1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
|
//===-- lib/Evaluate/shape.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/shape.h"
#include "flang/Common/idioms.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/symbol.h"
#include <functional>
using namespace std::placeholders; // _1, _2, &c. for std::bind()
namespace Fortran::evaluate {
bool IsImpliedShape(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()};
return details && symbol.attrs().test(semantics::Attr::PARAMETER) &&
details->shape().CanBeImpliedShape();
}
bool IsExplicitShape(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
const auto &shape{details->shape()};
return shape.Rank() == 0 ||
shape.IsExplicitShape(); // true when scalar, too
} else {
return symbol
.has<semantics::AssocEntityDetails>(); // exprs have explicit shape
}
}
Shape GetShapeHelper::ConstantShape(const Constant<ExtentType> &arrayConstant) {
CHECK(arrayConstant.Rank() == 1);
Shape result;
std::size_t dimensions{arrayConstant.size()};
for (std::size_t j{0}; j < dimensions; ++j) {
Scalar<ExtentType> extent{arrayConstant.values().at(j)};
result.emplace_back(MaybeExtentExpr{ExtentExpr{std::move(extent)}});
}
return result;
}
auto GetShapeHelper::AsShapeResult(ExtentExpr &&arrayExpr) const -> Result {
if (context_) {
arrayExpr = Fold(*context_, std::move(arrayExpr));
}
if (const auto *constArray{UnwrapConstantValue<ExtentType>(arrayExpr)}) {
return ConstantShape(*constArray);
}
if (auto *constructor{UnwrapExpr<ArrayConstructor<ExtentType>>(arrayExpr)}) {
Shape result;
for (auto &value : *constructor) {
auto *expr{std::get_if<ExtentExpr>(&value.u)};
if (expr && expr->Rank() == 0) {
result.emplace_back(std::move(*expr));
} else {
return std::nullopt;
}
}
return result;
} else {
return std::nullopt;
}
}
Shape GetShapeHelper::CreateShape(int rank, NamedEntity &base) {
Shape shape;
for (int dimension{0}; dimension < rank; ++dimension) {
shape.emplace_back(GetExtent(base, dimension));
}
return shape;
}
std::optional<ExtentExpr> AsExtentArrayExpr(const Shape &shape) {
ArrayConstructorValues<ExtentType> values;
for (const auto &dim : shape) {
if (dim) {
values.Push(common::Clone(*dim));
} else {
return std::nullopt;
}
}
return ExtentExpr{ArrayConstructor<ExtentType>{std::move(values)}};
}
std::optional<Constant<ExtentType>> AsConstantShape(
FoldingContext &context, const Shape &shape) {
if (auto shapeArray{AsExtentArrayExpr(shape)}) {
auto folded{Fold(context, std::move(*shapeArray))};
if (auto *p{UnwrapConstantValue<ExtentType>(folded)}) {
return std::move(*p);
}
}
return std::nullopt;
}
Constant<SubscriptInteger> AsConstantShape(const ConstantSubscripts &shape) {
using IntType = Scalar<SubscriptInteger>;
std::vector<IntType> result;
for (auto dim : shape) {
result.emplace_back(dim);
}
return {std::move(result), ConstantSubscripts{GetRank(shape)}};
}
ConstantSubscripts AsConstantExtents(const Constant<ExtentType> &shape) {
ConstantSubscripts result;
for (const auto &extent : shape.values()) {
result.push_back(extent.ToInt64());
}
return result;
}
std::optional<ConstantSubscripts> AsConstantExtents(
FoldingContext &context, const Shape &shape) {
if (auto shapeConstant{AsConstantShape(context, shape)}) {
return AsConstantExtents(*shapeConstant);
} else {
return std::nullopt;
}
}
Shape AsShape(const ConstantSubscripts &shape) {
Shape result;
for (const auto &extent : shape) {
result.emplace_back(ExtentExpr{extent});
}
return result;
}
std::optional<Shape> AsShape(const std::optional<ConstantSubscripts> &shape) {
if (shape) {
return AsShape(*shape);
} else {
return std::nullopt;
}
}
Shape Fold(FoldingContext &context, Shape &&shape) {
for (auto &dim : shape) {
dim = Fold(context, std::move(dim));
}
return std::move(shape);
}
std::optional<Shape> Fold(
FoldingContext &context, std::optional<Shape> &&shape) {
if (shape) {
return Fold(context, std::move(*shape));
} else {
return std::nullopt;
}
}
static ExtentExpr ComputeTripCount(
ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) {
ExtentExpr strideCopy{common::Clone(stride)};
ExtentExpr span{
(std::move(upper) - std::move(lower) + std::move(strideCopy)) /
std::move(stride)};
return ExtentExpr{
Extremum<ExtentType>{Ordering::Greater, std::move(span), ExtentExpr{0}}};
}
ExtentExpr CountTrips(
ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) {
return ComputeTripCount(
std::move(lower), std::move(upper), std::move(stride));
}
ExtentExpr CountTrips(const ExtentExpr &lower, const ExtentExpr &upper,
const ExtentExpr &stride) {
return ComputeTripCount(
common::Clone(lower), common::Clone(upper), common::Clone(stride));
}
MaybeExtentExpr CountTrips(MaybeExtentExpr &&lower, MaybeExtentExpr &&upper,
MaybeExtentExpr &&stride) {
std::function<ExtentExpr(ExtentExpr &&, ExtentExpr &&, ExtentExpr &&)> bound{
std::bind(ComputeTripCount, _1, _2, _3)};
return common::MapOptional(
std::move(bound), std::move(lower), std::move(upper), std::move(stride));
}
MaybeExtentExpr GetSize(Shape &&shape) {
ExtentExpr extent{1};
for (auto &&dim : std::move(shape)) {
if (dim) {
extent = std::move(extent) * std::move(*dim);
} else {
return std::nullopt;
}
}
return extent;
}
ConstantSubscript GetSize(const ConstantSubscripts &shape) {
ConstantSubscript size{1};
for (auto dim : shape) {
CHECK(dim >= 0);
size *= dim;
}
return size;
}
bool ContainsAnyImpliedDoIndex(const ExtentExpr &expr) {
struct MyVisitor : public AnyTraverse<MyVisitor> {
using Base = AnyTraverse<MyVisitor>;
MyVisitor() : Base{*this} {}
using Base::operator();
bool operator()(const ImpliedDoIndex &) { return true; }
};
return MyVisitor{}(expr);
}
// Determines lower bound on a dimension. This can be other than 1 only
// for a reference to a whole array object or component. (See LBOUND, 16.9.109).
// ASSOCIATE construct entities may require traversal of their referents.
template <typename RESULT, bool LBOUND_SEMANTICS>
class GetLowerBoundHelper
: public Traverse<GetLowerBoundHelper<RESULT, LBOUND_SEMANTICS>, RESULT> {
public:
using Result = RESULT;
using Base = Traverse<GetLowerBoundHelper, RESULT>;
using Base::operator();
explicit GetLowerBoundHelper(int d, FoldingContext *context)
: Base{*this}, dimension_{d}, context_{context} {}
static Result Default() { return Result{1}; }
static Result Combine(Result &&, Result &&) {
// Operator results and array references always have lower bounds == 1
return Result{1};
}
Result GetLowerBound(const Symbol &symbol0, NamedEntity &&base) const {
const Symbol &symbol{symbol0.GetUltimate()};
if (const auto *details{
symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
int rank{details->shape().Rank()};
if (dimension_ < rank) {
const semantics::ShapeSpec &shapeSpec{details->shape()[dimension_]};
if (shapeSpec.lbound().isExplicit()) {
if (const auto &lbound{shapeSpec.lbound().GetExplicit()}) {
if constexpr (LBOUND_SEMANTICS) {
bool ok{false};
auto lbValue{ToInt64(*lbound)};
if (dimension_ == rank - 1 && details->IsAssumedSize()) {
// last dimension of assumed-size dummy array: don't worry
// about handling an empty dimension
ok = IsScopeInvariantExpr(*lbound);
} else if (lbValue.value_or(0) == 1) {
// Lower bound is 1, regardless of extent
ok = true;
} else if (const auto &ubound{shapeSpec.ubound().GetExplicit()}) {
// If we can't prove that the dimension is nonempty,
// we must be conservative.
// TODO: simple symbolic math in expression rewriting to
// cope with cases like A(J:J)
if (context_) {
auto extent{ToInt64(Fold(*context_,
ExtentExpr{*ubound} - ExtentExpr{*lbound} +
ExtentExpr{1}))};
if (extent) {
if (extent <= 0) {
return Result{1};
}
ok = true;
} else {
ok = false;
}
} else {
auto ubValue{ToInt64(*ubound)};
if (lbValue && ubValue) {
if (*lbValue > *ubValue) {
return Result{1};
}
ok = true;
} else {
ok = false;
}
}
}
return ok ? *lbound : Result{};
} else {
return *lbound;
}
} else {
return Result{1};
}
}
if (IsDescriptor(symbol)) {
return ExtentExpr{DescriptorInquiry{std::move(base),
DescriptorInquiry::Field::LowerBound, dimension_}};
}
}
} else if (const auto *assoc{
symbol.detailsIf<semantics::AssocEntityDetails>()}) {
if (assoc->rank()) { // SELECT RANK case
const Symbol &resolved{ResolveAssociations(symbol)};
if (IsDescriptor(resolved) && dimension_ < *assoc->rank()) {
return ExtentExpr{DescriptorInquiry{std::move(base),
DescriptorInquiry::Field::LowerBound, dimension_}};
}
} else {
auto exprLowerBound{((*this)(assoc->expr()))};
if (IsActuallyConstant(exprLowerBound)) {
return std::move(exprLowerBound);
} else {
// If the lower bound of the associated entity is not resolved to
// constant expression at the time of the association, it is unsafe
// to re-evaluate it later in the associate construct. Statements
// in-between may have modified its operands value.
return ExtentExpr{DescriptorInquiry{std::move(base),
DescriptorInquiry::Field::LowerBound, dimension_}};
}
}
}
if constexpr (LBOUND_SEMANTICS) {
return Result{};
} else {
return Result{1};
}
}
Result operator()(const Symbol &symbol0) const {
return GetLowerBound(symbol0, NamedEntity{symbol0});
}
Result operator()(const Component &component) const {
if (component.base().Rank() == 0) {
return GetLowerBound(
component.GetLastSymbol(), NamedEntity{common::Clone(component)});
}
return Result{1};
}
private:
int dimension_;
FoldingContext *context_{nullptr};
};
ExtentExpr GetRawLowerBound(const NamedEntity &base, int dimension) {
return GetLowerBoundHelper<ExtentExpr, false>{dimension, nullptr}(base);
}
ExtentExpr GetRawLowerBound(
FoldingContext &context, const NamedEntity &base, int dimension) {
return Fold(context,
GetLowerBoundHelper<ExtentExpr, false>{dimension, &context}(base));
}
MaybeExtentExpr GetLBOUND(const NamedEntity &base, int dimension) {
return GetLowerBoundHelper<MaybeExtentExpr, true>{dimension, nullptr}(base);
}
MaybeExtentExpr GetLBOUND(
FoldingContext &context, const NamedEntity &base, int dimension) {
return Fold(context,
GetLowerBoundHelper<MaybeExtentExpr, true>{dimension, &context}(base));
}
Shape GetRawLowerBounds(const NamedEntity &base) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetRawLowerBound(base, dim));
}
return result;
}
Shape GetRawLowerBounds(FoldingContext &context, const NamedEntity &base) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetRawLowerBound(context, base, dim));
}
return result;
}
Shape GetLBOUNDs(const NamedEntity &base) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetLBOUND(base, dim));
}
return result;
}
Shape GetLBOUNDs(FoldingContext &context, const NamedEntity &base) {
Shape result;
int rank{base.Rank()};
for (int dim{0}; dim < rank; ++dim) {
result.emplace_back(GetLBOUND(context, base, dim));
}
return result;
}
// If the upper and lower bounds are constant, return a constant expression for
// the extent. In particular, if the upper bound is less than the lower bound,
// return zero.
static MaybeExtentExpr GetNonNegativeExtent(
const semantics::ShapeSpec &shapeSpec) {
const auto &ubound{shapeSpec.ubound().GetExplicit()};
const auto &lbound{shapeSpec.lbound().GetExplicit()};
std::optional<ConstantSubscript> uval{ToInt64(ubound)};
std::optional<ConstantSubscript> lval{ToInt64(lbound)};
if (uval && lval) {
if (*uval < *lval) {
return ExtentExpr{0};
} else {
return ExtentExpr{*uval - *lval + 1};
}
} else if (lbound && ubound && IsScopeInvariantExpr(*lbound) &&
IsScopeInvariantExpr(*ubound)) {
// Apply effective IDIM (MAX calculation with 0) so thet the
// result is never negative
if (lval.value_or(0) == 1) {
return ExtentExpr{Extremum<SubscriptInteger>{
Ordering::Greater, ExtentExpr{0}, common::Clone(*ubound)}};
} else {
return ExtentExpr{
Extremum<SubscriptInteger>{Ordering::Greater, ExtentExpr{0},
common::Clone(*ubound) - common::Clone(*lbound) + ExtentExpr{1}}};
}
} else {
return std::nullopt;
}
}
MaybeExtentExpr GetAssociatedExtent(const NamedEntity &base,
const semantics::AssocEntityDetails &assoc, int dimension) {
if (auto shape{GetShape(assoc.expr())}) {
if (dimension < static_cast<int>(shape->size())) {
auto &extent{shape->at(dimension)};
if (extent && IsActuallyConstant(*extent)) {
return std::move(extent);
} else {
// Otherwise, evaluating the associated expression extent expression
// after the associate statement is unsafe given statements inside the
// associate may have modified the associated expression operands
// values.
return ExtentExpr{DescriptorInquiry{
NamedEntity{base}, DescriptorInquiry::Field::Extent, dimension}};
}
}
}
return std::nullopt;
}
MaybeExtentExpr GetExtent(const NamedEntity &base, int dimension) {
CHECK(dimension >= 0);
const Symbol &last{base.GetLastSymbol()};
const Symbol &symbol{ResolveAssociationsExceptSelectRank(last)};
if (const auto *assoc{last.detailsIf<semantics::AssocEntityDetails>()}) {
if (assoc->rank()) { // SELECT RANK case
if (semantics::IsDescriptor(symbol) && dimension < *assoc->rank()) {
return ExtentExpr{DescriptorInquiry{
NamedEntity{base}, DescriptorInquiry::Field::Extent, dimension}};
}
} else {
return GetAssociatedExtent(base, *assoc, dimension);
}
}
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
if (IsImpliedShape(symbol) && details->init()) {
if (auto shape{GetShape(symbol)}) {
if (dimension < static_cast<int>(shape->size())) {
return std::move(shape->at(dimension));
}
}
} else {
int j{0};
for (const auto &shapeSpec : details->shape()) {
if (j++ == dimension) {
if (auto extent{GetNonNegativeExtent(shapeSpec)}) {
return extent;
} else if (details->IsAssumedSize() && j == symbol.Rank()) {
return std::nullopt;
} else if (semantics::IsDescriptor(symbol)) {
return ExtentExpr{DescriptorInquiry{NamedEntity{base},
DescriptorInquiry::Field::Extent, dimension}};
} else {
break;
}
}
}
}
}
return std::nullopt;
}
MaybeExtentExpr GetExtent(
FoldingContext &context, const NamedEntity &base, int dimension) {
return Fold(context, GetExtent(base, dimension));
}
MaybeExtentExpr GetExtent(
const Subscript &subscript, const NamedEntity &base, int dimension) {
return common::visit(
common::visitors{
[&](const Triplet &triplet) -> MaybeExtentExpr {
MaybeExtentExpr upper{triplet.upper()};
if (!upper) {
upper = GetUBOUND(base, dimension);
}
MaybeExtentExpr lower{triplet.lower()};
if (!lower) {
lower = GetLBOUND(base, dimension);
}
return CountTrips(std::move(lower), std::move(upper),
MaybeExtentExpr{triplet.stride()});
},
[&](const IndirectSubscriptIntegerExpr &subs) -> MaybeExtentExpr {
if (auto shape{GetShape(subs.value())}) {
if (GetRank(*shape) > 0) {
CHECK(GetRank(*shape) == 1); // vector-valued subscript
return std::move(shape->at(0));
}
}
return std::nullopt;
},
},
subscript.u);
}
MaybeExtentExpr GetExtent(FoldingContext &context, const Subscript &subscript,
const NamedEntity &base, int dimension) {
return Fold(context, GetExtent(subscript, base, dimension));
}
MaybeExtentExpr ComputeUpperBound(
ExtentExpr &&lower, MaybeExtentExpr &&extent) {
if (extent) {
if (ToInt64(lower).value_or(0) == 1) {
return std::move(*extent);
} else {
return std::move(*extent) + std::move(lower) - ExtentExpr{1};
}
} else {
return std::nullopt;
}
}
MaybeExtentExpr ComputeUpperBound(
FoldingContext &context, ExtentExpr &&lower, MaybeExtentExpr &&extent) {
return Fold(context, ComputeUpperBound(std::move(lower), std::move(extent)));
}
MaybeExtentExpr GetRawUpperBound(const NamedEntity &base, int dimension) {
const Symbol &symbol{
ResolveAssociationsExceptSelectRank(base.GetLastSymbol())};
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
int rank{details->shape().Rank()};
if (dimension < rank) {
const auto &bound{details->shape()[dimension].ubound().GetExplicit()};
if (bound && IsScopeInvariantExpr(*bound)) {
return *bound;
} else if (details->IsAssumedSize() && dimension + 1 == symbol.Rank()) {
return std::nullopt;
} else {
return ComputeUpperBound(
GetRawLowerBound(base, dimension), GetExtent(base, dimension));
}
}
} else if (const auto *assoc{
symbol.detailsIf<semantics::AssocEntityDetails>()}) {
if (auto extent{GetAssociatedExtent(base, *assoc, dimension)}) {
return ComputeUpperBound(
GetRawLowerBound(base, dimension), std::move(extent));
}
}
return std::nullopt;
}
MaybeExtentExpr GetRawUpperBound(
FoldingContext &context, const NamedEntity &base, int dimension) {
return Fold(context, GetRawUpperBound(base, dimension));
}
static MaybeExtentExpr GetExplicitUBOUND(
FoldingContext *context, const semantics::ShapeSpec &shapeSpec) {
const auto &ubound{shapeSpec.ubound().GetExplicit()};
if (ubound && IsScopeInvariantExpr(*ubound)) {
if (auto extent{GetNonNegativeExtent(shapeSpec)}) {
if (auto cstExtent{ToInt64(
context ? Fold(*context, std::move(*extent)) : *extent)}) {
if (cstExtent > 0) {
return *ubound;
} else if (cstExtent == 0) {
return ExtentExpr{0};
}
}
}
}
return std::nullopt;
}
static MaybeExtentExpr GetUBOUND(
FoldingContext *context, const NamedEntity &base, int dimension) {
const Symbol &symbol{
ResolveAssociationsExceptSelectRank(base.GetLastSymbol())};
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
int rank{details->shape().Rank()};
if (dimension < rank) {
const semantics::ShapeSpec &shapeSpec{details->shape()[dimension]};
if (auto ubound{GetExplicitUBOUND(context, shapeSpec)}) {
return *ubound;
} else if (details->IsAssumedSize() && dimension + 1 == symbol.Rank()) {
return std::nullopt;
} else if (auto lb{GetLBOUND(base, dimension)}) {
return ComputeUpperBound(std::move(*lb), GetExtent(base, dimension));
}
}
} else if (const auto *assoc{
symbol.detailsIf<semantics::AssocEntityDetails>()}) {
if (auto extent{GetAssociatedExtent(base, *assoc, dimension)}) {
if (auto lb{GetLBOUND(base, dimension)}) {
return ComputeUpperBound(std::move(*lb), std::move(extent));
}
}
}
return std::nullopt;
}
MaybeExtentExpr GetUBOUND(const NamedEntity &base, int dimension) {
return GetUBOUND(nullptr, base, dimension);
}
MaybeExtentExpr GetUBOUND(
FoldingContext &context, const NamedEntity &base, int dimension) {
return Fold(context, GetUBOUND(&context, base, dimension));
}
static Shape GetUBOUNDs(FoldingContext *context, const NamedEntity &base) {
const Symbol &symbol{
ResolveAssociationsExceptSelectRank(base.GetLastSymbol())};
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
Shape result;
int dim{0};
for (const auto &shapeSpec : details->shape()) {
if (auto ubound{GetExplicitUBOUND(context, shapeSpec)}) {
result.emplace_back(*ubound);
} else if (details->IsAssumedSize() && dim + 1 == base.Rank()) {
result.emplace_back(std::nullopt); // UBOUND folding replaces with -1
} else if (auto lb{GetLBOUND(base, dim)}) {
result.emplace_back(
ComputeUpperBound(std::move(*lb), GetExtent(base, dim)));
} else {
result.emplace_back(); // unknown
}
++dim;
}
CHECK(GetRank(result) == symbol.Rank());
return result;
} else {
return std::move(GetShape(symbol).value());
}
}
Shape GetUBOUNDs(FoldingContext &context, const NamedEntity &base) {
return Fold(context, GetUBOUNDs(&context, base));
}
Shape GetUBOUNDs(const NamedEntity &base) { return GetUBOUNDs(nullptr, base); }
auto GetShapeHelper::operator()(const Symbol &symbol) const -> Result {
return common::visit(
common::visitors{
[&](const semantics::ObjectEntityDetails &object) {
if (IsImpliedShape(symbol) && object.init()) {
return (*this)(object.init());
} else if (IsAssumedRank(symbol)) {
return Result{};
} else {
int n{object.shape().Rank()};
NamedEntity base{symbol};
return Result{CreateShape(n, base)};
}
},
[](const semantics::EntityDetails &) {
return ScalarShape(); // no dimensions seen
},
[&](const semantics::ProcEntityDetails &proc) {
if (const Symbol * interface{proc.procInterface()}) {
return (*this)(*interface);
} else {
return ScalarShape();
}
},
[&](const semantics::AssocEntityDetails &assoc) {
NamedEntity base{symbol};
if (assoc.rank()) { // SELECT RANK case
int n{assoc.rank().value()};
return Result{CreateShape(n, base)};
} else {
auto exprShape{((*this)(assoc.expr()))};
if (exprShape) {
int rank{static_cast<int>(exprShape->size())};
for (int dimension{0}; dimension < rank; ++dimension) {
auto &extent{(*exprShape)[dimension]};
if (extent && !IsActuallyConstant(*extent)) {
extent = GetExtent(base, dimension);
}
}
}
return exprShape;
}
},
[&](const semantics::SubprogramDetails &subp) -> Result {
if (subp.isFunction()) {
auto resultShape{(*this)(subp.result())};
if (resultShape && !useResultSymbolShape_) {
// Ensure the shape is constant. Otherwise, it may be referring
// to symbols that belong to the subroutine scope and are
// meaningless on the caller side without the related call
// expression.
for (auto &extent : *resultShape) {
if (extent && !IsActuallyConstant(*extent)) {
extent.reset();
}
}
}
return resultShape;
} else {
return Result{};
}
},
[&](const semantics::ProcBindingDetails &binding) {
return (*this)(binding.symbol());
},
[](const semantics::TypeParamDetails &) { return ScalarShape(); },
[](const auto &) { return Result{}; },
},
symbol.GetUltimate().details());
}
auto GetShapeHelper::operator()(const Component &component) const -> Result {
const Symbol &symbol{component.GetLastSymbol()};
int rank{symbol.Rank()};
if (rank == 0) {
return (*this)(component.base());
} else if (symbol.has<semantics::ObjectEntityDetails>()) {
NamedEntity base{Component{component}};
return CreateShape(rank, base);
} else if (symbol.has<semantics::AssocEntityDetails>()) {
NamedEntity base{Component{component}};
return Result{CreateShape(rank, base)};
} else {
return (*this)(symbol);
}
}
auto GetShapeHelper::operator()(const ArrayRef &arrayRef) const -> Result {
Shape shape;
int dimension{0};
const NamedEntity &base{arrayRef.base()};
for (const Subscript &ss : arrayRef.subscript()) {
if (ss.Rank() > 0) {
shape.emplace_back(GetExtent(ss, base, dimension));
}
++dimension;
}
if (shape.empty()) {
if (const Component * component{base.UnwrapComponent()}) {
return (*this)(component->base());
}
}
return shape;
}
auto GetShapeHelper::operator()(const CoarrayRef &coarrayRef) const -> Result {
NamedEntity base{coarrayRef.GetBase()};
if (coarrayRef.subscript().empty()) {
return (*this)(base);
} else {
Shape shape;
int dimension{0};
for (const Subscript &ss : coarrayRef.subscript()) {
if (ss.Rank() > 0) {
shape.emplace_back(GetExtent(ss, base, dimension));
}
++dimension;
}
return shape;
}
}
auto GetShapeHelper::operator()(const Substring &substring) const -> Result {
return (*this)(substring.parent());
}
auto GetShapeHelper::operator()(const ProcedureRef &call) const -> Result {
if (call.Rank() == 0) {
return ScalarShape();
} else if (call.IsElemental()) {
// Use the shape of an actual array argument associated with a
// non-OPTIONAL dummy object argument.
if (context_) {
if (auto chars{characteristics::Procedure::FromActuals(
call.proc(), call.arguments(), *context_)}) {
std::size_t j{0};
for (const auto &arg : call.arguments()) {
if (arg && arg->Rank() > 0 && j < chars->dummyArguments.size() &&
!chars->dummyArguments[j].IsOptional()) {
return (*this)(*arg);
}
++j;
}
}
}
return ScalarShape();
} else if (const Symbol * symbol{call.proc().GetSymbol()}) {
return (*this)(*symbol);
} else if (const auto *intrinsic{call.proc().GetSpecificIntrinsic()}) {
if (intrinsic->name == "shape" || intrinsic->name == "lbound" ||
intrinsic->name == "ubound") {
// For LBOUND/UBOUND, these are the array-valued cases (no DIM=)
if (!call.arguments().empty() && call.arguments().front()) {
return Shape{
MaybeExtentExpr{ExtentExpr{call.arguments().front()->Rank()}}};
}
} else if (intrinsic->name == "all" || intrinsic->name == "any" ||
intrinsic->name == "count" || intrinsic->name == "iall" ||
intrinsic->name == "iany" || intrinsic->name == "iparity" ||
intrinsic->name == "maxval" || intrinsic->name == "minval" ||
intrinsic->name == "norm2" || intrinsic->name == "parity" ||
intrinsic->name == "product" || intrinsic->name == "sum") {
// Reduction with DIM=
if (call.arguments().size() >= 2) {
auto arrayShape{
(*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))};
const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))};
if (arrayShape && dimArg) {
if (auto dim{ToInt64(*dimArg)}) {
if (*dim >= 1 &&
static_cast<std::size_t>(*dim) <= arrayShape->size()) {
arrayShape->erase(arrayShape->begin() + (*dim - 1));
return std::move(*arrayShape);
}
}
}
}
} else if (intrinsic->name == "findloc" || intrinsic->name == "maxloc" ||
intrinsic->name == "minloc") {
std::size_t dimIndex{intrinsic->name == "findloc" ? 2u : 1u};
if (call.arguments().size() > dimIndex) {
if (auto arrayShape{
(*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}) {
auto rank{static_cast<int>(arrayShape->size())};
if (const auto *dimArg{
UnwrapExpr<Expr<SomeType>>(call.arguments()[dimIndex])}) {
auto dim{ToInt64(*dimArg)};
if (dim && *dim >= 1 && *dim <= rank) {
arrayShape->erase(arrayShape->begin() + (*dim - 1));
return std::move(*arrayShape);
}
} else {
// xxxLOC(no DIM=) result is vector(1:RANK(ARRAY=))
return Shape{ExtentExpr{rank}};
}
}
}
} else if (intrinsic->name == "cshift" || intrinsic->name == "eoshift") {
if (!call.arguments().empty()) {
return (*this)(call.arguments()[0]);
}
} else if (intrinsic->name == "matmul") {
if (call.arguments().size() == 2) {
if (auto ashape{(*this)(call.arguments()[0])}) {
if (auto bshape{(*this)(call.arguments()[1])}) {
if (ashape->size() == 1 && bshape->size() == 2) {
bshape->erase(bshape->begin());
return std::move(*bshape); // matmul(vector, matrix)
} else if (ashape->size() == 2 && bshape->size() == 1) {
ashape->pop_back();
return std::move(*ashape); // matmul(matrix, vector)
} else if (ashape->size() == 2 && bshape->size() == 2) {
(*ashape)[1] = std::move((*bshape)[1]);
return std::move(*ashape); // matmul(matrix, matrix)
}
}
}
}
} else if (intrinsic->name == "pack") {
if (call.arguments().size() >= 3 && call.arguments().at(2)) {
// SHAPE(PACK(,,VECTOR=v)) -> SHAPE(v)
return (*this)(call.arguments().at(2));
} else if (call.arguments().size() >= 2 && context_) {
if (auto maskShape{(*this)(call.arguments().at(1))}) {
if (maskShape->size() == 0) {
// Scalar MASK= -> [MERGE(SIZE(ARRAY=), 0, mask)]
if (auto arrayShape{(*this)(call.arguments().at(0))}) {
if (auto arraySize{GetSize(std::move(*arrayShape))}) {
ActualArguments toMerge{
ActualArgument{AsGenericExpr(std::move(*arraySize))},
ActualArgument{AsGenericExpr(ExtentExpr{0})},
common::Clone(call.arguments().at(1))};
auto specific{context_->intrinsics().Probe(
CallCharacteristics{"merge"}, toMerge, *context_)};
CHECK(specific);
return Shape{ExtentExpr{FunctionRef<ExtentType>{
ProcedureDesignator{std::move(specific->specificIntrinsic)},
std::move(specific->arguments)}}};
}
}
} else {
// Non-scalar MASK= -> [COUNT(mask)]
ActualArguments toCount{ActualArgument{common::Clone(
DEREF(call.arguments().at(1).value().UnwrapExpr()))}};
auto specific{context_->intrinsics().Probe(
CallCharacteristics{"count"}, toCount, *context_)};
CHECK(specific);
return Shape{ExtentExpr{FunctionRef<ExtentType>{
ProcedureDesignator{std::move(specific->specificIntrinsic)},
std::move(specific->arguments)}}};
}
}
}
} else if (intrinsic->name == "reshape") {
if (call.arguments().size() >= 2 && call.arguments().at(1)) {
// SHAPE(RESHAPE(array,shape)) -> shape
if (const auto *shapeExpr{
call.arguments().at(1).value().UnwrapExpr()}) {
auto shapeArg{std::get<Expr<SomeInteger>>(shapeExpr->u)};
if (auto result{AsShapeResult(
ConvertToType<ExtentType>(std::move(shapeArg)))}) {
return result;
}
}
}
} else if (intrinsic->name == "spread") {
// SHAPE(SPREAD(ARRAY,DIM,NCOPIES)) = SHAPE(ARRAY) with NCOPIES inserted
// at position DIM.
if (call.arguments().size() == 3) {
auto arrayShape{
(*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))};
const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))};
const auto *nCopies{
UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))};
if (arrayShape && dimArg && nCopies) {
if (auto dim{ToInt64(*dimArg)}) {
if (*dim >= 1 &&
static_cast<std::size_t>(*dim) <= arrayShape->size() + 1) {
arrayShape->emplace(arrayShape->begin() + *dim - 1,
ConvertToType<ExtentType>(common::Clone(*nCopies)));
return std::move(*arrayShape);
}
}
}
}
} else if (intrinsic->name == "transfer") {
if (call.arguments().size() == 3 && call.arguments().at(2)) {
// SIZE= is present; shape is vector [SIZE=]
if (const auto *size{
UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}) {
return Shape{
MaybeExtentExpr{ConvertToType<ExtentType>(common::Clone(*size))}};
}
} else if (context_) {
if (auto moldTypeAndShape{characteristics::TypeAndShape::Characterize(
call.arguments().at(1), *context_)}) {
if (GetRank(moldTypeAndShape->shape()) == 0) {
// SIZE= is absent and MOLD= is scalar: result is scalar
return ScalarShape();
} else {
// SIZE= is absent and MOLD= is array: result is vector whose
// length is determined by sizes of types. See 16.9.193p4 case(ii).
// Note that if sourceBytes is not known to be empty, we
// can fold only when moldElementBytes is known to not be zero;
// the most general case risks a division by zero otherwise.
if (auto sourceTypeAndShape{
characteristics::TypeAndShape::Characterize(
call.arguments().at(0), *context_)}) {
if (auto sourceBytes{
sourceTypeAndShape->MeasureSizeInBytes(*context_)}) {
*sourceBytes = Fold(*context_, std::move(*sourceBytes));
if (auto sourceBytesConst{ToInt64(*sourceBytes)}) {
if (*sourceBytesConst == 0) {
return Shape{ExtentExpr{0}};
}
}
if (auto moldElementBytes{
moldTypeAndShape->MeasureElementSizeInBytes(
*context_, true)}) {
*moldElementBytes =
Fold(*context_, std::move(*moldElementBytes));
auto moldElementBytesConst{ToInt64(*moldElementBytes)};
if (moldElementBytesConst && *moldElementBytesConst != 0) {
ExtentExpr extent{Fold(*context_,
(std::move(*sourceBytes) +
common::Clone(*moldElementBytes) - ExtentExpr{1}) /
common::Clone(*moldElementBytes))};
return Shape{MaybeExtentExpr{std::move(extent)}};
}
}
}
}
}
}
}
} else if (intrinsic->name == "transpose") {
if (call.arguments().size() >= 1) {
if (auto shape{(*this)(call.arguments().at(0))}) {
if (shape->size() == 2) {
std::swap((*shape)[0], (*shape)[1]);
return shape;
}
}
}
} else if (intrinsic->name == "unpack") {
if (call.arguments().size() >= 2) {
return (*this)(call.arguments()[1]); // MASK=
}
} else if (intrinsic->characteristics.value().attrs.test(characteristics::
Procedure::Attr::NullPointer)) { // NULL(MOLD=)
return (*this)(call.arguments());
} else {
// TODO: shapes of other non-elemental intrinsic results
}
}
// The rank is always known even if the extents are not.
return Shape(static_cast<std::size_t>(call.Rank()), MaybeExtentExpr{});
}
void GetShapeHelper::AccumulateExtent(
ExtentExpr &result, ExtentExpr &&n) const {
result = std::move(result) + std::move(n);
if (context_) {
// Fold during expression creation to avoid creating an expression so
// large we can't evalute it without overflowing the stack.
result = Fold(*context_, std::move(result));
}
}
// Check conformance of the passed shapes.
std::optional<bool> CheckConformance(parser::ContextualMessages &messages,
const Shape &left, const Shape &right, CheckConformanceFlags::Flags flags,
const char *leftIs, const char *rightIs) {
int n{GetRank(left)};
if (n == 0 && (flags & CheckConformanceFlags::LeftScalarExpandable)) {
return true;
}
int rn{GetRank(right)};
if (rn == 0 && (flags & CheckConformanceFlags::RightScalarExpandable)) {
return true;
}
if (n != rn) {
messages.Say("Rank of %1$s is %2$d, but %3$s has rank %4$d"_err_en_US,
leftIs, n, rightIs, rn);
return false;
}
for (int j{0}; j < n; ++j) {
if (auto leftDim{ToInt64(left[j])}) {
if (auto rightDim{ToInt64(right[j])}) {
if (*leftDim != *rightDim) {
messages.Say("Dimension %1$d of %2$s has extent %3$jd, "
"but %4$s has extent %5$jd"_err_en_US,
j + 1, leftIs, *leftDim, rightIs, *rightDim);
return false;
}
} else if (!(flags & CheckConformanceFlags::RightIsDeferredShape)) {
return std::nullopt;
}
} else if (!(flags & CheckConformanceFlags::LeftIsDeferredShape)) {
return std::nullopt;
}
}
return true;
}
bool IncrementSubscripts(
ConstantSubscripts &indices, const ConstantSubscripts &extents) {
std::size_t rank(indices.size());
CHECK(rank <= extents.size());
for (std::size_t j{0}; j < rank; ++j) {
if (extents[j] < 1) {
return false;
}
}
for (std::size_t j{0}; j < rank; ++j) {
if (indices[j]++ < extents[j]) {
return true;
}
indices[j] = 1;
}
return false;
}
} // namespace Fortran::evaluate
|