1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
//===- AbstractResult.cpp - Conversion of Abstract Function Result --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/TypeSwitch.h"
namespace fir {
#define GEN_PASS_DEF_ABSTRACTRESULTONFUNCOPT
#define GEN_PASS_DEF_ABSTRACTRESULTONGLOBALOPT
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-abstract-result-opt"
using namespace mlir;
namespace fir {
namespace {
static mlir::Type getResultArgumentType(mlir::Type resultType,
bool shouldBoxResult) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(resultType)
.Case<fir::SequenceType, fir::RecordType>(
[&](mlir::Type type) -> mlir::Type {
if (shouldBoxResult)
return fir::BoxType::get(type);
return fir::ReferenceType::get(type);
})
.Case<fir::BaseBoxType>([](mlir::Type type) -> mlir::Type {
return fir::ReferenceType::get(type);
})
.Default([](mlir::Type) -> mlir::Type {
llvm_unreachable("bad abstract result type");
});
}
static mlir::FunctionType getNewFunctionType(mlir::FunctionType funcTy,
bool shouldBoxResult) {
auto resultType = funcTy.getResult(0);
auto argTy = getResultArgumentType(resultType, shouldBoxResult);
llvm::SmallVector<mlir::Type> newInputTypes = {argTy};
newInputTypes.append(funcTy.getInputs().begin(), funcTy.getInputs().end());
return mlir::FunctionType::get(funcTy.getContext(), newInputTypes,
/*resultTypes=*/{});
}
/// This is for function result types that are of type C_PTR from ISO_C_BINDING.
/// Follow the ABI for interoperability with C.
static mlir::FunctionType getCPtrFunctionType(mlir::FunctionType funcTy) {
auto resultType = funcTy.getResult(0);
assert(fir::isa_builtin_cptr_type(resultType));
llvm::SmallVector<mlir::Type> outputTypes;
auto recTy = resultType.dyn_cast<fir::RecordType>();
outputTypes.emplace_back(recTy.getTypeList()[0].second);
return mlir::FunctionType::get(funcTy.getContext(), funcTy.getInputs(),
outputTypes);
}
static bool mustEmboxResult(mlir::Type resultType, bool shouldBoxResult) {
return resultType.isa<fir::SequenceType, fir::RecordType>() &&
shouldBoxResult;
}
template <typename Op>
class CallConversion : public mlir::OpRewritePattern<Op> {
public:
using mlir::OpRewritePattern<Op>::OpRewritePattern;
CallConversion(mlir::MLIRContext *context, bool shouldBoxResult)
: OpRewritePattern<Op>(context, 1), shouldBoxResult{shouldBoxResult} {}
mlir::LogicalResult
matchAndRewrite(Op op, mlir::PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto result = op->getResult(0);
if (!result.hasOneUse()) {
mlir::emitError(loc,
"calls with abstract result must have exactly one user");
return mlir::failure();
}
auto saveResult =
mlir::dyn_cast<fir::SaveResultOp>(result.use_begin().getUser());
if (!saveResult) {
mlir::emitError(
loc, "calls with abstract result must be used in fir.save_result");
return mlir::failure();
}
auto argType = getResultArgumentType(result.getType(), shouldBoxResult);
auto buffer = saveResult.getMemref();
mlir::Value arg = buffer;
if (mustEmboxResult(result.getType(), shouldBoxResult))
arg = rewriter.create<fir::EmboxOp>(
loc, argType, buffer, saveResult.getShape(), /*slice*/ mlir::Value{},
saveResult.getTypeparams());
llvm::SmallVector<mlir::Type> newResultTypes;
// TODO: This should be generalized for derived types, and it is
// architecture and OS dependent.
bool isResultBuiltinCPtr = fir::isa_builtin_cptr_type(result.getType());
Op newOp;
if (isResultBuiltinCPtr) {
auto recTy = result.getType().template dyn_cast<fir::RecordType>();
newResultTypes.emplace_back(recTy.getTypeList()[0].second);
}
// fir::CallOp specific handling.
if constexpr (std::is_same_v<Op, fir::CallOp>) {
if (op.getCallee()) {
llvm::SmallVector<mlir::Value> newOperands;
if (!isResultBuiltinCPtr)
newOperands.emplace_back(arg);
newOperands.append(op.getOperands().begin(), op.getOperands().end());
newOp = rewriter.create<fir::CallOp>(loc, *op.getCallee(),
newResultTypes, newOperands);
} else {
// Indirect calls.
llvm::SmallVector<mlir::Type> newInputTypes;
if (!isResultBuiltinCPtr)
newInputTypes.emplace_back(argType);
for (auto operand : op.getOperands().drop_front())
newInputTypes.push_back(operand.getType());
auto newFuncTy = mlir::FunctionType::get(op.getContext(), newInputTypes,
newResultTypes);
llvm::SmallVector<mlir::Value> newOperands;
newOperands.push_back(
rewriter.create<fir::ConvertOp>(loc, newFuncTy, op.getOperand(0)));
if (!isResultBuiltinCPtr)
newOperands.push_back(arg);
newOperands.append(op.getOperands().begin() + 1,
op.getOperands().end());
newOp = rewriter.create<fir::CallOp>(loc, mlir::SymbolRefAttr{},
newResultTypes, newOperands);
}
}
// fir::DispatchOp specific handling.
if constexpr (std::is_same_v<Op, fir::DispatchOp>) {
llvm::SmallVector<mlir::Value> newOperands;
if (!isResultBuiltinCPtr)
newOperands.emplace_back(arg);
unsigned passArgShift = newOperands.size();
newOperands.append(op.getOperands().begin() + 1, op.getOperands().end());
fir::DispatchOp newDispatchOp;
if (op.getPassArgPos())
newOp = rewriter.create<fir::DispatchOp>(
loc, newResultTypes, rewriter.getStringAttr(op.getMethod()),
op.getOperands()[0], newOperands,
rewriter.getI32IntegerAttr(*op.getPassArgPos() + passArgShift));
else
newOp = rewriter.create<fir::DispatchOp>(
loc, newResultTypes, rewriter.getStringAttr(op.getMethod()),
op.getOperands()[0], newOperands, nullptr);
}
if (isResultBuiltinCPtr) {
mlir::Value save = saveResult.getMemref();
auto module = op->template getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
mlir::Value saveAddr = fir::factory::genCPtrOrCFunptrAddr(
builder, loc, save, result.getType());
rewriter.create<fir::StoreOp>(loc, newOp->getResult(0), saveAddr);
}
op->dropAllReferences();
rewriter.eraseOp(op);
return mlir::success();
}
private:
bool shouldBoxResult;
};
class SaveResultOpConversion
: public mlir::OpRewritePattern<fir::SaveResultOp> {
public:
using OpRewritePattern::OpRewritePattern;
SaveResultOpConversion(mlir::MLIRContext *context)
: OpRewritePattern(context) {}
mlir::LogicalResult
matchAndRewrite(fir::SaveResultOp op,
mlir::PatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return mlir::success();
}
};
class ReturnOpConversion : public mlir::OpRewritePattern<mlir::func::ReturnOp> {
public:
using OpRewritePattern::OpRewritePattern;
ReturnOpConversion(mlir::MLIRContext *context, mlir::Value newArg)
: OpRewritePattern(context), newArg{newArg} {}
mlir::LogicalResult
matchAndRewrite(mlir::func::ReturnOp ret,
mlir::PatternRewriter &rewriter) const override {
auto loc = ret.getLoc();
rewriter.setInsertionPoint(ret);
auto returnedValue = ret.getOperand(0);
bool replacedStorage = false;
if (auto *op = returnedValue.getDefiningOp())
if (auto load = mlir::dyn_cast<fir::LoadOp>(op)) {
auto resultStorage = load.getMemref();
// The result alloca may be behind a fir.declare, if any.
if (auto declare = mlir::dyn_cast_or_null<fir::DeclareOp>(
resultStorage.getDefiningOp()))
resultStorage = declare.getMemref();
// TODO: This should be generalized for derived types, and it is
// architecture and OS dependent.
if (fir::isa_builtin_cptr_type(returnedValue.getType())) {
rewriter.eraseOp(load);
auto module = ret->getParentOfType<mlir::ModuleOp>();
FirOpBuilder builder(rewriter, module);
mlir::Value retAddr = fir::factory::genCPtrOrCFunptrAddr(
builder, loc, resultStorage, returnedValue.getType());
mlir::Value retValue = rewriter.create<fir::LoadOp>(
loc, fir::unwrapRefType(retAddr.getType()), retAddr);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(
ret, mlir::ValueRange{retValue});
return mlir::success();
}
resultStorage.replaceAllUsesWith(newArg);
replacedStorage = true;
if (auto *alloc = resultStorage.getDefiningOp())
if (alloc->use_empty())
rewriter.eraseOp(alloc);
}
// The result storage may have been optimized out by a memory to
// register pass, this is possible for fir.box results, or fir.record
// with no length parameters. Simply store the result in the result storage.
// at the return point.
if (!replacedStorage)
rewriter.create<fir::StoreOp>(loc, returnedValue, newArg);
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
return mlir::success();
}
private:
mlir::Value newArg;
};
class AddrOfOpConversion : public mlir::OpRewritePattern<fir::AddrOfOp> {
public:
using OpRewritePattern::OpRewritePattern;
AddrOfOpConversion(mlir::MLIRContext *context, bool shouldBoxResult)
: OpRewritePattern(context), shouldBoxResult{shouldBoxResult} {}
mlir::LogicalResult
matchAndRewrite(fir::AddrOfOp addrOf,
mlir::PatternRewriter &rewriter) const override {
auto oldFuncTy = addrOf.getType().cast<mlir::FunctionType>();
mlir::FunctionType newFuncTy;
// TODO: This should be generalized for derived types, and it is
// architecture and OS dependent.
if (oldFuncTy.getNumResults() != 0 &&
fir::isa_builtin_cptr_type(oldFuncTy.getResult(0)))
newFuncTy = getCPtrFunctionType(oldFuncTy);
else
newFuncTy = getNewFunctionType(oldFuncTy, shouldBoxResult);
auto newAddrOf = rewriter.create<fir::AddrOfOp>(addrOf.getLoc(), newFuncTy,
addrOf.getSymbol());
// Rather than converting all op a function pointer might transit through
// (e.g calls, stores, loads, converts...), cast new type to the abstract
// type. A conversion will be added when calling indirect calls of abstract
// types.
rewriter.replaceOpWithNewOp<fir::ConvertOp>(addrOf, oldFuncTy, newAddrOf);
return mlir::success();
}
private:
bool shouldBoxResult;
};
/// @brief Base CRTP class for AbstractResult pass family.
/// Contains common logic for abstract result conversion in a reusable fashion.
/// @tparam Pass target class that implements operation-specific logic.
/// @tparam PassBase base class template for the pass generated by TableGen.
/// The `Pass` class must define runOnSpecificOperation(OpTy, bool,
/// mlir::RewritePatternSet&, mlir::ConversionTarget&) member function.
/// This function should implement operation-specific functionality.
template <typename Pass, template <typename> class PassBase>
class AbstractResultOptTemplate : public PassBase<Pass> {
public:
void runOnOperation() override {
auto *context = &this->getContext();
auto op = this->getOperation();
mlir::RewritePatternSet patterns(context);
mlir::ConversionTarget target = *context;
const bool shouldBoxResult = this->passResultAsBox.getValue();
auto &self = static_cast<Pass &>(*this);
self.runOnSpecificOperation(op, shouldBoxResult, patterns, target);
// Convert the calls and, if needed, the ReturnOp in the function body.
target.addLegalDialect<fir::FIROpsDialect, mlir::arith::ArithDialect,
mlir::func::FuncDialect>();
target.addIllegalOp<fir::SaveResultOp>();
target.addDynamicallyLegalOp<fir::CallOp>([](fir::CallOp call) {
return !hasAbstractResult(call.getFunctionType());
});
target.addDynamicallyLegalOp<fir::AddrOfOp>([](fir::AddrOfOp addrOf) {
if (auto funTy = addrOf.getType().dyn_cast<mlir::FunctionType>())
return !hasAbstractResult(funTy);
return true;
});
target.addDynamicallyLegalOp<fir::DispatchOp>([](fir::DispatchOp dispatch) {
return !hasAbstractResult(dispatch.getFunctionType());
});
patterns.insert<CallConversion<fir::CallOp>>(context, shouldBoxResult);
patterns.insert<CallConversion<fir::DispatchOp>>(context, shouldBoxResult);
patterns.insert<SaveResultOpConversion>(context);
patterns.insert<AddrOfOpConversion>(context, shouldBoxResult);
if (mlir::failed(
mlir::applyPartialConversion(op, target, std::move(patterns)))) {
mlir::emitError(op.getLoc(), "error in converting abstract results\n");
this->signalPassFailure();
}
}
};
class AbstractResultOnFuncOpt
: public AbstractResultOptTemplate<AbstractResultOnFuncOpt,
fir::impl::AbstractResultOnFuncOptBase> {
public:
void runOnSpecificOperation(mlir::func::FuncOp func, bool shouldBoxResult,
mlir::RewritePatternSet &patterns,
mlir::ConversionTarget &target) {
auto loc = func.getLoc();
auto *context = &getContext();
// Convert function type itself if it has an abstract result.
auto funcTy = func.getFunctionType().cast<mlir::FunctionType>();
if (hasAbstractResult(funcTy)) {
// TODO: This should be generalized for derived types, and it is
// architecture and OS dependent.
if (fir::isa_builtin_cptr_type(funcTy.getResult(0))) {
func.setType(getCPtrFunctionType(funcTy));
patterns.insert<ReturnOpConversion>(context, mlir::Value{});
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
[](mlir::func::ReturnOp ret) {
mlir::Type retTy = ret.getOperand(0).getType();
return !fir::isa_builtin_cptr_type(retTy);
});
return;
}
if (!func.empty()) {
// Insert new argument.
mlir::OpBuilder rewriter(context);
auto resultType = funcTy.getResult(0);
auto argTy = getResultArgumentType(resultType, shouldBoxResult);
func.insertArgument(0u, argTy, {}, loc);
func.eraseResult(0u);
mlir::Value newArg = func.getArgument(0u);
if (mustEmboxResult(resultType, shouldBoxResult)) {
auto bufferType = fir::ReferenceType::get(resultType);
rewriter.setInsertionPointToStart(&func.front());
newArg = rewriter.create<fir::BoxAddrOp>(loc, bufferType, newArg);
}
patterns.insert<ReturnOpConversion>(context, newArg);
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
[](mlir::func::ReturnOp ret) { return ret.getOperands().empty(); });
assert(func.getFunctionType() ==
getNewFunctionType(funcTy, shouldBoxResult));
} else {
llvm::SmallVector<mlir::DictionaryAttr> allArgs;
func.getAllArgAttrs(allArgs);
allArgs.insert(allArgs.begin(),
mlir::DictionaryAttr::get(func->getContext()));
func.setType(getNewFunctionType(funcTy, shouldBoxResult));
func.setAllArgAttrs(allArgs);
}
}
}
};
inline static bool containsFunctionTypeWithAbstractResult(mlir::Type type) {
return mlir::TypeSwitch<mlir::Type, bool>(type)
.Case([](fir::BoxProcType boxProc) {
return fir::hasAbstractResult(
boxProc.getEleTy().cast<mlir::FunctionType>());
})
.Case([](fir::PointerType pointer) {
return fir::hasAbstractResult(
pointer.getEleTy().cast<mlir::FunctionType>());
})
.Default([](auto &&) { return false; });
}
class AbstractResultOnGlobalOpt
: public AbstractResultOptTemplate<
AbstractResultOnGlobalOpt, fir::impl::AbstractResultOnGlobalOptBase> {
public:
void runOnSpecificOperation(fir::GlobalOp global, bool,
mlir::RewritePatternSet &,
mlir::ConversionTarget &) {
if (containsFunctionTypeWithAbstractResult(global.getType())) {
TODO(global->getLoc(), "support for procedure pointers");
}
}
};
} // end anonymous namespace
} // namespace fir
std::unique_ptr<mlir::Pass> fir::createAbstractResultOnFuncOptPass() {
return std::make_unique<AbstractResultOnFuncOpt>();
}
std::unique_ptr<mlir::Pass> fir::createAbstractResultOnGlobalOptPass() {
return std::make_unique<AbstractResultOnGlobalOpt>();
}
|