1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
//===-- lib/Evaluate/initial-image.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/initial-image.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/tools.h"
#include <cstring>
namespace Fortran::evaluate {
auto InitialImage::Add(ConstantSubscript offset, std::size_t bytes,
const Constant<SomeDerived> &x, FoldingContext &context) -> Result {
if (offset < 0 || offset + bytes > data_.size()) {
return OutOfRange;
} else {
auto elements{TotalElementCount(x.shape())};
auto elementBytes{bytes > 0 ? bytes / elements : 0};
if (elements * elementBytes != bytes) {
return SizeMismatch;
} else {
auto at{x.lbounds()};
for (; elements-- > 0; x.IncrementSubscripts(at)) {
auto scalar{x.At(at)};
// TODO: length type parameter values?
for (const auto &[symbolRef, indExpr] : scalar) {
const Symbol &component{*symbolRef};
if (component.offset() + component.size() > elementBytes) {
return SizeMismatch;
} else if (IsPointer(component)) {
AddPointer(offset + component.offset(), indExpr.value());
} else if (IsAllocatable(component) || IsAutomatic(component)) {
return NotAConstant;
} else {
Result added{Add(offset + component.offset(), component.size(),
indExpr.value(), context)};
if (added != Ok) {
return added;
}
}
}
offset += elementBytes;
}
}
return Ok;
}
}
void InitialImage::AddPointer(
ConstantSubscript offset, const Expr<SomeType> &pointer) {
pointers_.emplace(offset, pointer);
}
void InitialImage::Incorporate(ConstantSubscript toOffset,
const InitialImage &from, ConstantSubscript fromOffset,
ConstantSubscript bytes) {
CHECK(from.pointers_.empty()); // pointers are not allowed in EQUIVALENCE
CHECK(fromOffset >= 0 && bytes >= 0 &&
static_cast<std::size_t>(fromOffset + bytes) <= from.size());
CHECK(static_cast<std::size_t>(toOffset + bytes) <= size());
std::memcpy(&data_[toOffset], &from.data_[fromOffset], bytes);
}
// Classes used with common::SearchTypes() to (re)construct Constant<> values
// of the right type to initialize each symbol from the values that have
// been placed into its initialization image by DATA statements.
class AsConstantHelper {
public:
using Result = std::optional<Expr<SomeType>>;
using Types = AllTypes;
AsConstantHelper(FoldingContext &context, const DynamicType &type,
std::optional<std::int64_t> charLength, const ConstantSubscripts &extents,
const InitialImage &image, bool padWithZero = false,
ConstantSubscript offset = 0)
: context_{context}, type_{type}, charLength_{charLength}, image_{image},
extents_{extents}, padWithZero_{padWithZero}, offset_{offset} {
CHECK(!type.IsPolymorphic());
}
template <typename T> Result Test() {
if (T::category != type_.category()) {
return std::nullopt;
}
if constexpr (T::category != TypeCategory::Derived) {
if (T::kind != type_.kind()) {
return std::nullopt;
}
}
using Const = Constant<T>;
using Scalar = typename Const::Element;
std::size_t elements{TotalElementCount(extents_)};
std::vector<Scalar> typedValue(elements);
auto elemBytes{ToInt64(type_.MeasureSizeInBytes(
context_, GetRank(extents_) > 0, charLength_))};
CHECK(elemBytes && *elemBytes >= 0);
std::size_t stride{static_cast<std::size_t>(*elemBytes)};
CHECK(offset_ + elements * stride <= image_.data_.size() || padWithZero_);
if constexpr (T::category == TypeCategory::Derived) {
const semantics::DerivedTypeSpec &derived{type_.GetDerivedTypeSpec()};
for (auto iter : DEREF(derived.scope())) {
const Symbol &component{*iter.second};
bool isProcPtr{IsProcedurePointer(component)};
if (isProcPtr || component.has<semantics::ObjectEntityDetails>()) {
auto at{offset_ + component.offset()};
if (isProcPtr) {
for (std::size_t j{0}; j < elements; ++j, at += stride) {
if (Result value{image_.AsConstantPointer(at)}) {
typedValue[j].emplace(component, std::move(*value));
}
}
} else if (IsPointer(component)) {
for (std::size_t j{0}; j < elements; ++j, at += stride) {
if (Result value{image_.AsConstantPointer(at)}) {
typedValue[j].emplace(component, std::move(*value));
}
}
} else if (!IsAllocatable(component)) {
auto componentType{DynamicType::From(component)};
CHECK(componentType.has_value());
auto componentExtents{GetConstantExtents(context_, component)};
CHECK(componentExtents.has_value());
for (std::size_t j{0}; j < elements; ++j, at += stride) {
if (Result value{image_.AsConstant(context_, *componentType,
std::nullopt, *componentExtents, padWithZero_, at)}) {
typedValue[j].emplace(component, std::move(*value));
}
}
}
}
}
return AsGenericExpr(
Const{derived, std::move(typedValue), std::move(extents_)});
} else if constexpr (T::category == TypeCategory::Character) {
auto length{static_cast<ConstantSubscript>(stride) / T::kind};
for (std::size_t j{0}; j < elements; ++j) {
using Char = typename Scalar::value_type;
auto at{static_cast<std::size_t>(offset_ + j * stride)};
auto chunk{length};
if (at + chunk > image_.data_.size()) {
CHECK(padWithZero_);
if (at >= image_.data_.size()) {
chunk = 0;
} else {
chunk = image_.data_.size() - at;
}
}
if (chunk > 0) {
const Char *data{reinterpret_cast<const Char *>(&image_.data_[at])};
typedValue[j].assign(data, chunk);
}
if (chunk < length && padWithZero_) {
typedValue[j].append(length - chunk, Char{});
}
}
return AsGenericExpr(
Const{length, std::move(typedValue), std::move(extents_)});
} else {
// Lengthless intrinsic type
CHECK(sizeof(Scalar) <= stride);
for (std::size_t j{0}; j < elements; ++j) {
auto at{static_cast<std::size_t>(offset_ + j * stride)};
std::size_t chunk{sizeof(Scalar)};
if (at + chunk > image_.data_.size()) {
CHECK(padWithZero_);
if (at >= image_.data_.size()) {
chunk = 0;
} else {
chunk = image_.data_.size() - at;
}
}
// TODO endianness
if (chunk > 0) {
std::memcpy(&typedValue[j], &image_.data_[at], chunk);
}
}
return AsGenericExpr(Const{std::move(typedValue), std::move(extents_)});
}
}
private:
FoldingContext &context_;
const DynamicType &type_;
std::optional<std::int64_t> charLength_;
const InitialImage &image_;
ConstantSubscripts extents_; // a copy
bool padWithZero_;
ConstantSubscript offset_;
};
std::optional<Expr<SomeType>> InitialImage::AsConstant(FoldingContext &context,
const DynamicType &type, std::optional<std::int64_t> charLength,
const ConstantSubscripts &extents, bool padWithZero,
ConstantSubscript offset) const {
return common::SearchTypes(AsConstantHelper{
context, type, charLength, extents, *this, padWithZero, offset});
}
std::optional<Expr<SomeType>> InitialImage::AsConstantPointer(
ConstantSubscript offset) const {
auto iter{pointers_.find(offset)};
return iter == pointers_.end() ? std::optional<Expr<SomeType>>{}
: iter->second;
}
} // namespace Fortran::evaluate
|