context.targetCharacteristics().roundingMode()};
        auto next{array->At(at).Add(correction, rounding)};
        overflow |= next.flags.test(RealFlag::Overflow);
        auto sum{element.Add(next.value, rounding)};
        overflow |= sum.flags.test(RealFlag::Overflow);
        // correction = (sum - element) - next; algebraically zero
        correction = sum.value.Subtract(element, rounding)
                         .value.Subtract(next.value, rounding)
                         .value;
        element = sum.value;
      }
    }};
    auto result{Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)}};
    if (overflow) {
      context.messages().Say(
          "SUM() of %s data overflowed"_warn_en_US, T::AsFortran());
    }
    return result;
  }
  return Expr<T>{std::move(ref)};
}

} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_FOLD_REDUCTION_H_