File: v_log.sollya

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (35 lines) | stat: -rw-r--r-- 1,064 bytes parent folder | download | duplicates (23)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// polynomial used for __v_log(x)
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

deg = 6; // poly degree
a = -0x1.fc1p-9;
b = 0x1.009p-8;

// find log(1+x)/x polynomial with minimal relative error
// (minimal relative error polynomial for log(1+x) is the same * x)
deg = deg-1; // because of /x

// f = log(1+x)/x; using taylor series
f = 0;
for i from 0 to 60 do { f = f + (-x)^i/(i+1); };

// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)|
approx = proc(poly,d) {
  return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
};

// first coeff is fixed, iteratively find optimal double prec coeffs
poly = 1;
for i from 1 to deg do {
  p = roundcoefficients(approx(poly,i), [|D ...|]);
  poly = poly + x^i*coeff(p,0);
};

display = hexadecimal;
print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
print("in [",a,b,"]");
print("coeffs:");
for i from 0 to deg do coeff(poly,i);