| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 
 | /*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <clc/clc.h>
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float log1p(float x)
{
    float w = x;
    uint ux = as_uint(x);
    uint ax = ux & EXSIGNBIT_SP32;
    // |x| < 2^-4
    float u2 = MATH_DIVIDE(x, 2.0f + x);
    float u = u2 + u2;
    float v = u * u;
    // 2/(5 * 2^5), 2/(3 * 2^3)
    float zsmall = mad(-u2, x, mad(v, 0x1.99999ap-7f, 0x1.555556p-4f) * v * u) + x;
    // |x| >= 2^-4
    ux = as_uint(x + 1.0f);
    int m = (int)((ux >> EXPSHIFTBITS_SP32) & 0xff) - EXPBIAS_SP32;
    float mf = (float)m;
    uint indx = (ux & 0x007f0000) + ((ux & 0x00008000) << 1);
    float F = as_float(indx | 0x3f000000);
    // x > 2^24
    float fg24 = F - as_float(0x3f000000 | (ux & MANTBITS_SP32));
    // x <= 2^24
    uint xhi = ux & 0xffff8000;
    float xh = as_float(xhi);
    float xt = (1.0f - xh) + w;
    uint xnm = ((~(xhi & 0x7f800000)) - 0x00800000) & 0x7f800000;
    xt = xt * as_float(xnm) * 0.5f;
    float fl24 = F - as_float(0x3f000000 | (xhi & MANTBITS_SP32)) - xt;
    float f = mf > 24.0f ? fg24 : fl24;
    indx = indx >> 16;
    float r = f * USE_TABLE(log_inv_tbl, indx);
    // 1/3, 1/2
    float poly = mad(mad(r, 0x1.555556p-2f, 0x1.0p-1f), r*r, r);
    const float LOG2_HEAD = 0x1.62e000p-1f;   // 0.693115234
    const float LOG2_TAIL = 0x1.0bfbe8p-15f;  // 0.0000319461833
    float2 tv = USE_TABLE(loge_tbl, indx);
    float z1 = mad(mf, LOG2_HEAD, tv.s0);
    float z2 = mad(mf, LOG2_TAIL, -poly) + tv.s1;
    float z = z1 + z2;
    z = ax < 0x3d800000U ? zsmall : z;
    // Edge cases
    z = ax >= PINFBITPATT_SP32 ? w : z;
    z = w  < -1.0f ? as_float(QNANBITPATT_SP32) : z;
    z = w == -1.0f ? as_float(NINFBITPATT_SP32) : z;
        //fix subnormals
        z = ax  < 0x33800000 ? x : z;
    return z;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, log1p, float);
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double log1p(double x)
{
    // Computes natural log(1+x). Algorithm based on:
    // Ping-Tak Peter Tang
    // "Table-driven implementation of the logarithm function in IEEE
    // floating-point arithmetic"
    // ACM Transactions on Mathematical Software (TOMS)
    // Volume 16, Issue 4 (December 1990)
    // Note that we use a lookup table of size 64 rather than 128,
    // and compensate by having extra terms in the minimax polynomial
    // for the kernel approximation.
    // Process Inside the threshold now
    ulong ux = as_ulong(1.0 + x);
    int xexp = ((as_int2(ux).hi >> 20) & 0x7ff) - EXPBIAS_DP64;
    double f = as_double(ONEEXPBITS_DP64 | (ux & MANTBITS_DP64));
    int j = as_int2(ux).hi >> 13;
    j = ((0x80 | (j & 0x7e)) >> 1) + (j & 0x1);
    double f1 = (double)j * 0x1.0p-6;
    j -= 64;
    double f2temp = f - f1;
    double m2 = as_double(convert_ulong(0x3ff - xexp) << EXPSHIFTBITS_DP64);
    double f2l = fma(m2, x, m2 - f1);
    double f2g = fma(m2, x, -f1) + m2;
    double f2 = xexp <= MANTLENGTH_DP64-1 ? f2l : f2g;
    f2 = (xexp <= -2) | (xexp >= MANTLENGTH_DP64+8) ? f2temp : f2;
    double2 tv = USE_TABLE(ln_tbl, j);
    double z1 = tv.s0;
    double q = tv.s1;
    double u = MATH_DIVIDE(f2, fma(0.5, f2, f1));
    double v = u * u;
    double poly = v * fma(v,
                          fma(v, 2.23219810758559851206e-03, 1.24999999978138668903e-02),
                          8.33333333333333593622e-02);
    // log2_lead and log2_tail sum to an extra-precise version of log(2)
    const double log2_lead = 6.93147122859954833984e-01; /* 0x3fe62e42e0000000 */
    const double log2_tail = 5.76999904754328540596e-08; /* 0x3e6efa39ef35793c */
    double z2 = q + fma(u, poly, u);
    double dxexp = (double)xexp;
    double r1 = fma(dxexp, log2_lead, z1);
    double r2 = fma(dxexp, log2_tail, z2);
    double result1 = r1 + r2;
    // Process Outside the threshold now
    double r = x;
    u = r / (2.0 + r);
    double correction = r * u;
    u = u + u;
    v = u * u;
    r1 = r;
    poly = fma(v,
               fma(v,
                   fma(v, 4.34887777707614552256e-04, 2.23213998791944806202e-03),
                   1.25000000037717509602e-02),
               8.33333333333317923934e-02);
    r2 = fma(u*v, poly, -correction);
    // The values exp(-1/16)-1 and exp(1/16)-1
    const double log1p_thresh1 = -0x1.f0540438fd5c3p-5;
    const double log1p_thresh2 =  0x1.082b577d34ed8p-4;
    double result2 = r1 + r2;
    result2 = x < log1p_thresh1 | x > log1p_thresh2 ? result1 : result2;
    result2 = isinf(x) ? x : result2;
    result2 = x < -1.0 ? as_double(QNANBITPATT_DP64) : result2;
    result2 = x == -1.0 ? as_double(NINFBITPATT_DP64) : result2;
    return result2;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, log1p, double);
#endif // cl_khr_fp64
 |