1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
//===-- lib/Evaluate/fold-reduction.h -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// TODO: NORM2, PARITY
#ifndef FORTRAN_EVALUATE_FOLD_REDUCTION_H_
#define FORTRAN_EVALUATE_FOLD_REDUCTION_H_
#include "fold-implementation.h"
namespace Fortran::evaluate {
// DOT_PRODUCT
template <typename T>
static Expr<T> FoldDotProduct(
FoldingContext &context, FunctionRef<T> &&funcRef) {
using Element = typename Constant<T>::Element;
auto args{funcRef.arguments()};
CHECK(args.size() == 2);
Folder<T> folder{context};
Constant<T> *va{folder.Folding(args[0])};
Constant<T> *vb{folder.Folding(args[1])};
if (va && vb) {
CHECK(va->Rank() == 1 && vb->Rank() == 1);
if (va->size() != vb->size()) {
context.messages().Say(
"Vector arguments to DOT_PRODUCT have distinct extents %zd and %zd"_err_en_US,
va->size(), vb->size());
return MakeInvalidIntrinsic(std::move(funcRef));
}
Element sum{};
bool overflow{false};
if constexpr (T::category == TypeCategory::Complex) {
std::vector<Element> conjugates;
for (const Element &x : va->values()) {
conjugates.emplace_back(x.CONJG());
}
Constant<T> conjgA{
std::move(conjugates), ConstantSubscripts{va->shape()}};
Expr<T> products{Fold(
context, Expr<T>{std::move(conjgA)} * Expr<T>{Constant<T>{*vb}})};
Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
Element correction; // Use Kahan summation for greater precision.
const auto &rounding{context.targetCharacteristics().roundingMode()};
for (const Element &x : cProducts.values()) {
auto next{correction.Add(x, rounding)};
overflow |= next.flags.test(RealFlag::Overflow);
auto added{sum.Add(next.value, rounding)};
overflow |= added.flags.test(RealFlag::Overflow);
correction = added.value.Subtract(sum, rounding)
.value.Subtract(next.value, rounding)
.value;
sum = std::move(added.value);
}
} else if constexpr (T::category == TypeCategory::Logical) {
Expr<T> conjunctions{Fold(context,
Expr<T>{LogicalOperation<T::kind>{LogicalOperator::And,
Expr<T>{Constant<T>{*va}}, Expr<T>{Constant<T>{*vb}}}})};
Constant<T> &cConjunctions{DEREF(UnwrapConstantValue<T>(conjunctions))};
for (const Element &x : cConjunctions.values()) {
if (x.IsTrue()) {
sum = Element{true};
break;
}
}
} else if constexpr (T::category == TypeCategory::Integer) {
Expr<T> products{
Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
for (const Element &x : cProducts.values()) {
auto next{sum.AddSigned(x)};
overflow |= next.overflow;
sum = std::move(next.value);
}
} else { // T::category == TypeCategory::Real
Expr<T> products{
Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
Element correction; // Use Kahan summation for greater precision.
const auto &rounding{context.targetCharacteristics().roundingMode()};
for (const Element &x : cProducts.values()) {
auto next{correction.Add(x, rounding)};
overflow |= next.flags.test(RealFlag::Overflow);
auto added{sum.Add(next.value, rounding)};
overflow |= added.flags.test(RealFlag::Overflow);
correction = added.value.Subtract(sum, rounding)
.value.Subtract(next.value, rounding)
.value;
sum = std::move(added.value);
}
}
if (overflow) {
context.messages().Say(
"DOT_PRODUCT of %s data overflowed during computation"_warn_en_US,
T::AsFortran());
}
return Expr<T>{Constant<T>{std::move(sum)}};
}
return Expr<T>{std::move(funcRef)};
}
// Fold and validate a DIM= argument. Returns false on error.
bool CheckReductionDIM(std::optional<int> &dim, FoldingContext &,
ActualArguments &, std::optional<int> dimIndex, int rank);
// Fold and validate a MASK= argument. Return null on error, absent MASK=, or
// non-constant MASK=.
Constant<LogicalResult> *GetReductionMASK(
std::optional<ActualArgument> &maskArg, const ConstantSubscripts &shape,
FoldingContext &);
// Common preprocessing for reduction transformational intrinsic function
// folding. If the intrinsic can have DIM= &/or MASK= arguments, extract
// and check them. If a MASK= is present, apply it to the array data and
// substitute identity values for elements corresponding to .FALSE. in
// the mask. If the result is present, the intrinsic call can be folded.
template <typename T>
static std::optional<Constant<T>> ProcessReductionArgs(FoldingContext &context,
ActualArguments &arg, std::optional<int> &dim, const Scalar<T> &identity,
int arrayIndex, std::optional<int> dimIndex = std::nullopt,
std::optional<int> maskIndex = std::nullopt) {
if (arg.empty()) {
return std::nullopt;
}
Constant<T> *folded{Folder<T>{context}.Folding(arg[arrayIndex])};
if (!folded || folded->Rank() < 1) {
return std::nullopt;
}
if (!CheckReductionDIM(dim, context, arg, dimIndex, folded->Rank())) {
return std::nullopt;
}
if (maskIndex && static_cast<std::size_t>(*maskIndex) < arg.size() &&
arg[*maskIndex]) {
if (const Constant<LogicalResult> *mask{
GetReductionMASK(arg[*maskIndex], folded->shape(), context)}) {
// Apply the mask in place to the array
std::size_t n{folded->size()};
std::vector<typename Constant<T>::Element> elements;
if (auto scalarMask{mask->GetScalarValue()}) {
if (scalarMask->IsTrue()) {
return Constant<T>{*folded};
} else { // MASK=.FALSE.
elements = std::vector<typename Constant<T>::Element>(n, identity);
}
} else { // mask is an array; test its elements
elements = std::vector<typename Constant<T>::Element>(n, identity);
ConstantSubscripts at{folded->lbounds()};
for (std::size_t j{0}; j < n; ++j, folded->IncrementSubscripts(at)) {
if (mask->values()[j].IsTrue()) {
elements[j] = folded->At(at);
}
}
}
if constexpr (T::category == TypeCategory::Character) {
return Constant<T>{static_cast<ConstantSubscript>(identity.size()),
std::move(elements), ConstantSubscripts{folded->shape()}};
} else {
return Constant<T>{
std::move(elements), ConstantSubscripts{folded->shape()}};
}
} else {
return std::nullopt;
}
} else {
return Constant<T>{*folded};
}
}
// Generalized reduction to an array of one dimension fewer (w/ DIM=)
// or to a scalar (w/o DIM=).
template <typename T, typename ACCUMULATOR, typename ARRAY>
static Constant<T> DoReduction(const Constant<ARRAY> &array,
std::optional<int> &dim, const Scalar<T> &identity,
ACCUMULATOR &accumulator) {
ConstantSubscripts at{array.lbounds()};
std::vector<typename Constant<T>::Element> elements;
ConstantSubscripts resultShape; // empty -> scalar
if (dim) { // DIM= is present, so result is an array
resultShape = array.shape();
resultShape.erase(resultShape.begin() + (*dim - 1));
ConstantSubscript dimExtent{array.shape().at(*dim - 1)};
ConstantSubscript &dimAt{at[*dim - 1]};
ConstantSubscript dimLbound{dimAt};
for (auto n{GetSize(resultShape)}; n-- > 0;
IncrementSubscripts(at, array.shape())) {
dimAt = dimLbound;
elements.push_back(identity);
for (ConstantSubscript j{0}; j < dimExtent; ++j, ++dimAt) {
accumulator(elements.back(), at);
}
}
} else { // no DIM=, result is scalar
elements.push_back(identity);
for (auto n{array.size()}; n-- > 0;
IncrementSubscripts(at, array.shape())) {
accumulator(elements.back(), at);
}
}
if constexpr (T::category == TypeCategory::Character) {
return {static_cast<ConstantSubscript>(identity.size()),
std::move(elements), std::move(resultShape)};
} else {
return {std::move(elements), std::move(resultShape)};
}
}
// MAXVAL & MINVAL
template <typename T>
static Expr<T> FoldMaxvalMinval(FoldingContext &context, FunctionRef<T> &&ref,
RelationalOperator opr, const Scalar<T> &identity) {
static_assert(T::category == TypeCategory::Integer ||
T::category == TypeCategory::Real ||
T::category == TypeCategory::Character);
using Element = Scalar<T>;
std::optional<int> dim;
if (std::optional<Constant<T>> array{
ProcessReductionArgs<T>(context, ref.arguments(), dim, identity,
/*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
auto accumulator{[&](Element &element, const ConstantSubscripts &at) {
Expr<LogicalResult> test{PackageRelation(opr,
Expr<T>{Constant<T>{array->At(at)}}, Expr<T>{Constant<T>{element}})};
auto folded{GetScalarConstantValue<LogicalResult>(
test.Rewrite(context, std::move(test)))};
CHECK(folded.has_value());
if (folded->IsTrue()) {
element = array->At(at);
}
}};
return Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)};
}
return Expr<T>{std::move(ref)};
}
// PRODUCT
template <typename T>
static Expr<T> FoldProduct(
FoldingContext &context, FunctionRef<T> &&ref, Scalar<T> identity) {
static_assert(T::category == TypeCategory::Integer ||
T::category == TypeCategory::Real ||
T::category == TypeCategory::Complex);
using Element = typename Constant<T>::Element;
std::optional<int> dim;
if (std::optional<Constant<T>> array{
ProcessReductionArgs<T>(context, ref.arguments(), dim, identity,
/*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
bool overflow{false};
auto accumulator{[&](Element &element, const ConstantSubscripts &at) {
if constexpr (T::category == TypeCategory::Integer) {
auto prod{element.MultiplySigned(array->At(at))};
overflow |= prod.SignedMultiplicationOverflowed();
element = prod.lower;
} else { // Real & Complex
auto prod{element.Multiply(array->At(at))};
overflow |= prod.flags.test(RealFlag::Overflow);
element = prod.value;
}
}};
auto result{Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)}};
if (overflow) {
context.messages().Say(
"PRODUCT() of %s data overflowed"_warn_en_US, T::AsFortran());
}
return result;
}
return Expr<T>{std::move(ref)};
}
// SUM
template <typename T>
static Expr<T> FoldSum(FoldingContext &context, FunctionRef<T> &&ref) {
static_assert(T::category == TypeCategory::Integer ||
T::category == TypeCategory::Real ||
T::category == TypeCategory::Complex);
using Element = typename Constant<T>::Element;
std::optional<int> dim;
Element identity{}, correction{};
if (std::optional<Constant<T>> array{
ProcessReductionArgs<T>(context, ref.arguments(), dim, identity,
/*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
bool overflow{false};
auto accumulator{[&](Element &element, const ConstantSubscripts &at) {
if constexpr (T::category == TypeCategory::Integer) {
auto sum{element.AddSigned(array->At(at))};
overflow |= sum.overflow;
element = sum.value;
} else { // Real & Complex: use Kahan summation
const auto &rounding{context.targetCharacteristics().roundingMode()};
auto next{array->At(at).Add(correction, rounding)};
overflow |= next.flags.test(RealFlag::Overflow);
auto sum{element.Add(next.value, rounding)};
overflow |= sum.flags.test(RealFlag::Overflow);
// correction = (sum - element) - next; algebraically zero
correction = sum.value.Subtract(element, rounding)
.value.Subtract(next.value, rounding)
.value;
element = sum.value;
}
}};
auto result{Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)}};
if (overflow) {
context.messages().Say(
"SUM() of %s data overflowed"_warn_en_US, T::AsFortran());
}
return result;
}
return Expr<T>{std::move(ref)};
}
} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_FOLD_REDUCTION_H_
|