1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
//===-- TraceIntelPTMultiCpuDecoder.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TraceIntelPTMultiCpuDecoder.h"
#include "TraceIntelPT.h"
#include "llvm/Support/Error.h"
#include <optional>
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::trace_intel_pt;
using namespace llvm;
TraceIntelPTMultiCpuDecoder::TraceIntelPTMultiCpuDecoder(
TraceIntelPTSP trace_sp)
: m_trace_wp(trace_sp) {
for (Process *proc : trace_sp->GetAllProcesses()) {
for (ThreadSP thread_sp : proc->GetThreadList().Threads()) {
m_tids.insert(thread_sp->GetID());
}
}
}
TraceIntelPTSP TraceIntelPTMultiCpuDecoder::GetTrace() {
return m_trace_wp.lock();
}
bool TraceIntelPTMultiCpuDecoder::TracesThread(lldb::tid_t tid) const {
return m_tids.count(tid);
}
Expected<std::optional<uint64_t>> TraceIntelPTMultiCpuDecoder::FindLowestTSC() {
std::optional<uint64_t> lowest_tsc;
TraceIntelPTSP trace_sp = GetTrace();
Error err = GetTrace()->OnAllCpusBinaryDataRead(
IntelPTDataKinds::kIptTrace,
[&](const DenseMap<cpu_id_t, ArrayRef<uint8_t>> &buffers) -> Error {
for (auto &cpu_id_to_buffer : buffers) {
Expected<std::optional<uint64_t>> tsc =
FindLowestTSCInTrace(*trace_sp, cpu_id_to_buffer.second);
if (!tsc)
return tsc.takeError();
if (*tsc && (!lowest_tsc || *lowest_tsc > **tsc))
lowest_tsc = **tsc;
}
return Error::success();
});
if (err)
return std::move(err);
return lowest_tsc;
}
Expected<DecodedThreadSP> TraceIntelPTMultiCpuDecoder::Decode(Thread &thread) {
if (Error err = CorrelateContextSwitchesAndIntelPtTraces())
return std::move(err);
TraceIntelPTSP trace_sp = GetTrace();
return trace_sp->GetThreadTimer(thread.GetID())
.TimeTask("Decoding instructions", [&]() -> Expected<DecodedThreadSP> {
auto it = m_decoded_threads.find(thread.GetID());
if (it != m_decoded_threads.end())
return it->second;
DecodedThreadSP decoded_thread_sp = std::make_shared<DecodedThread>(
thread.shared_from_this(), trace_sp->GetPerfZeroTscConversion());
Error err = trace_sp->OnAllCpusBinaryDataRead(
IntelPTDataKinds::kIptTrace,
[&](const DenseMap<cpu_id_t, ArrayRef<uint8_t>> &buffers) -> Error {
auto it =
m_continuous_executions_per_thread->find(thread.GetID());
if (it != m_continuous_executions_per_thread->end())
return DecodeSystemWideTraceForThread(
*decoded_thread_sp, *trace_sp, buffers, it->second);
return Error::success();
});
if (err)
return std::move(err);
m_decoded_threads.try_emplace(thread.GetID(), decoded_thread_sp);
return decoded_thread_sp;
});
}
static Expected<std::vector<PSBBlock>> GetPSBBlocksForCPU(TraceIntelPT &trace,
cpu_id_t cpu_id) {
std::vector<PSBBlock> psb_blocks;
Error err = trace.OnCpuBinaryDataRead(
cpu_id, IntelPTDataKinds::kIptTrace,
[&](ArrayRef<uint8_t> data) -> Error {
Expected<std::vector<PSBBlock>> split_trace =
SplitTraceIntoPSBBlock(trace, data, /*expect_tscs=*/true);
if (!split_trace)
return split_trace.takeError();
psb_blocks = std::move(*split_trace);
return Error::success();
});
if (err)
return std::move(err);
return psb_blocks;
}
Expected<DenseMap<lldb::tid_t, std::vector<IntelPTThreadContinousExecution>>>
TraceIntelPTMultiCpuDecoder::DoCorrelateContextSwitchesAndIntelPtTraces() {
DenseMap<lldb::tid_t, std::vector<IntelPTThreadContinousExecution>>
continuous_executions_per_thread;
TraceIntelPTSP trace_sp = GetTrace();
std::optional<LinuxPerfZeroTscConversion> conv_opt =
trace_sp->GetPerfZeroTscConversion();
if (!conv_opt)
return createStringError(
inconvertibleErrorCode(),
"TSC to nanoseconds conversion values were not found");
LinuxPerfZeroTscConversion tsc_conversion = *conv_opt;
for (cpu_id_t cpu_id : trace_sp->GetTracedCpus()) {
Expected<std::vector<PSBBlock>> psb_blocks =
GetPSBBlocksForCPU(*trace_sp, cpu_id);
if (!psb_blocks)
return psb_blocks.takeError();
m_total_psb_blocks += psb_blocks->size();
// We'll be iterating through the thread continuous executions and the intel
// pt subtraces sorted by time.
auto it = psb_blocks->begin();
auto on_new_thread_execution =
[&](const ThreadContinuousExecution &thread_execution) {
IntelPTThreadContinousExecution execution(thread_execution);
for (; it != psb_blocks->end() &&
*it->tsc < thread_execution.GetEndTSC();
it++) {
if (*it->tsc > thread_execution.GetStartTSC()) {
execution.psb_blocks.push_back(*it);
} else {
m_unattributed_psb_blocks++;
}
}
continuous_executions_per_thread[thread_execution.tid].push_back(
execution);
};
Error err = trace_sp->OnCpuBinaryDataRead(
cpu_id, IntelPTDataKinds::kPerfContextSwitchTrace,
[&](ArrayRef<uint8_t> data) -> Error {
Expected<std::vector<ThreadContinuousExecution>> executions =
DecodePerfContextSwitchTrace(data, cpu_id, tsc_conversion);
if (!executions)
return executions.takeError();
for (const ThreadContinuousExecution &exec : *executions)
on_new_thread_execution(exec);
return Error::success();
});
if (err)
return std::move(err);
m_unattributed_psb_blocks += psb_blocks->end() - it;
}
// We now sort the executions of each thread to have them ready for
// instruction decoding
for (auto &tid_executions : continuous_executions_per_thread)
std::sort(tid_executions.second.begin(), tid_executions.second.end());
return continuous_executions_per_thread;
}
Error TraceIntelPTMultiCpuDecoder::CorrelateContextSwitchesAndIntelPtTraces() {
if (m_setup_error)
return createStringError(inconvertibleErrorCode(), m_setup_error->c_str());
if (m_continuous_executions_per_thread)
return Error::success();
Error err = GetTrace()->GetGlobalTimer().TimeTask(
"Context switch and Intel PT traces correlation", [&]() -> Error {
if (auto correlation = DoCorrelateContextSwitchesAndIntelPtTraces()) {
m_continuous_executions_per_thread.emplace(std::move(*correlation));
return Error::success();
} else {
return correlation.takeError();
}
});
if (err) {
m_setup_error = toString(std::move(err));
return createStringError(inconvertibleErrorCode(), m_setup_error->c_str());
}
return Error::success();
}
size_t TraceIntelPTMultiCpuDecoder::GetNumContinuousExecutionsForThread(
lldb::tid_t tid) const {
if (!m_continuous_executions_per_thread)
return 0;
auto it = m_continuous_executions_per_thread->find(tid);
if (it == m_continuous_executions_per_thread->end())
return 0;
return it->second.size();
}
size_t TraceIntelPTMultiCpuDecoder::GetTotalContinuousExecutionsCount() const {
if (!m_continuous_executions_per_thread)
return 0;
size_t count = 0;
for (const auto &kv : *m_continuous_executions_per_thread)
count += kv.second.size();
return count;
}
size_t
TraceIntelPTMultiCpuDecoder::GePSBBlocksCountForThread(lldb::tid_t tid) const {
if (!m_continuous_executions_per_thread)
return 0;
size_t count = 0;
auto it = m_continuous_executions_per_thread->find(tid);
if (it == m_continuous_executions_per_thread->end())
return 0;
for (const IntelPTThreadContinousExecution &execution : it->second)
count += execution.psb_blocks.size();
return count;
}
size_t TraceIntelPTMultiCpuDecoder::GetUnattributedPSBBlocksCount() const {
return m_unattributed_psb_blocks;
}
size_t TraceIntelPTMultiCpuDecoder::GetTotalPSBBlocksCount() const {
return m_total_psb_blocks;
}
|