1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
//===-- lib/Semantics/target.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/target.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/common.h"
#include "flang/Evaluate/type.h"
namespace Fortran::evaluate {
Rounding TargetCharacteristics::defaultRounding;
TargetCharacteristics::TargetCharacteristics() {
auto enableCategoryKinds{[this](TypeCategory category) {
for (int kind{0}; kind < maxKind; ++kind) {
if (CanSupportType(category, kind)) {
auto byteSize{static_cast<std::size_t>(kind)};
if (category == TypeCategory::Real ||
category == TypeCategory::Complex) {
if (kind == 3) {
// non-IEEE 16-bit format (truncated 32-bit)
byteSize = 2;
} else if (kind == 10) {
// x87 floating-point
// Follow gcc precedent for "long double"
byteSize = 16;
}
}
std::size_t align{byteSize};
if (category == TypeCategory::Complex) {
byteSize = 2 * byteSize;
}
EnableType(category, kind, byteSize, align);
}
}
}};
enableCategoryKinds(TypeCategory::Integer);
enableCategoryKinds(TypeCategory::Real);
enableCategoryKinds(TypeCategory::Complex);
enableCategoryKinds(TypeCategory::Character);
enableCategoryKinds(TypeCategory::Logical);
isBigEndian_ = !isHostLittleEndian;
areSubnormalsFlushedToZero_ = false;
}
bool TargetCharacteristics::CanSupportType(
TypeCategory category, std::int64_t kind) {
return IsValidKindOfIntrinsicType(category, kind);
}
bool TargetCharacteristics::EnableType(common::TypeCategory category,
std::int64_t kind, std::size_t byteSize, std::size_t align) {
if (CanSupportType(category, kind)) {
byteSize_[static_cast<int>(category)][kind] = byteSize;
align_[static_cast<int>(category)][kind] = align;
maxByteSize_ = std::max(maxByteSize_, byteSize);
maxAlignment_ = std::max(maxAlignment_, align);
return true;
} else {
return false;
}
}
void TargetCharacteristics::DisableType(
common::TypeCategory category, std::int64_t kind) {
if (kind >= 0 && kind < maxKind) {
align_[static_cast<int>(category)][kind] = 0;
}
}
std::size_t TargetCharacteristics::GetByteSize(
common::TypeCategory category, std::int64_t kind) const {
if (kind >= 0 && kind < maxKind) {
return byteSize_[static_cast<int>(category)][kind];
} else {
return 0;
}
}
std::size_t TargetCharacteristics::GetAlignment(
common::TypeCategory category, std::int64_t kind) const {
if (kind >= 0 && kind < maxKind) {
return align_[static_cast<int>(category)][kind];
} else {
return 0;
}
}
bool TargetCharacteristics::IsTypeEnabled(
common::TypeCategory category, std::int64_t kind) const {
return GetAlignment(category, kind) > 0;
}
void TargetCharacteristics::set_isBigEndian(bool isBig) {
isBigEndian_ = isBig;
}
void TargetCharacteristics::set_isPPC(bool isPowerPC) { isPPC_ = isPowerPC; }
void TargetCharacteristics::set_areSubnormalsFlushedToZero(bool yes) {
areSubnormalsFlushedToZero_ = yes;
}
void TargetCharacteristics::set_roundingMode(Rounding rounding) {
roundingMode_ = rounding;
}
// SELECTED_INT_KIND() -- F'2018 16.9.169
class SelectedIntKindVisitor {
public:
SelectedIntKindVisitor(
const TargetCharacteristics &targetCharacteristics, std::int64_t p)
: targetCharacteristics_{targetCharacteristics}, precision_{p} {}
using Result = std::optional<int>;
using Types = IntegerTypes;
template <typename T> Result Test() const {
if (Scalar<T>::RANGE >= precision_ &&
targetCharacteristics_.IsTypeEnabled(T::category, T::kind)) {
return T::kind;
} else {
return std::nullopt;
}
}
private:
const TargetCharacteristics &targetCharacteristics_;
std::int64_t precision_;
};
int TargetCharacteristics::SelectedIntKind(std::int64_t precision) const {
if (auto kind{
common::SearchTypes(SelectedIntKindVisitor{*this, precision})}) {
return *kind;
} else {
return -1;
}
}
// SELECTED_REAL_KIND() -- F'2018 16.9.170
class SelectedRealKindVisitor {
public:
SelectedRealKindVisitor(const TargetCharacteristics &targetCharacteristics,
std::int64_t p, std::int64_t r)
: targetCharacteristics_{targetCharacteristics}, precision_{p}, range_{
r} {}
using Result = std::optional<int>;
using Types = RealTypes;
template <typename T> Result Test() const {
if (Scalar<T>::PRECISION >= precision_ && Scalar<T>::RANGE >= range_ &&
targetCharacteristics_.IsTypeEnabled(T::category, T::kind)) {
return {T::kind};
} else {
return std::nullopt;
}
}
private:
const TargetCharacteristics &targetCharacteristics_;
std::int64_t precision_, range_;
};
int TargetCharacteristics::SelectedRealKind(
std::int64_t precision, std::int64_t range, std::int64_t radix) const {
if (radix != 2) {
return -5;
}
if (auto kind{common::SearchTypes(
SelectedRealKindVisitor{*this, precision, range})}) {
return *kind;
}
// No kind has both sufficient precision and sufficient range.
// The negative return value encodes whether any kinds exist that
// could satisfy either constraint independently.
bool pOK{common::SearchTypes(SelectedRealKindVisitor{*this, precision, 0})};
bool rOK{common::SearchTypes(SelectedRealKindVisitor{*this, 0, range})};
if (pOK) {
if (rOK) {
return -4;
} else {
return -2;
}
} else {
if (rOK) {
return -1;
} else {
return -3;
}
}
}
} // namespace Fortran::evaluate
|