File: intrinsics-library.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (587 lines) | stat: -rw-r--r-- 24,509 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//===-- lib/Evaluate/intrinsics-library.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// This file defines host runtime functions that can be used for folding
// intrinsic functions.
// The default host runtime folders are built with <cmath> and
// <complex> functions that are guaranteed to exist from the C++ standard.

#include "flang/Evaluate/intrinsics-library.h"
#include "fold-implementation.h"
#include "host.h"
#include "flang/Common/static-multimap-view.h"
#include "flang/Evaluate/expression.h"
#include <cfloat>
#include <cmath>
#include <complex>
#include <functional>
#include <type_traits>

namespace Fortran::evaluate {

// Define a vector like class that can hold an arbitrary number of
// Dynamic type and be built at compile time. This is like a
// std::vector<DynamicType>, but constexpr only.
template <typename... FortranType> struct TypeVectorStorage {
  static constexpr DynamicType values[]{FortranType{}.GetType()...};
  static constexpr const DynamicType *start{&values[0]};
  static constexpr const DynamicType *end{start + sizeof...(FortranType)};
};
template <> struct TypeVectorStorage<> {
  static constexpr const DynamicType *start{nullptr}, *end{nullptr};
};
struct TypeVector {
  template <typename... FortranType> static constexpr TypeVector Create() {
    using storage = TypeVectorStorage<FortranType...>;
    return TypeVector{storage::start, storage::end, sizeof...(FortranType)};
  }
  constexpr size_t size() const { return size_; };
  using const_iterator = const DynamicType *;
  constexpr const_iterator begin() const { return startPtr; }
  constexpr const_iterator end() const { return endPtr; }
  const DynamicType &operator[](size_t i) const { return *(startPtr + i); }

  const DynamicType *startPtr{nullptr};
  const DynamicType *endPtr{nullptr};
  const size_t size_;
};
inline bool operator==(
    const TypeVector &lhs, const std::vector<DynamicType> &rhs) {
  if (lhs.size() != rhs.size()) {
    return false;
  }
  for (size_t i{0}; i < lhs.size(); ++i) {
    if (lhs[i] != rhs[i]) {
      return false;
    }
  }
  return true;
}

// HostRuntimeFunction holds a pointer to a Folder function that can fold
// a Fortran scalar intrinsic using host runtime functions (e.g libm).
// The folder take care of all conversions between Fortran types and the related
// host types as well as setting and cleaning-up the floating point environment.
// HostRuntimeFunction are intended to be built at compile time (members are all
// constexpr constructible) so that they can be stored in a compile time static
// map.
struct HostRuntimeFunction {
  using Folder = Expr<SomeType> (*)(
      FoldingContext &, std::vector<Expr<SomeType>> &&);
  using Key = std::string_view;
  // Needed for implicit compare with keys.
  constexpr operator Key() const { return key; }
  // Name of the related Fortran intrinsic.
  Key key;
  // DynamicType of the Expr<SomeType> returns by folder.
  DynamicType resultType;
  // DynamicTypes expected for the Expr<SomeType> arguments of the folder.
  // The folder will crash if provided arguments of different types.
  TypeVector argumentTypes;
  // Folder to be called to fold the intrinsic with host runtime. The provided
  // Expr<SomeType> arguments must wrap scalar constants of the type described
  // in argumentTypes, otherwise folder will crash. Any floating point issue
  // raised while executing the host runtime will be reported in FoldingContext
  // messages.
  Folder folder;
};

// Translate a host function type signature (template arguments) into a
// constexpr data representation based on Fortran DynamicType that can be
// stored.
template <typename TR, typename... TA> using FuncPointer = TR (*)(TA...);
template <typename T> struct FuncTypeAnalyzer {};
template <typename HostTR, typename... HostTA>
struct FuncTypeAnalyzer<FuncPointer<HostTR, HostTA...>> {
  static constexpr DynamicType result{host::FortranType<HostTR>{}.GetType()};
  static constexpr TypeVector arguments{
      TypeVector::Create<host::FortranType<HostTA>...>()};
};

// Define helpers to deal with host floating environment.
template <typename TR>
static void CheckFloatingPointIssues(
    host::HostFloatingPointEnvironment &hostFPE, const Scalar<TR> &x) {
  if constexpr (TR::category == TypeCategory::Complex ||
      TR::category == TypeCategory::Real) {
    if (x.IsNotANumber()) {
      hostFPE.SetFlag(RealFlag::InvalidArgument);
    } else if (x.IsInfinite()) {
      hostFPE.SetFlag(RealFlag::Overflow);
    }
  }
}
// Software Subnormal Flushing helper.
// Only flush floating-points. Forward other scalars untouched.
// Software flushing is only performed if hardware flushing is not available
// because it may not result in the same behavior as hardware flushing.
// Some runtime implementations are "working around" subnormal flushing to
// return results that they deem better than returning the result they would
// with a null argument. An example is logf that should return -inf if arguments
// are flushed to zero, but some implementations return -1.03972076416015625e2_4
// for all subnormal values instead. It is impossible to reproduce this with the
// simple software flushing below.
template <typename T>
static constexpr inline const Scalar<T> FlushSubnormals(Scalar<T> &&x) {
  if constexpr (T::category == TypeCategory::Real ||
      T::category == TypeCategory::Complex) {
    return x.FlushSubnormalToZero();
  }
  return x;
}

// This is the kernel called by all HostRuntimeFunction folders, it convert the
// Fortran Expr<SomeType> to the host runtime function argument types, calls
// the runtime function, and wrap back the result into an Expr<SomeType>.
// It deals with host floating point environment set-up and clean-up.
template <typename FuncType, typename TR, typename... TA, size_t... I>
static Expr<SomeType> ApplyHostFunctionHelper(FuncType func,
    FoldingContext &context, std::vector<Expr<SomeType>> &&args,
    std::index_sequence<I...>) {
  host::HostFloatingPointEnvironment hostFPE;
  hostFPE.SetUpHostFloatingPointEnvironment(context);
  host::HostType<TR> hostResult{};
  Scalar<TR> result{};
  std::tuple<Scalar<TA>...> scalarArgs{
      GetScalarConstantValue<TA>(args[I]).value()...};
  if (context.targetCharacteristics().areSubnormalsFlushedToZero() &&
      !hostFPE.hasSubnormalFlushingHardwareControl()) {
    hostResult = func(host::CastFortranToHost<TA>(
        FlushSubnormals<TA>(std::move(std::get<I>(scalarArgs))))...);
    result = FlushSubnormals<TR>(host::CastHostToFortran<TR>(hostResult));
  } else {
    hostResult = func(host::CastFortranToHost<TA>(std::get<I>(scalarArgs))...);
    result = host::CastHostToFortran<TR>(hostResult);
  }
  if (!hostFPE.hardwareFlagsAreReliable()) {
    CheckFloatingPointIssues<TR>(hostFPE, result);
  }
  hostFPE.CheckAndRestoreFloatingPointEnvironment(context);
  return AsGenericExpr(Constant<TR>(std::move(result)));
}
template <typename HostTR, typename... HostTA>
Expr<SomeType> ApplyHostFunction(FuncPointer<HostTR, HostTA...> func,
    FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
  return ApplyHostFunctionHelper<decltype(func), host::FortranType<HostTR>,
      host::FortranType<HostTA>...>(
      func, context, std::move(args), std::index_sequence_for<HostTA...>{});
}

// FolderFactory builds a HostRuntimeFunction for the host runtime function
// passed as a template argument.
// Its static member function "fold" is the resulting folder. It captures the
// host runtime function pointer and pass it to the host runtime function folder
// kernel.
template <typename HostFuncType, HostFuncType func> class FolderFactory {
public:
  static constexpr HostRuntimeFunction Create(const std::string_view &name) {
    return HostRuntimeFunction{name, FuncTypeAnalyzer<HostFuncType>::result,
        FuncTypeAnalyzer<HostFuncType>::arguments, &Fold};
  }

private:
  static Expr<SomeType> Fold(
      FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
    return ApplyHostFunction(func, context, std::move(args));
  }
};

// Define host runtime libraries that can be used for folding and
// fill their description if they are available.
enum class LibraryVersion {
  Libm,
  LibmExtensions,
  PgmathFast,
  PgmathRelaxed,
  PgmathPrecise
};
template <typename HostT, LibraryVersion> struct HostRuntimeLibrary {
  // When specialized, this class holds a static constexpr table containing
  // all the HostRuntimeLibrary for functions of library LibraryVersion
  // that returns a value of type HostT.
};

using HostRuntimeMap = common::StaticMultimapView<HostRuntimeFunction>;

// Map numerical intrinsic to  <cmath>/<complex> functions
// (Note: ABS() is folded in fold-real.cpp.)
template <typename HostT>
struct HostRuntimeLibrary<HostT, LibraryVersion::Libm> {
  using F = FuncPointer<HostT, HostT>;
  using F2 = FuncPointer<HostT, HostT, HostT>;
  static constexpr HostRuntimeFunction table[]{
      FolderFactory<F, F{std::acos}>::Create("acos"),
      FolderFactory<F, F{std::acosh}>::Create("acosh"),
      FolderFactory<F, F{std::asin}>::Create("asin"),
      FolderFactory<F, F{std::asinh}>::Create("asinh"),
      FolderFactory<F, F{std::atan}>::Create("atan"),
      FolderFactory<F2, F2{std::atan2}>::Create("atan2"),
      FolderFactory<F, F{std::atanh}>::Create("atanh"),
      FolderFactory<F, F{std::cos}>::Create("cos"),
      FolderFactory<F, F{std::cosh}>::Create("cosh"),
      FolderFactory<F, F{std::erf}>::Create("erf"),
      FolderFactory<F, F{std::erfc}>::Create("erfc"),
      FolderFactory<F, F{std::exp}>::Create("exp"),
      FolderFactory<F, F{std::tgamma}>::Create("gamma"),
      FolderFactory<F, F{std::log}>::Create("log"),
      FolderFactory<F, F{std::log10}>::Create("log10"),
      FolderFactory<F, F{std::lgamma}>::Create("log_gamma"),
      FolderFactory<F2, F2{std::pow}>::Create("pow"),
      FolderFactory<F, F{std::sin}>::Create("sin"),
      FolderFactory<F, F{std::sinh}>::Create("sinh"),
      FolderFactory<F, F{std::tan}>::Create("tan"),
      FolderFactory<F, F{std::tanh}>::Create("tanh"),
  };
  // Note: cmath does not have modulo and erfc_scaled equivalent

  // Note regarding  lack of bessel function support:
  // C++17 defined standard Bessel math functions std::cyl_bessel_j
  // and std::cyl_neumann that can be used for Fortran j and y
  // bessel functions. However, they are not yet implemented in
  // clang libc++ (ok in GNU libstdc++). C maths functions j0...
  // are not C standard but a GNU extension so they are not used
  // to avoid introducing incompatibilities.
  // Use libpgmath to get bessel function folding support.
  // TODO:  Add Bessel functions when possible.
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
template <typename HostT>
struct HostRuntimeLibrary<std::complex<HostT>, LibraryVersion::Libm> {
  using F = FuncPointer<std::complex<HostT>, const std::complex<HostT> &>;
  using F2 = FuncPointer<std::complex<HostT>, const std::complex<HostT> &,
      const std::complex<HostT> &>;
  using F2A = FuncPointer<std::complex<HostT>, const HostT &,
      const std::complex<HostT> &>;
  using F2B = FuncPointer<std::complex<HostT>, const std::complex<HostT> &,
      const HostT &>;
  static constexpr HostRuntimeFunction table[]{
      FolderFactory<F, F{std::acos}>::Create("acos"),
      FolderFactory<F, F{std::acosh}>::Create("acosh"),
      FolderFactory<F, F{std::asin}>::Create("asin"),
      FolderFactory<F, F{std::asinh}>::Create("asinh"),
      FolderFactory<F, F{std::atan}>::Create("atan"),
      FolderFactory<F, F{std::atanh}>::Create("atanh"),
      FolderFactory<F, F{std::cos}>::Create("cos"),
      FolderFactory<F, F{std::cosh}>::Create("cosh"),
      FolderFactory<F, F{std::exp}>::Create("exp"),
      FolderFactory<F, F{std::log}>::Create("log"),
      FolderFactory<F2, F2{std::pow}>::Create("pow"),
      FolderFactory<F2A, F2A{std::pow}>::Create("pow"),
      FolderFactory<F2B, F2B{std::pow}>::Create("pow"),
      FolderFactory<F, F{std::sin}>::Create("sin"),
      FolderFactory<F, F{std::sinh}>::Create("sinh"),
      FolderFactory<F, F{std::sqrt}>::Create("sqrt"),
      FolderFactory<F, F{std::tan}>::Create("tan"),
      FolderFactory<F, F{std::tanh}>::Create("tanh"),
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
// Note regarding cmath:
//  - cmath does not have modulo and erfc_scaled equivalent
//  - C++17 defined standard Bessel math functions std::cyl_bessel_j
//    and std::cyl_neumann that can be used for Fortran j and y
//    bessel functions. However, they are not yet implemented in
//    clang libc++ (ok in GNU libstdc++). Instead, the Posix libm
//    extensions are used when available below.

#if _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600
/// Define libm extensions
/// Bessel functions are defined in POSIX.1-2001.

// Remove float bessel functions for AIX as they are not supported
#ifndef _AIX
template <> struct HostRuntimeLibrary<float, LibraryVersion::LibmExtensions> {
  using F = FuncPointer<float, float>;
  using FN = FuncPointer<float, int, float>;
  static constexpr HostRuntimeFunction table[]{
      FolderFactory<F, F{::j0f}>::Create("bessel_j0"),
      FolderFactory<F, F{::j1f}>::Create("bessel_j1"),
      FolderFactory<FN, FN{::jnf}>::Create("bessel_jn"),
      FolderFactory<F, F{::y0f}>::Create("bessel_y0"),
      FolderFactory<F, F{::y1f}>::Create("bessel_y1"),
      FolderFactory<FN, FN{::ynf}>::Create("bessel_yn"),
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
#endif

template <> struct HostRuntimeLibrary<double, LibraryVersion::LibmExtensions> {
  using F = FuncPointer<double, double>;
  using FN = FuncPointer<double, int, double>;
  static constexpr HostRuntimeFunction table[]{
      FolderFactory<F, F{::j0}>::Create("bessel_j0"),
      FolderFactory<F, F{::j1}>::Create("bessel_j1"),
      FolderFactory<FN, FN{::jn}>::Create("bessel_jn"),
      FolderFactory<F, F{::y0}>::Create("bessel_y0"),
      FolderFactory<F, F{::y1}>::Create("bessel_y1"),
      FolderFactory<FN, FN{::yn}>::Create("bessel_yn"),
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};

#if LDBL_MANT_DIG == 80 || LDBL_MANT_DIG == 113
template <>
struct HostRuntimeLibrary<long double, LibraryVersion::LibmExtensions> {
  using F = FuncPointer<long double, long double>;
  using FN = FuncPointer<long double, int, long double>;
  static constexpr HostRuntimeFunction table[]{
      FolderFactory<F, F{::j0l}>::Create("bessel_j0"),
      FolderFactory<F, F{::j1l}>::Create("bessel_j1"),
      FolderFactory<FN, FN{::jnl}>::Create("bessel_jn"),
      FolderFactory<F, F{::y0l}>::Create("bessel_y0"),
      FolderFactory<F, F{::y1l}>::Create("bessel_y1"),
      FolderFactory<FN, FN{::ynl}>::Create("bessel_yn"),
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
#endif // LDBL_MANT_DIG == 80 || LDBL_MANT_DIG == 113
#endif

/// Define pgmath description
#if LINK_WITH_LIBPGMATH
// Only use libpgmath for folding if it is available.
// First declare all libpgmaths functions
#define PGMATH_LINKING
#define PGMATH_DECLARE
#include "flang/Evaluate/pgmath.h.inc"

#define REAL_FOLDER(name, func) \
  FolderFactory<decltype(&func), &func>::Create(#name)
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathFast> {
  static constexpr HostRuntimeFunction table[]{
#define PGMATH_FAST
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathFast> {
  static constexpr HostRuntimeFunction table[]{
#define PGMATH_FAST
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathRelaxed> {
  static constexpr HostRuntimeFunction table[]{
#define PGMATH_RELAXED
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathRelaxed> {
  static constexpr HostRuntimeFunction table[]{
#define PGMATH_RELAXED
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathPrecise> {
  static constexpr HostRuntimeFunction table[]{
#define PGMATH_PRECISE
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathPrecise> {
  static constexpr HostRuntimeFunction table[]{
#define PGMATH_PRECISE
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
  };
  static constexpr HostRuntimeMap map{table};
  static_assert(map.Verify(), "map must be sorted");
};

// TODO: double _Complex/float _Complex have been removed from llvm flang
// pgmath.h.inc because they caused warnings, they need to be added back
// so that the complex pgmath versions can be used when requested.

#endif /* LINK_WITH_LIBPGMATH */

// Helper to check if a HostRuntimeLibrary specialization exists
template <typename T, typename = void> struct IsAvailable : std::false_type {};
template <typename T>
struct IsAvailable<T, decltype((void)T::table, void())> : std::true_type {};
// Define helpers to find host runtime library map according to desired version
// and type.
template <typename HostT, LibraryVersion version>
static const HostRuntimeMap *GetHostRuntimeMapHelper(
    [[maybe_unused]] DynamicType resultType) {
  // A library must only be instantiated if LibraryVersion is
  // available on the host and if HostT maps to a Fortran type.
  // For instance, whenever long double and double are both 64-bits, double
  // is mapped to Fortran 64bits real type, and long double will be left
  // unmapped.
  if constexpr (host::FortranTypeExists<HostT>()) {
    using Lib = HostRuntimeLibrary<HostT, version>;
    if constexpr (IsAvailable<Lib>::value) {
      if (host::FortranType<HostT>{}.GetType() == resultType) {
        return &Lib::map;
      }
    }
  }
  return nullptr;
}
template <LibraryVersion version>
static const HostRuntimeMap *GetHostRuntimeMapVersion(DynamicType resultType) {
  if (resultType.category() == TypeCategory::Real) {
    if (const auto *map{GetHostRuntimeMapHelper<float, version>(resultType)}) {
      return map;
    }
    if (const auto *map{GetHostRuntimeMapHelper<double, version>(resultType)}) {
      return map;
    }
    if (const auto *map{
            GetHostRuntimeMapHelper<long double, version>(resultType)}) {
      return map;
    }
  }
  if (resultType.category() == TypeCategory::Complex) {
    if (const auto *map{GetHostRuntimeMapHelper<std::complex<float>, version>(
            resultType)}) {
      return map;
    }
    if (const auto *map{GetHostRuntimeMapHelper<std::complex<double>, version>(
            resultType)}) {
      return map;
    }
    if (const auto *map{
            GetHostRuntimeMapHelper<std::complex<long double>, version>(
                resultType)}) {
      return map;
    }
  }
  return nullptr;
}
static const HostRuntimeMap *GetHostRuntimeMap(
    LibraryVersion version, DynamicType resultType) {
  switch (version) {
  case LibraryVersion::Libm:
    return GetHostRuntimeMapVersion<LibraryVersion::Libm>(resultType);
  case LibraryVersion::LibmExtensions:
    return GetHostRuntimeMapVersion<LibraryVersion::LibmExtensions>(resultType);
  case LibraryVersion::PgmathPrecise:
    return GetHostRuntimeMapVersion<LibraryVersion::PgmathPrecise>(resultType);
  case LibraryVersion::PgmathRelaxed:
    return GetHostRuntimeMapVersion<LibraryVersion::PgmathRelaxed>(resultType);
  case LibraryVersion::PgmathFast:
    return GetHostRuntimeMapVersion<LibraryVersion::PgmathFast>(resultType);
  }
  return nullptr;
}

static const HostRuntimeFunction *SearchInHostRuntimeMap(
    const HostRuntimeMap &map, const std::string &name, DynamicType resultType,
    const std::vector<DynamicType> &argTypes) {
  auto sameNameRange{map.equal_range(name)};
  for (const auto *iter{sameNameRange.first}; iter != sameNameRange.second;
       ++iter) {
    if (iter->resultType == resultType && iter->argumentTypes == argTypes) {
      return &*iter;
    }
  }
  return nullptr;
}

// Search host runtime libraries for an exact type match.
static const HostRuntimeFunction *SearchHostRuntime(const std::string &name,
    DynamicType resultType, const std::vector<DynamicType> &argTypes) {
  // TODO: When command line options regarding targeted numerical library is
  // available, this needs to be revisited to take it into account. So far,
  // default to libpgmath if F18 is built with it.
#if LINK_WITH_LIBPGMATH
  if (const auto *map{
          GetHostRuntimeMap(LibraryVersion::PgmathPrecise, resultType)}) {
    if (const auto *hostFunction{
            SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
      return hostFunction;
    }
  }
  // Default to libm if functions or types are not available in pgmath.
#endif
  if (const auto *map{GetHostRuntimeMap(LibraryVersion::Libm, resultType)}) {
    if (const auto *hostFunction{
            SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
      return hostFunction;
    }
  }
  if (const auto *map{
          GetHostRuntimeMap(LibraryVersion::LibmExtensions, resultType)}) {
    if (const auto *hostFunction{
            SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
      return hostFunction;
    }
  }
  return nullptr;
}

// Return a DynamicType that can hold all values of a given type.
// This is used to allow 16bit float to be folded with 32bits and
// x87 float to be folded with IEEE 128bits.
static DynamicType BiggerType(DynamicType type) {
  if (type.category() == TypeCategory::Real ||
      type.category() == TypeCategory::Complex) {
    // 16 bits floats to IEEE 32 bits float
    if (type.kind() == common::RealKindForPrecision(11) ||
        type.kind() == common::RealKindForPrecision(8)) {
      return {type.category(), common::RealKindForPrecision(24)};
    }
    // x87 float to IEEE 128 bits float
    if (type.kind() == common::RealKindForPrecision(64)) {
      return {type.category(), common::RealKindForPrecision(113)};
    }
  }
  return type;
}

std::optional<HostRuntimeWrapper> GetHostRuntimeWrapper(const std::string &name,
    DynamicType resultType, const std::vector<DynamicType> &argTypes) {
  if (const auto *hostFunction{SearchHostRuntime(name, resultType, argTypes)}) {
    return hostFunction->folder;
  }
  // If no exact match, search with "bigger" types and insert type
  // conversions around the folder.
  std::vector<evaluate::DynamicType> biggerArgTypes;
  evaluate::DynamicType biggerResultType{BiggerType(resultType)};
  for (auto type : argTypes) {
    biggerArgTypes.emplace_back(BiggerType(type));
  }
  if (const auto *hostFunction{
          SearchHostRuntime(name, biggerResultType, biggerArgTypes)}) {
    return [hostFunction, resultType](
               FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
      auto nArgs{args.size()};
      for (size_t i{0}; i < nArgs; ++i) {
        args[i] = Fold(context,
            ConvertToType(hostFunction->argumentTypes[i], std::move(args[i]))
                .value());
      }
      return Fold(context,
          ConvertToType(
              resultType, hostFunction->folder(context, std::move(args)))
              .value());
    };
  }
  return std::nullopt;
}
} // namespace Fortran::evaluate