File: DecodedThread.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (256 lines) | stat: -rw-r--r-- 8,927 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//===-- DecodedThread.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "DecodedThread.h"
#include "TraceCursorIntelPT.h"
#include <intel-pt.h>
#include <memory>
#include <optional>

using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::trace_intel_pt;
using namespace llvm;

char IntelPTError::ID;

IntelPTError::IntelPTError(int libipt_error_code, lldb::addr_t address)
    : m_libipt_error_code(libipt_error_code), m_address(address) {
  assert(libipt_error_code < 0);
}

void IntelPTError::log(llvm::raw_ostream &OS) const {
  OS << pt_errstr(pt_errcode(m_libipt_error_code));
  if (m_address != LLDB_INVALID_ADDRESS && m_address > 0)
    OS << formatv(": {0:x+16}", m_address);
}

bool DecodedThread::TSCRange::InRange(uint64_t item_index) const {
  return item_index >= first_item_index &&
         item_index < first_item_index + items_count;
}

bool DecodedThread::NanosecondsRange::InRange(uint64_t item_index) const {
  return item_index >= first_item_index &&
         item_index < first_item_index + items_count;
}

double DecodedThread::NanosecondsRange::GetInterpolatedTime(
    uint64_t item_index, uint64_t begin_of_time_nanos,
    const LinuxPerfZeroTscConversion &tsc_conversion) const {
  uint64_t items_since_last_tsc = item_index - first_item_index;

  auto interpolate = [&](uint64_t next_range_start_ns) {
    if (next_range_start_ns == nanos) {
      // If the resolution of the conversion formula is bad enough to consider
      // these two timestamps as equal, then we just increase the next one by 1
      // for correction
      next_range_start_ns++;
    }
    long double item_duration =
        static_cast<long double>(items_count) / (next_range_start_ns - nanos);
    return (nanos - begin_of_time_nanos) + items_since_last_tsc * item_duration;
  };

  if (!next_range) {
    // If this is the last TSC range, so we have to extrapolate. In this case,
    // we assume that each instruction took one TSC, which is what an
    // instruction would take if no parallelism is achieved and the frequency
    // multiplier is 1.
    return interpolate(tsc_conversion.ToNanos(tsc + items_count));
  }
  if (items_count < (next_range->tsc - tsc)) {
    // If the numbers of items in this range is less than the total TSC duration
    // of this range, i.e. each instruction taking longer than 1 TSC, then we
    // can assume that something else happened between these TSCs (e.g. a
    // context switch, change to kernel, decoding errors, etc). In this case, we
    // also assume that each instruction took 1 TSC. A proper way to improve
    // this would be to analize the next events in the trace looking for context
    // switches or trace disablement events, but for now, as we only want an
    // approximation, we keep it simple. We are also guaranteed that the time in
    // nanos of the next range is different to the current one, just because of
    // the definition of a NanosecondsRange.
    return interpolate(
        std::min(tsc_conversion.ToNanos(tsc + items_count), next_range->nanos));
  }

  // In this case, each item took less than 1 TSC, so some parallelism was
  // achieved, which is an indication that we didn't suffered of any kind of
  // interruption.
  return interpolate(next_range->nanos);
}

uint64_t DecodedThread::GetItemsCount() const { return m_item_kinds.size(); }

lldb::addr_t
DecodedThread::GetInstructionLoadAddress(uint64_t item_index) const {
  return m_item_data[item_index].load_address;
}

lldb::addr_t
DecodedThread::GetSyncPointOffsetByIndex(uint64_t item_index) const {
  return m_psb_offsets.find(item_index)->second;
}

ThreadSP DecodedThread::GetThread() { return m_thread_sp; }

DecodedThread::TraceItemStorage &
DecodedThread::CreateNewTraceItem(lldb::TraceItemKind kind) {
  m_item_kinds.push_back(kind);
  m_item_data.emplace_back();
  if (m_last_tsc)
    (*m_last_tsc)->second.items_count++;
  if (m_last_nanoseconds)
    (*m_last_nanoseconds)->second.items_count++;
  return m_item_data.back();
}

void DecodedThread::NotifySyncPoint(lldb::addr_t psb_offset) {
  m_psb_offsets.try_emplace(GetItemsCount(), psb_offset);
  AppendEvent(lldb::eTraceEventSyncPoint);
}

void DecodedThread::NotifyTsc(TSC tsc) {
  if (m_last_tsc && (*m_last_tsc)->second.tsc == tsc)
    return;
  if (m_last_tsc)
    assert(tsc >= (*m_last_tsc)->second.tsc &&
           "We can't have decreasing times");

  m_last_tsc =
      m_tscs.emplace(GetItemsCount(), TSCRange{tsc, 0, GetItemsCount()}).first;

  if (m_tsc_conversion) {
    uint64_t nanos = m_tsc_conversion->ToNanos(tsc);
    if (!m_last_nanoseconds || (*m_last_nanoseconds)->second.nanos != nanos) {
      m_last_nanoseconds =
          m_nanoseconds
              .emplace(GetItemsCount(), NanosecondsRange{nanos, tsc, nullptr, 0,
                                                         GetItemsCount()})
              .first;
      if (*m_last_nanoseconds != m_nanoseconds.begin()) {
        auto prev_range = prev(*m_last_nanoseconds);
        prev_range->second.next_range = &(*m_last_nanoseconds)->second;
      }
    }
  }
  AppendEvent(lldb::eTraceEventHWClockTick);
}

void DecodedThread::NotifyCPU(lldb::cpu_id_t cpu_id) {
  if (!m_last_cpu || *m_last_cpu != cpu_id) {
    m_cpus.emplace(GetItemsCount(), cpu_id);
    m_last_cpu = cpu_id;
    AppendEvent(lldb::eTraceEventCPUChanged);
  }
}

lldb::cpu_id_t DecodedThread::GetCPUByIndex(uint64_t item_index) const {
  auto it = m_cpus.upper_bound(item_index);
  return it == m_cpus.begin() ? LLDB_INVALID_CPU_ID : prev(it)->second;
}

std::optional<DecodedThread::TSCRange>
DecodedThread::GetTSCRangeByIndex(uint64_t item_index) const {
  auto next_it = m_tscs.upper_bound(item_index);
  if (next_it == m_tscs.begin())
    return std::nullopt;
  return prev(next_it)->second;
}

std::optional<DecodedThread::NanosecondsRange>
DecodedThread::GetNanosecondsRangeByIndex(uint64_t item_index) {
  auto next_it = m_nanoseconds.upper_bound(item_index);
  if (next_it == m_nanoseconds.begin())
    return std::nullopt;
  return prev(next_it)->second;
}

uint64_t DecodedThread::GetTotalInstructionCount() const {
  return m_insn_count;
}

void DecodedThread::AppendEvent(lldb::TraceEvent event) {
  CreateNewTraceItem(lldb::eTraceItemKindEvent).event = event;
  m_events_stats.RecordEvent(event);
}

void DecodedThread::AppendInstruction(const pt_insn &insn) {
  CreateNewTraceItem(lldb::eTraceItemKindInstruction).load_address = insn.ip;
  m_insn_count++;
}

void DecodedThread::AppendError(const IntelPTError &error) {
  CreateNewTraceItem(lldb::eTraceItemKindError).error = error.message();
  m_error_stats.RecordError(/*fatal=*/false);
}

void DecodedThread::AppendCustomError(StringRef err, bool fatal) {
  CreateNewTraceItem(lldb::eTraceItemKindError).error = err.str();
  m_error_stats.RecordError(fatal);
}

lldb::TraceEvent DecodedThread::GetEventByIndex(int item_index) const {
  return m_item_data[item_index].event;
}

const DecodedThread::EventsStats &DecodedThread::GetEventsStats() const {
  return m_events_stats;
}

void DecodedThread::EventsStats::RecordEvent(lldb::TraceEvent event) {
  events_counts[event]++;
  total_count++;
}

uint64_t DecodedThread::ErrorStats::GetTotalCount() const {
  uint64_t total = 0;
  for (const auto &[kind, count] : libipt_errors)
    total += count;

  return total + other_errors + fatal_errors;
}

void DecodedThread::ErrorStats::RecordError(bool fatal) {
  if (fatal)
    fatal_errors++;
  else
    other_errors++;
}

void DecodedThread::ErrorStats::RecordError(int libipt_error_code) {
  libipt_errors[pt_errstr(pt_errcode(libipt_error_code))]++;
}

const DecodedThread::ErrorStats &DecodedThread::GetErrorStats() const {
  return m_error_stats;
}

lldb::TraceItemKind
DecodedThread::GetItemKindByIndex(uint64_t item_index) const {
  return static_cast<lldb::TraceItemKind>(m_item_kinds[item_index]);
}

llvm::StringRef DecodedThread::GetErrorByIndex(uint64_t item_index) const {
  if (item_index >= m_item_data.size())
    return llvm::StringRef();
  return m_item_data[item_index].error;
}

DecodedThread::DecodedThread(
    ThreadSP thread_sp,
    const std::optional<LinuxPerfZeroTscConversion> &tsc_conversion)
    : m_thread_sp(thread_sp), m_tsc_conversion(tsc_conversion) {}

size_t DecodedThread::CalculateApproximateMemoryUsage() const {
  return sizeof(TraceItemStorage) * m_item_data.size() +
         sizeof(uint8_t) * m_item_kinds.size() +
         (sizeof(uint64_t) + sizeof(TSC)) * m_tscs.size() +
         (sizeof(uint64_t) + sizeof(uint64_t)) * m_nanoseconds.size() +
         (sizeof(uint64_t) + sizeof(lldb::cpu_id_t)) * m_cpus.size();
}