1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
//===-- lib/Evaluate/host.h -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_HOST_H_
#define FORTRAN_EVALUATE_HOST_H_
// Define a compile-time mapping between Fortran intrinsic types and host
// hardware types if possible. The purpose is to avoid having to do any kind of
// assumption on whether a "float" matches the Scalar<Type<TypeCategory::Real,
// 4>> outside of this header. The main tools are HostTypeExists<T> and
// HostType<T>. HostTypeExists<T>() will return true if and only if a host
// hardware type maps to Fortran intrinsic type T. Then HostType<T> can be used
// to safely refer to this hardware type.
#include "flang/Evaluate/type.h"
#include <cfenv>
#include <complex>
#include <cstdint>
#include <limits>
#include <string>
#include <type_traits>
namespace Fortran::evaluate {
namespace host {
// Helper class to handle host runtime traps, status flag and errno
class HostFloatingPointEnvironment {
public:
void SetUpHostFloatingPointEnvironment(FoldingContext &);
void CheckAndRestoreFloatingPointEnvironment(FoldingContext &);
bool hasSubnormalFlushingHardwareControl() const {
return hasSubnormalFlushingHardwareControl_;
}
void SetFlag(RealFlag flag) { flags_.set(flag); }
bool hardwareFlagsAreReliable() const { return hardwareFlagsAreReliable_; }
private:
std::fenv_t originalFenv_;
#if __x86_64__
unsigned int originalMxcsr;
#endif
RealFlags flags_;
bool hasSubnormalFlushingHardwareControl_{false};
bool hardwareFlagsAreReliable_{true};
};
// Type mapping from F18 types to host types
struct UnsupportedType {}; // There is no host type for the F18 type
template <typename FTN_T> struct HostTypeHelper {
using Type = UnsupportedType;
};
template <typename FTN_T> using HostType = typename HostTypeHelper<FTN_T>::Type;
template <typename... T> constexpr inline bool HostTypeExists() {
return (... && (!std::is_same_v<HostType<T>, UnsupportedType>));
}
// Type mapping from host types to F18 types FortranType<HOST_T> is defined
// after all HosTypeHelper definition because it reverses them to avoid
// duplication.
// Scalar conversion utilities from host scalars to F18 scalars
template <typename FTN_T>
inline constexpr Scalar<FTN_T> CastHostToFortran(const HostType<FTN_T> &x) {
static_assert(HostTypeExists<FTN_T>());
if constexpr (FTN_T::category == TypeCategory::Complex &&
sizeof(Scalar<FTN_T>) != sizeof(HostType<FTN_T>)) {
// X87 is usually padded to 12 or 16bytes. Need to cast piecewise for
// complex
return Scalar<FTN_T>{CastHostToFortran<typename FTN_T::Part>(std::real(x)),
CastHostToFortran<typename FTN_T::Part>(std::imag(x))};
} else {
return *reinterpret_cast<const Scalar<FTN_T> *>(&x);
}
}
// Scalar conversion utilities from F18 scalars to host scalars.
template <typename FTN_T>
inline constexpr HostType<FTN_T> CastFortranToHost(const Scalar<FTN_T> &x) {
static_assert(HostTypeExists<FTN_T>());
if constexpr (FTN_T::category == TypeCategory::Complex) {
using FortranPartType = typename FTN_T::Part;
return HostType<FTN_T>{CastFortranToHost<FortranPartType>(x.REAL()),
CastFortranToHost<FortranPartType>(x.AIMAG())};
} else if constexpr (std::is_same_v<FTN_T, Type<TypeCategory::Real, 10>>) {
// x87 80-bit floating-point occupies 16 bytes as a C "long double";
// copy the data to avoid a legitimate (but benign due to little-endianness)
// warning from GCC >= 11.2.0.
HostType<FTN_T> y;
std::memcpy(&y, &x, sizeof x);
return y;
} else {
static_assert(sizeof x == sizeof(HostType<FTN_T>));
return *reinterpret_cast<const HostType<FTN_T> *>(&x);
}
}
template <> struct HostTypeHelper<Type<TypeCategory::Integer, 1>> {
using Type = std::int8_t;
};
template <> struct HostTypeHelper<Type<TypeCategory::Integer, 2>> {
using Type = std::int16_t;
};
template <> struct HostTypeHelper<Type<TypeCategory::Integer, 4>> {
using Type = std::int32_t;
};
template <> struct HostTypeHelper<Type<TypeCategory::Integer, 8>> {
using Type = std::int64_t;
};
template <> struct HostTypeHelper<Type<TypeCategory::Integer, 16>> {
#if (defined(__GNUC__) || defined(__clang__)) && defined(__SIZEOF_INT128__)
using Type = __int128_t;
#else
using Type = UnsupportedType;
#endif
};
// TODO no mapping to host types are defined currently for 16bits float
// It should be defined when gcc/clang have a better support for it.
template <>
struct HostTypeHelper<
Type<TypeCategory::Real, common::RealKindForPrecision(24)>> {
// IEEE 754 32bits
using Type = std::conditional_t<sizeof(float) == 4 &&
std::numeric_limits<float>::is_iec559,
float, UnsupportedType>;
};
template <>
struct HostTypeHelper<
Type<TypeCategory::Real, common::RealKindForPrecision(53)>> {
// IEEE 754 64bits
using Type = std::conditional_t<sizeof(double) == 8 &&
std::numeric_limits<double>::is_iec559,
double, UnsupportedType>;
};
template <>
struct HostTypeHelper<
Type<TypeCategory::Real, common::RealKindForPrecision(64)>> {
// X87 80bits
using Type = std::conditional_t<sizeof(long double) >= 10 &&
std::numeric_limits<long double>::digits == 64 &&
std::numeric_limits<long double>::max_exponent == 16384,
long double, UnsupportedType>;
};
template <>
struct HostTypeHelper<
Type<TypeCategory::Real, common::RealKindForPrecision(113)>> {
// IEEE 754 128bits
using Type = std::conditional_t<sizeof(long double) == 16 &&
std::numeric_limits<long double>::digits == 113 &&
std::numeric_limits<long double>::max_exponent == 16384,
long double, UnsupportedType>;
};
template <int KIND> struct HostTypeHelper<Type<TypeCategory::Complex, KIND>> {
using RealT = Fortran::evaluate::Type<TypeCategory::Real, KIND>;
using Type = std::conditional_t<HostTypeExists<RealT>(),
std::complex<HostType<RealT>>, UnsupportedType>;
};
template <int KIND> struct HostTypeHelper<Type<TypeCategory::Logical, KIND>> {
using Type = std::conditional_t<KIND <= 8, std::uint8_t, UnsupportedType>;
};
template <int KIND> struct HostTypeHelper<Type<TypeCategory::Character, KIND>> {
using Type =
Scalar<typename Fortran::evaluate::Type<TypeCategory::Character, KIND>>;
};
// Type mapping from host types to F18 types. This need to be placed after all
// HostTypeHelper specializations.
template <typename T, typename... TT> struct IndexInTupleHelper {};
template <typename T, typename... TT>
struct IndexInTupleHelper<T, std::tuple<TT...>> {
static constexpr int value{common::TypeIndex<T, TT...>};
};
struct UnknownType {}; // the host type does not match any F18 types
template <typename HOST_T> struct FortranTypeHelper {
using HostTypeMapping =
common::MapTemplate<HostType, AllIntrinsicTypes, std::tuple>;
static constexpr int index{
IndexInTupleHelper<HOST_T, HostTypeMapping>::value};
// Both conditional types are "instantiated", so a valid type must be
// created for invalid index even if not used.
using Type = std::conditional_t<index >= 0,
std::tuple_element_t<(index >= 0) ? index : 0, AllIntrinsicTypes>,
UnknownType>;
};
template <typename HOST_T>
using FortranType = typename FortranTypeHelper<HOST_T>::Type;
template <typename... HT> constexpr inline bool FortranTypeExists() {
return (... && (!std::is_same_v<FortranType<HT>, UnknownType>));
}
} // namespace host
} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_HOST_H_
|