1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
|
//===-- LibiptDecoder.cpp --======-----------------------------------------===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LibiptDecoder.h"
#include "TraceIntelPT.h"
#include "lldb/Target/Process.h"
#include <optional>
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::trace_intel_pt;
using namespace llvm;
bool IsLibiptError(int status) { return status < 0; }
bool IsEndOfStream(int status) {
assert(status >= 0 && "We can't check if we reached the end of the stream if "
"we got a failed status");
return status & pts_eos;
}
bool HasEvents(int status) {
assert(status >= 0 && "We can't check for events if we got a failed status");
return status & pts_event_pending;
}
// RAII deleter for libipt's decoders
auto InsnDecoderDeleter = [](pt_insn_decoder *decoder) {
pt_insn_free_decoder(decoder);
};
auto QueryDecoderDeleter = [](pt_query_decoder *decoder) {
pt_qry_free_decoder(decoder);
};
using PtInsnDecoderUP =
std::unique_ptr<pt_insn_decoder, decltype(InsnDecoderDeleter)>;
using PtQueryDecoderUP =
std::unique_ptr<pt_query_decoder, decltype(QueryDecoderDeleter)>;
/// Create a basic configuration object limited to a given buffer that can be
/// used for many different decoders.
static Expected<pt_config> CreateBasicLibiptConfig(TraceIntelPT &trace_intel_pt,
ArrayRef<uint8_t> buffer) {
Expected<pt_cpu> cpu_info = trace_intel_pt.GetCPUInfo();
if (!cpu_info)
return cpu_info.takeError();
pt_config config;
pt_config_init(&config);
config.cpu = *cpu_info;
int status = pt_cpu_errata(&config.errata, &config.cpu);
if (IsLibiptError(status))
return make_error<IntelPTError>(status);
// The libipt library does not modify the trace buffer, hence the
// following casts are safe.
config.begin = const_cast<uint8_t *>(buffer.data());
config.end = const_cast<uint8_t *>(buffer.data() + buffer.size());
return config;
}
/// Callback used by libipt for reading the process memory.
///
/// More information can be found in
/// https://github.com/intel/libipt/blob/master/doc/man/pt_image_set_callback.3.md
static int ReadProcessMemory(uint8_t *buffer, size_t size,
const pt_asid * /* unused */, uint64_t pc,
void *context) {
Process *process = static_cast<Process *>(context);
Status error;
int bytes_read = process->ReadMemory(pc, buffer, size, error);
if (error.Fail())
return -pte_nomap;
return bytes_read;
}
/// Set up the memory image callback for the given decoder.
static Error SetupMemoryImage(pt_insn_decoder *decoder, Process &process) {
pt_image *image = pt_insn_get_image(decoder);
int status = pt_image_set_callback(image, ReadProcessMemory, &process);
if (IsLibiptError(status))
return make_error<IntelPTError>(status);
return Error::success();
}
/// Create an instruction decoder for the given buffer and the given process.
static Expected<PtInsnDecoderUP>
CreateInstructionDecoder(TraceIntelPT &trace_intel_pt, ArrayRef<uint8_t> buffer,
Process &process) {
Expected<pt_config> config = CreateBasicLibiptConfig(trace_intel_pt, buffer);
if (!config)
return config.takeError();
pt_insn_decoder *decoder_ptr = pt_insn_alloc_decoder(&*config);
if (!decoder_ptr)
return make_error<IntelPTError>(-pte_nomem);
PtInsnDecoderUP decoder_up(decoder_ptr, InsnDecoderDeleter);
if (Error err = SetupMemoryImage(decoder_ptr, process))
return std::move(err);
return decoder_up;
}
/// Create a query decoder for the given buffer. The query decoder is the
/// highest level decoder that operates directly on packets and doesn't perform
/// actual instruction decoding. That's why it can be useful for inspecting a
/// raw trace without pinning it to a particular process.
static Expected<PtQueryDecoderUP>
CreateQueryDecoder(TraceIntelPT &trace_intel_pt, ArrayRef<uint8_t> buffer) {
Expected<pt_config> config = CreateBasicLibiptConfig(trace_intel_pt, buffer);
if (!config)
return config.takeError();
pt_query_decoder *decoder_ptr = pt_qry_alloc_decoder(&*config);
if (!decoder_ptr)
return make_error<IntelPTError>(-pte_nomem);
return PtQueryDecoderUP(decoder_ptr, QueryDecoderDeleter);
}
/// Class used to identify anomalies in traces, which should often indicate a
/// fatal error in the trace.
class PSBBlockAnomalyDetector {
public:
PSBBlockAnomalyDetector(pt_insn_decoder &decoder,
TraceIntelPT &trace_intel_pt,
DecodedThread &decoded_thread)
: m_decoder(decoder), m_decoded_thread(decoded_thread) {
m_infinite_decoding_loop_threshold =
trace_intel_pt.GetGlobalProperties()
.GetInfiniteDecodingLoopVerificationThreshold();
m_extremely_large_decoding_threshold =
trace_intel_pt.GetGlobalProperties()
.GetExtremelyLargeDecodingThreshold();
m_next_infinite_decoding_loop_threshold =
m_infinite_decoding_loop_threshold;
}
/// \return
/// An \a llvm::Error if an anomaly that includes the last instruction item
/// in the trace, or \a llvm::Error::success otherwise.
Error DetectAnomaly() {
RefreshPacketOffset();
uint64_t insn_added_since_last_packet_offset =
m_decoded_thread.GetTotalInstructionCount() -
m_insn_count_at_last_packet_offset;
// We want to check if we might have fallen in an infinite loop. As this
// check is not a no-op, we want to do it when we have a strong suggestion
// that things went wrong. First, we check how many instructions we have
// decoded since we processed an Intel PT packet for the last time. This
// number should be low, because at some point we should see branches, jumps
// or interrupts that require a new packet to be processed. Once we reach
// certain threshold we start analyzing the trace.
//
// We use the number of decoded instructions since the last Intel PT packet
// as a proxy because, in fact, we don't expect a single packet to give,
// say, 100k instructions. That would mean that there are 100k sequential
// instructions without any single branch, which is highly unlikely, or that
// we found an infinite loop using direct jumps, e.g.
//
// 0x0A: nop or pause
// 0x0C: jump to 0x0A
//
// which is indeed code that is found in the kernel. I presume we reach
// this kind of code in the decoder because we don't handle self-modified
// code in post-mortem kernel traces.
//
// We are right now only signaling the anomaly as a trace error, but it
// would be more conservative to also discard all the trace items found in
// this PSB. I prefer not to do that for the time being to give more
// exposure to this kind of anomalies and help debugging. Discarding the
// trace items would just make investigation harded.
//
// Finally, if the user wants to see if a specific thread has an anomaly,
// it's enough to run the `thread trace dump info` command and look for the
// count of this kind of errors.
if (insn_added_since_last_packet_offset >=
m_extremely_large_decoding_threshold) {
// In this case, we have decoded a massive amount of sequential
// instructions that don't loop. Honestly I wonder if this will ever
// happen, but better safe than sorry.
return createStringError(
inconvertibleErrorCode(),
"anomalous trace: possible infinite trace detected");
}
if (insn_added_since_last_packet_offset ==
m_next_infinite_decoding_loop_threshold) {
if (std::optional<uint64_t> loop_size = TryIdentifyInfiniteLoop()) {
return createStringError(
inconvertibleErrorCode(),
"anomalous trace: possible infinite loop detected of size %" PRIu64,
*loop_size);
}
m_next_infinite_decoding_loop_threshold *= 2;
}
return Error::success();
}
private:
std::optional<uint64_t> TryIdentifyInfiniteLoop() {
// The infinite decoding loops we'll encounter are due to sequential
// instructions that repeat themselves due to direct jumps, therefore in a
// cycle each individual address will only appear once. We use this
// information to detect cycles by finding the last 2 ocurrences of the last
// instruction added to the trace. Then we traverse the trace making sure
// that these two instructions where the ends of a repeating loop.
// This is a utility that returns the most recent instruction index given a
// position in the trace. If the given position is an instruction, that
// position is returned. It skips non-instruction items.
auto most_recent_insn_index =
[&](uint64_t item_index) -> std::optional<uint64_t> {
while (true) {
if (m_decoded_thread.GetItemKindByIndex(item_index) ==
lldb::eTraceItemKindInstruction) {
return item_index;
}
if (item_index == 0)
return std::nullopt;
item_index--;
}
return std::nullopt;
};
// Similar to most_recent_insn_index but skips the starting position.
auto prev_insn_index = [&](uint64_t item_index) -> std::optional<uint64_t> {
if (item_index == 0)
return std::nullopt;
return most_recent_insn_index(item_index - 1);
};
// We first find the most recent instruction.
std::optional<uint64_t> last_insn_index_opt =
*prev_insn_index(m_decoded_thread.GetItemsCount());
if (!last_insn_index_opt)
return std::nullopt;
uint64_t last_insn_index = *last_insn_index_opt;
// We then find the most recent previous occurrence of that last
// instruction.
std::optional<uint64_t> last_insn_copy_index =
prev_insn_index(last_insn_index);
uint64_t loop_size = 1;
while (last_insn_copy_index &&
m_decoded_thread.GetInstructionLoadAddress(*last_insn_copy_index) !=
m_decoded_thread.GetInstructionLoadAddress(last_insn_index)) {
last_insn_copy_index = prev_insn_index(*last_insn_copy_index);
loop_size++;
}
if (!last_insn_copy_index)
return std::nullopt;
// Now we check if the segment between these last positions of the last
// instruction address is in fact a repeating loop.
uint64_t loop_elements_visited = 1;
uint64_t insn_index_a = last_insn_index,
insn_index_b = *last_insn_copy_index;
while (loop_elements_visited < loop_size) {
if (std::optional<uint64_t> prev = prev_insn_index(insn_index_a))
insn_index_a = *prev;
else
return std::nullopt;
if (std::optional<uint64_t> prev = prev_insn_index(insn_index_b))
insn_index_b = *prev;
else
return std::nullopt;
if (m_decoded_thread.GetInstructionLoadAddress(insn_index_a) !=
m_decoded_thread.GetInstructionLoadAddress(insn_index_b))
return std::nullopt;
loop_elements_visited++;
}
return loop_size;
}
// Refresh the internal counters if a new packet offset has been visited
void RefreshPacketOffset() {
lldb::addr_t new_packet_offset;
if (!IsLibiptError(pt_insn_get_offset(&m_decoder, &new_packet_offset)) &&
new_packet_offset != m_last_packet_offset) {
m_last_packet_offset = new_packet_offset;
m_next_infinite_decoding_loop_threshold =
m_infinite_decoding_loop_threshold;
m_insn_count_at_last_packet_offset =
m_decoded_thread.GetTotalInstructionCount();
}
}
pt_insn_decoder &m_decoder;
DecodedThread &m_decoded_thread;
lldb::addr_t m_last_packet_offset = LLDB_INVALID_ADDRESS;
uint64_t m_insn_count_at_last_packet_offset = 0;
uint64_t m_infinite_decoding_loop_threshold;
uint64_t m_next_infinite_decoding_loop_threshold;
uint64_t m_extremely_large_decoding_threshold;
};
/// Class that decodes a raw buffer for a single PSB block using the low level
/// libipt library. It assumes that kernel and user mode instructions are not
/// mixed in the same PSB block.
///
/// Throughout this code, the status of the decoder will be used to identify
/// events needed to be processed or errors in the decoder. The values can be
/// - negative: actual errors
/// - positive or zero: not an error, but a list of bits signaling the status
/// of the decoder, e.g. whether there are events that need to be decoded or
/// not.
class PSBBlockDecoder {
public:
/// \param[in] decoder
/// A decoder configured to start and end within the boundaries of the
/// given \p psb_block.
///
/// \param[in] psb_block
/// The PSB block to decode.
///
/// \param[in] next_block_ip
/// The starting ip at the next PSB block of the same thread if available.
///
/// \param[in] decoded_thread
/// A \a DecodedThread object where the decoded instructions will be
/// appended to. It might have already some instructions.
///
/// \param[in] tsc_upper_bound
/// Maximum allowed value of TSCs decoded from this PSB block.
/// Any of this PSB's data occurring after this TSC will be excluded.
PSBBlockDecoder(PtInsnDecoderUP &&decoder_up, const PSBBlock &psb_block,
std::optional<lldb::addr_t> next_block_ip,
DecodedThread &decoded_thread, TraceIntelPT &trace_intel_pt,
std::optional<DecodedThread::TSC> tsc_upper_bound)
: m_decoder_up(std::move(decoder_up)), m_psb_block(psb_block),
m_next_block_ip(next_block_ip), m_decoded_thread(decoded_thread),
m_anomaly_detector(*m_decoder_up, trace_intel_pt, decoded_thread),
m_tsc_upper_bound(tsc_upper_bound) {}
/// \param[in] trace_intel_pt
/// The main Trace object that own the PSB block.
///
/// \param[in] decoder
/// A decoder configured to start and end within the boundaries of the
/// given \p psb_block.
///
/// \param[in] psb_block
/// The PSB block to decode.
///
/// \param[in] buffer
/// The raw intel pt trace for this block.
///
/// \param[in] process
/// The process to decode. It provides the memory image to use for
/// decoding.
///
/// \param[in] next_block_ip
/// The starting ip at the next PSB block of the same thread if available.
///
/// \param[in] decoded_thread
/// A \a DecodedThread object where the decoded instructions will be
/// appended to. It might have already some instructions.
static Expected<PSBBlockDecoder>
Create(TraceIntelPT &trace_intel_pt, const PSBBlock &psb_block,
ArrayRef<uint8_t> buffer, Process &process,
std::optional<lldb::addr_t> next_block_ip,
DecodedThread &decoded_thread,
std::optional<DecodedThread::TSC> tsc_upper_bound) {
Expected<PtInsnDecoderUP> decoder_up =
CreateInstructionDecoder(trace_intel_pt, buffer, process);
if (!decoder_up)
return decoder_up.takeError();
return PSBBlockDecoder(std::move(*decoder_up), psb_block, next_block_ip,
decoded_thread, trace_intel_pt, tsc_upper_bound);
}
void DecodePSBBlock() {
int status = pt_insn_sync_forward(m_decoder_up.get());
assert(status >= 0 &&
"Synchronization shouldn't fail because this PSB was previously "
"decoded correctly.");
// We emit a TSC before a sync event to more easily associate a timestamp to
// the sync event. If present, the current block's TSC would be the first
// TSC we'll see when processing events.
if (m_psb_block.tsc)
m_decoded_thread.NotifyTsc(*m_psb_block.tsc);
m_decoded_thread.NotifySyncPoint(m_psb_block.psb_offset);
DecodeInstructionsAndEvents(status);
}
private:
/// Append an instruction and return \b false if and only if a serious anomaly
/// has been detected.
bool AppendInstructionAndDetectAnomalies(const pt_insn &insn) {
m_decoded_thread.AppendInstruction(insn);
if (Error err = m_anomaly_detector.DetectAnomaly()) {
m_decoded_thread.AppendCustomError(toString(std::move(err)),
/*fatal=*/true);
return false;
}
return true;
}
/// Decode all the instructions and events of the given PSB block. The
/// decoding loop might stop abruptly if an infinite decoding loop is
/// detected.
void DecodeInstructionsAndEvents(int status) {
pt_insn insn;
while (true) {
status = ProcessPTEvents(status);
if (IsLibiptError(status))
return;
else if (IsEndOfStream(status))
break;
// The status returned by pt_insn_next will need to be processed
// by ProcessPTEvents in the next loop if it is not an error.
std::memset(&insn, 0, sizeof insn);
status = pt_insn_next(m_decoder_up.get(), &insn, sizeof(insn));
if (IsLibiptError(status)) {
m_decoded_thread.AppendError(IntelPTError(status, insn.ip));
return;
} else if (IsEndOfStream(status)) {
break;
}
if (!AppendInstructionAndDetectAnomalies(insn))
return;
}
// We need to keep querying non-branching instructions until we hit the
// starting point of the next PSB. We won't see events at this point. This
// is based on
// https://github.com/intel/libipt/blob/master/doc/howto_libipt.md#parallel-decode
if (m_next_block_ip && insn.ip != 0) {
while (insn.ip != *m_next_block_ip) {
if (!AppendInstructionAndDetectAnomalies(insn))
return;
status = pt_insn_next(m_decoder_up.get(), &insn, sizeof(insn));
if (IsLibiptError(status)) {
m_decoded_thread.AppendError(IntelPTError(status, insn.ip));
return;
}
}
}
}
/// Process the TSC of a decoded PT event. Specifically, check if this TSC
/// is below the TSC upper bound for this PSB. If the TSC exceeds the upper
/// bound, return an error to abort decoding. Otherwise add the it to the
/// underlying DecodedThread and decoding should continue as expected.
///
/// \param[in] tsc
/// The TSC of the a decoded event.
Error ProcessPTEventTSC(DecodedThread::TSC tsc) {
if (m_tsc_upper_bound && tsc >= *m_tsc_upper_bound) {
// This event and all the remaining events of this PSB have a TSC
// outside the range of the "owning" ThreadContinuousExecution. For
// now we drop all of these events/instructions, future work can
// improve upon this by determining the "owning"
// ThreadContinuousExecution of the remaining PSB data.
std::string err_msg = formatv("decoding truncated: TSC {0} exceeds "
"maximum TSC value {1}, will skip decoding"
" the remaining data of the PSB",
tsc, *m_tsc_upper_bound)
.str();
uint64_t offset;
int status = pt_insn_get_offset(m_decoder_up.get(), &offset);
if (!IsLibiptError(status)) {
err_msg = formatv("{2} (skipping {0} of {1} bytes)", offset,
m_psb_block.size, err_msg)
.str();
}
m_decoded_thread.AppendCustomError(err_msg);
return createStringError(inconvertibleErrorCode(), err_msg);
} else {
m_decoded_thread.NotifyTsc(tsc);
return Error::success();
}
}
/// Before querying instructions, we need to query the events associated with
/// that instruction, e.g. timing and trace disablement events.
///
/// \param[in] status
/// The status gotten from the previous instruction decoding or PSB
/// synchronization.
///
/// \return
/// The pte_status after decoding events.
int ProcessPTEvents(int status) {
while (HasEvents(status)) {
pt_event event;
std::memset(&event, 0, sizeof event);
status = pt_insn_event(m_decoder_up.get(), &event, sizeof(event));
if (IsLibiptError(status)) {
m_decoded_thread.AppendError(IntelPTError(status));
return status;
}
if (event.has_tsc) {
if (Error err = ProcessPTEventTSC(event.tsc)) {
consumeError(std::move(err));
return -pte_internal;
}
}
switch (event.type) {
case ptev_disabled:
// The CPU paused tracing the program, e.g. due to ip filtering.
m_decoded_thread.AppendEvent(lldb::eTraceEventDisabledHW);
break;
case ptev_async_disabled:
// The kernel or user code paused tracing the program, e.g.
// a breakpoint or a ioctl invocation pausing the trace, or a
// context switch happened.
m_decoded_thread.AppendEvent(lldb::eTraceEventDisabledSW);
break;
case ptev_overflow:
// The CPU internal buffer had an overflow error and some instructions
// were lost. A OVF packet comes with an FUP packet (harcoded address)
// according to the documentation, so we'll continue seeing instructions
// after this event.
m_decoded_thread.AppendError(IntelPTError(-pte_overflow));
break;
default:
break;
}
}
return status;
}
private:
PtInsnDecoderUP m_decoder_up;
PSBBlock m_psb_block;
std::optional<lldb::addr_t> m_next_block_ip;
DecodedThread &m_decoded_thread;
PSBBlockAnomalyDetector m_anomaly_detector;
std::optional<DecodedThread::TSC> m_tsc_upper_bound;
};
Error lldb_private::trace_intel_pt::DecodeSingleTraceForThread(
DecodedThread &decoded_thread, TraceIntelPT &trace_intel_pt,
ArrayRef<uint8_t> buffer) {
Expected<std::vector<PSBBlock>> blocks =
SplitTraceIntoPSBBlock(trace_intel_pt, buffer, /*expect_tscs=*/false);
if (!blocks)
return blocks.takeError();
for (size_t i = 0; i < blocks->size(); i++) {
PSBBlock &block = blocks->at(i);
Expected<PSBBlockDecoder> decoder = PSBBlockDecoder::Create(
trace_intel_pt, block, buffer.slice(block.psb_offset, block.size),
*decoded_thread.GetThread()->GetProcess(),
i + 1 < blocks->size() ? blocks->at(i + 1).starting_ip : None,
decoded_thread, std::nullopt);
if (!decoder)
return decoder.takeError();
decoder->DecodePSBBlock();
}
return Error::success();
}
Error lldb_private::trace_intel_pt::DecodeSystemWideTraceForThread(
DecodedThread &decoded_thread, TraceIntelPT &trace_intel_pt,
const DenseMap<lldb::cpu_id_t, llvm::ArrayRef<uint8_t>> &buffers,
const std::vector<IntelPTThreadContinousExecution> &executions) {
bool has_seen_psbs = false;
for (size_t i = 0; i < executions.size(); i++) {
const IntelPTThreadContinousExecution &execution = executions[i];
auto variant = execution.thread_execution.variant;
// We emit the first valid tsc
if (execution.psb_blocks.empty()) {
decoded_thread.NotifyTsc(execution.thread_execution.GetLowestKnownTSC());
} else {
assert(execution.psb_blocks.front().tsc &&
"per cpu decoding expects TSCs");
decoded_thread.NotifyTsc(
std::min(execution.thread_execution.GetLowestKnownTSC(),
*execution.psb_blocks.front().tsc));
}
// We then emit the CPU, which will be correctly associated with a tsc.
decoded_thread.NotifyCPU(execution.thread_execution.cpu_id);
// If we haven't seen a PSB yet, then it's fine not to show errors
if (has_seen_psbs) {
if (execution.psb_blocks.empty()) {
decoded_thread.AppendCustomError(
formatv("Unable to find intel pt data a thread "
"execution on cpu id = {0}",
execution.thread_execution.cpu_id)
.str());
}
// A hinted start is a non-initial execution that doesn't have a switch
// in. An only end is an initial execution that doesn't have a switch in.
// Any of those cases represent a gap because we have seen a PSB before.
if (variant == ThreadContinuousExecution::Variant::HintedStart ||
variant == ThreadContinuousExecution::Variant::OnlyEnd) {
decoded_thread.AppendCustomError(
formatv("Unable to find the context switch in for a thread "
"execution on cpu id = {0}",
execution.thread_execution.cpu_id)
.str());
}
}
for (size_t j = 0; j < execution.psb_blocks.size(); j++) {
const PSBBlock &psb_block = execution.psb_blocks[j];
Expected<PSBBlockDecoder> decoder = PSBBlockDecoder::Create(
trace_intel_pt, psb_block,
buffers.lookup(execution.thread_execution.cpu_id)
.slice(psb_block.psb_offset, psb_block.size),
*decoded_thread.GetThread()->GetProcess(),
j + 1 < execution.psb_blocks.size()
? execution.psb_blocks[j + 1].starting_ip
: None,
decoded_thread, execution.thread_execution.GetEndTSC());
if (!decoder)
return decoder.takeError();
has_seen_psbs = true;
decoder->DecodePSBBlock();
}
// If we haven't seen a PSB yet, then it's fine not to show errors
if (has_seen_psbs) {
// A hinted end is a non-ending execution that doesn't have a switch out.
// An only start is an ending execution that doesn't have a switch out.
// Any of those cases represent a gap if we still have executions to
// process and we have seen a PSB before.
if (i + 1 != executions.size() &&
(variant == ThreadContinuousExecution::Variant::OnlyStart ||
variant == ThreadContinuousExecution::Variant::HintedEnd)) {
decoded_thread.AppendCustomError(
formatv("Unable to find the context switch out for a thread "
"execution on cpu id = {0}",
execution.thread_execution.cpu_id)
.str());
}
}
}
return Error::success();
}
bool IntelPTThreadContinousExecution::operator<(
const IntelPTThreadContinousExecution &o) const {
// As the context switch might be incomplete, we look first for the first real
// PSB packet, which is a valid TSC. Otherwise, We query the thread execution
// itself for some tsc.
auto get_tsc = [](const IntelPTThreadContinousExecution &exec) {
return exec.psb_blocks.empty() ? exec.thread_execution.GetLowestKnownTSC()
: exec.psb_blocks.front().tsc;
};
return get_tsc(*this) < get_tsc(o);
}
Expected<std::vector<PSBBlock>>
lldb_private::trace_intel_pt::SplitTraceIntoPSBBlock(
TraceIntelPT &trace_intel_pt, llvm::ArrayRef<uint8_t> buffer,
bool expect_tscs) {
// This follows
// https://github.com/intel/libipt/blob/master/doc/howto_libipt.md#parallel-decode
Expected<PtQueryDecoderUP> decoder_up =
CreateQueryDecoder(trace_intel_pt, buffer);
if (!decoder_up)
return decoder_up.takeError();
pt_query_decoder *decoder = decoder_up.get().get();
std::vector<PSBBlock> executions;
while (true) {
uint64_t maybe_ip = LLDB_INVALID_ADDRESS;
int decoding_status = pt_qry_sync_forward(decoder, &maybe_ip);
if (IsLibiptError(decoding_status))
break;
uint64_t psb_offset;
int offset_status = pt_qry_get_sync_offset(decoder, &psb_offset);
assert(offset_status >= 0 &&
"This can't fail because we were able to synchronize");
std::optional<uint64_t> ip;
if (!(pts_ip_suppressed & decoding_status))
ip = maybe_ip;
std::optional<uint64_t> tsc;
// Now we fetch the first TSC that comes after the PSB.
while (HasEvents(decoding_status)) {
pt_event event;
decoding_status = pt_qry_event(decoder, &event, sizeof(event));
if (IsLibiptError(decoding_status))
break;
if (event.has_tsc) {
tsc = event.tsc;
break;
}
}
if (IsLibiptError(decoding_status)) {
// We continue to the next PSB. This effectively merges this PSB with the
// previous one, and that should be fine because this PSB might be the
// direct continuation of the previous thread and it's better to show an
// error in the decoded thread than to hide it. If this is the first PSB,
// we are okay losing it. Besides that, an error at processing events
// means that we wouldn't be able to get any instruction out of it.
continue;
}
if (expect_tscs && !tsc)
return createStringError(inconvertibleErrorCode(),
"Found a PSB without TSC.");
executions.push_back({
psb_offset,
tsc,
0,
ip,
});
}
if (!executions.empty()) {
// We now adjust the sizes of each block
executions.back().size = buffer.size() - executions.back().psb_offset;
for (int i = (int)executions.size() - 2; i >= 0; i--) {
executions[i].size =
executions[i + 1].psb_offset - executions[i].psb_offset;
}
}
return executions;
}
Expected<std::optional<uint64_t>>
lldb_private::trace_intel_pt::FindLowestTSCInTrace(TraceIntelPT &trace_intel_pt,
ArrayRef<uint8_t> buffer) {
Expected<PtQueryDecoderUP> decoder_up =
CreateQueryDecoder(trace_intel_pt, buffer);
if (!decoder_up)
return decoder_up.takeError();
pt_query_decoder *decoder = decoder_up.get().get();
uint64_t ip = LLDB_INVALID_ADDRESS;
int status = pt_qry_sync_forward(decoder, &ip);
if (IsLibiptError(status))
return std::nullopt;
while (HasEvents(status)) {
pt_event event;
status = pt_qry_event(decoder, &event, sizeof(event));
if (IsLibiptError(status))
return std::nullopt;
if (event.has_tsc)
return event.tsc;
}
return std::nullopt;
}
|