1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
|
//===-- TraceDumper.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/TraceDumper.h"
#include "lldb/Core/Module.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include <optional>
using namespace lldb;
using namespace lldb_private;
using namespace llvm;
/// \return
/// The given string or \b std::nullopt if it's empty.
static std::optional<const char *> ToOptionalString(const char *s) {
if (!s)
return std::nullopt;
return s;
}
static const char *GetModuleName(const SymbolContext &sc) {
if (!sc.module_sp)
return nullptr;
return sc.module_sp->GetFileSpec().GetFilename().AsCString();
}
/// \return
/// The module name (basename if the module is a file, or the actual name if
/// it's a virtual module), or \b nullptr if no name nor module was found.
static const char *GetModuleName(const TraceDumper::TraceItem &item) {
if (!item.symbol_info)
return nullptr;
return GetModuleName(item.symbol_info->sc);
}
// This custom LineEntry validator is neded because some line_entries have
// 0 as line, which is meaningless. Notice that LineEntry::IsValid only
// checks that line is not LLDB_INVALID_LINE_NUMBER, i.e. UINT32_MAX.
static bool IsLineEntryValid(const LineEntry &line_entry) {
return line_entry.IsValid() && line_entry.line > 0;
}
/// \return
/// \b true if the provided line entries match line, column and source file.
/// This function assumes that the line entries are valid.
static bool FileLineAndColumnMatches(const LineEntry &a, const LineEntry &b) {
if (a.line != b.line)
return false;
if (a.column != b.column)
return false;
return a.file == b.file;
}
/// Compare the symbol contexts of the provided \a SymbolInfo
/// objects.
///
/// \return
/// \a true if both instructions belong to the same scope level analized
/// in the following order:
/// - module
/// - symbol
/// - function
/// - inlined function
/// - source line info
static bool
IsSameInstructionSymbolContext(const TraceDumper::SymbolInfo &prev_insn,
const TraceDumper::SymbolInfo &insn,
bool check_source_line_info = true) {
// module checks
if (insn.sc.module_sp != prev_insn.sc.module_sp)
return false;
// symbol checks
if (insn.sc.symbol != prev_insn.sc.symbol)
return false;
// function checks
if (!insn.sc.function && !prev_insn.sc.function)
return true; // This means two dangling instruction in the same module. We
// can assume they are part of the same unnamed symbol
else if (insn.sc.function != prev_insn.sc.function)
return false;
Block *inline_block_a =
insn.sc.block ? insn.sc.block->GetContainingInlinedBlock() : nullptr;
Block *inline_block_b = prev_insn.sc.block
? prev_insn.sc.block->GetContainingInlinedBlock()
: nullptr;
if (inline_block_a != inline_block_b)
return false;
// line entry checks
if (!check_source_line_info)
return true;
const bool curr_line_valid = IsLineEntryValid(insn.sc.line_entry);
const bool prev_line_valid = IsLineEntryValid(prev_insn.sc.line_entry);
if (curr_line_valid && prev_line_valid)
return FileLineAndColumnMatches(insn.sc.line_entry,
prev_insn.sc.line_entry);
return curr_line_valid == prev_line_valid;
}
class OutputWriterCLI : public TraceDumper::OutputWriter {
public:
OutputWriterCLI(Stream &s, const TraceDumperOptions &options, Thread &thread)
: m_s(s), m_options(options) {
m_s.Format("thread #{0}: tid = {1}\n", thread.GetIndexID(), thread.GetID());
};
void NoMoreData() override { m_s << " no more data\n"; }
void FunctionCallForest(
const std::vector<TraceDumper::FunctionCallUP> &forest) override {
for (size_t i = 0; i < forest.size(); i++) {
m_s.Format("\n[call tree #{0}]\n", i);
DumpFunctionCallTree(*forest[i]);
}
}
void TraceItem(const TraceDumper::TraceItem &item) override {
if (item.symbol_info) {
if (!item.prev_symbol_info ||
!IsSameInstructionSymbolContext(*item.prev_symbol_info,
*item.symbol_info)) {
m_s << " ";
const char *module_name = GetModuleName(item);
if (!module_name)
m_s << "(none)";
else if (!item.symbol_info->sc.function && !item.symbol_info->sc.symbol)
m_s.Format("{0}`(none)", module_name);
else
item.symbol_info->sc.DumpStopContext(
&m_s, item.symbol_info->exe_ctx.GetTargetPtr(),
item.symbol_info->address,
/*show_fullpaths=*/false,
/*show_module=*/true, /*show_inlined_frames=*/false,
/*show_function_arguments=*/true,
/*show_function_name=*/true);
m_s << "\n";
}
}
if (item.error && !m_was_prev_instruction_an_error)
m_s << " ...missing instructions\n";
m_s.Format(" {0}: ", item.id);
if (m_options.show_timestamps) {
m_s.Format("[{0}] ", item.timestamp
? formatv("{0:3} ns", *item.timestamp).str()
: "unavailable");
}
if (item.event) {
m_s << "(event) " << TraceCursor::EventKindToString(*item.event);
switch (*item.event) {
case eTraceEventCPUChanged:
m_s.Format(" [new CPU={0}]",
item.cpu_id ? std::to_string(*item.cpu_id) : "unavailable");
break;
case eTraceEventHWClockTick:
m_s.Format(" [{0}]", item.hw_clock ? std::to_string(*item.hw_clock)
: "unavailable");
break;
case eTraceEventDisabledHW:
case eTraceEventDisabledSW:
break;
case eTraceEventSyncPoint:
m_s.Format(" [{0}]", item.sync_point_metadata);
break;
}
} else if (item.error) {
m_s << "(error) " << *item.error;
} else {
m_s.Format("{0:x+16}", item.load_address);
if (item.symbol_info && item.symbol_info->instruction) {
m_s << " ";
item.symbol_info->instruction->Dump(
&m_s, /*max_opcode_byte_size=*/0,
/*show_address=*/false,
/*show_bytes=*/false, m_options.show_control_flow_kind,
&item.symbol_info->exe_ctx, &item.symbol_info->sc,
/*prev_sym_ctx=*/nullptr,
/*disassembly_addr_format=*/nullptr,
/*max_address_text_size=*/0);
}
}
m_was_prev_instruction_an_error = (bool)item.error;
m_s << "\n";
}
private:
void
DumpSegmentContext(const TraceDumper::FunctionCall::TracedSegment &segment) {
if (segment.GetOwningCall().IsError()) {
m_s << "<tracing errors>";
return;
}
const SymbolContext &first_sc = segment.GetFirstInstructionSymbolInfo().sc;
first_sc.DumpStopContext(
&m_s, segment.GetFirstInstructionSymbolInfo().exe_ctx.GetTargetPtr(),
segment.GetFirstInstructionSymbolInfo().address,
/*show_fullpaths=*/false,
/*show_module=*/true, /*show_inlined_frames=*/false,
/*show_function_arguments=*/true,
/*show_function_name=*/true);
m_s << " to ";
const SymbolContext &last_sc = segment.GetLastInstructionSymbolInfo().sc;
if (IsLineEntryValid(first_sc.line_entry) &&
IsLineEntryValid(last_sc.line_entry)) {
m_s.Format("{0}:{1}", last_sc.line_entry.line, last_sc.line_entry.column);
} else {
last_sc.DumpStopContext(
&m_s, segment.GetFirstInstructionSymbolInfo().exe_ctx.GetTargetPtr(),
segment.GetLastInstructionSymbolInfo().address,
/*show_fullpaths=*/false,
/*show_module=*/false, /*show_inlined_frames=*/false,
/*show_function_arguments=*/false,
/*show_function_name=*/false);
}
}
void DumpUntracedContext(const TraceDumper::FunctionCall &function_call) {
if (function_call.IsError()) {
m_s << "tracing error";
}
const SymbolContext &sc = function_call.GetSymbolInfo().sc;
const char *module_name = GetModuleName(sc);
if (!module_name)
m_s << "(none)";
else if (!sc.function && !sc.symbol)
m_s << module_name << "`(none)";
else
m_s << module_name << "`" << sc.GetFunctionName().AsCString();
}
void DumpFunctionCallTree(const TraceDumper::FunctionCall &function_call) {
if (function_call.GetUntracedPrefixSegment()) {
m_s.Indent();
DumpUntracedContext(function_call);
m_s << "\n";
m_s.IndentMore();
DumpFunctionCallTree(function_call.GetUntracedPrefixSegment()->GetNestedCall());
m_s.IndentLess();
}
for (const TraceDumper::FunctionCall::TracedSegment &segment :
function_call.GetTracedSegments()) {
m_s.Indent();
DumpSegmentContext(segment);
m_s.Format(" [{0}, {1}]\n", segment.GetFirstInstructionID(),
segment.GetLastInstructionID());
segment.IfNestedCall([&](const TraceDumper::FunctionCall &nested_call) {
m_s.IndentMore();
DumpFunctionCallTree(nested_call);
m_s.IndentLess();
});
}
}
Stream &m_s;
TraceDumperOptions m_options;
bool m_was_prev_instruction_an_error = false;
};
class OutputWriterJSON : public TraceDumper::OutputWriter {
/* schema:
error_message: string
| {
"event": string,
"id": decimal,
"tsc"?: string decimal,
"cpuId"? decimal,
} | {
"error": string,
"id": decimal,
"tsc"?: string decimal,
| {
"loadAddress": string decimal,
"id": decimal,
"hwClock"?: string decimal,
"syncPointMetadata"?: string,
"timestamp_ns"?: string decimal,
"module"?: string,
"symbol"?: string,
"line"?: decimal,
"column"?: decimal,
"source"?: string,
"mnemonic"?: string,
"controlFlowKind"?: string,
}
*/
public:
OutputWriterJSON(Stream &s, const TraceDumperOptions &options)
: m_s(s), m_options(options),
m_j(m_s.AsRawOstream(),
/*IndentSize=*/options.pretty_print_json ? 2 : 0) {
m_j.arrayBegin();
};
~OutputWriterJSON() { m_j.arrayEnd(); }
void FunctionCallForest(
const std::vector<TraceDumper::FunctionCallUP> &forest) override {
for (size_t i = 0; i < forest.size(); i++) {
m_j.object([&] { DumpFunctionCallTree(*forest[i]); });
}
}
void DumpFunctionCallTree(const TraceDumper::FunctionCall &function_call) {
if (function_call.GetUntracedPrefixSegment()) {
m_j.attributeObject("untracedPrefixSegment", [&] {
m_j.attributeObject("nestedCall", [&] {
DumpFunctionCallTree(
function_call.GetUntracedPrefixSegment()->GetNestedCall());
});
});
}
if (!function_call.GetTracedSegments().empty()) {
m_j.attributeArray("tracedSegments", [&] {
for (const TraceDumper::FunctionCall::TracedSegment &segment :
function_call.GetTracedSegments()) {
m_j.object([&] {
m_j.attribute("firstInstructionId",
std::to_string(segment.GetFirstInstructionID()));
m_j.attribute("lastInstructionId",
std::to_string(segment.GetLastInstructionID()));
segment.IfNestedCall(
[&](const TraceDumper::FunctionCall &nested_call) {
m_j.attributeObject(
"nestedCall", [&] { DumpFunctionCallTree(nested_call); });
});
});
}
});
}
}
void DumpEvent(const TraceDumper::TraceItem &item) {
m_j.attribute("event", TraceCursor::EventKindToString(*item.event));
switch (*item.event) {
case eTraceEventCPUChanged:
m_j.attribute("cpuId", item.cpu_id);
break;
case eTraceEventHWClockTick:
m_j.attribute("hwClock", item.hw_clock);
break;
case eTraceEventDisabledHW:
case eTraceEventDisabledSW:
break;
case eTraceEventSyncPoint:
m_j.attribute("syncPointMetadata", item.sync_point_metadata);
break;
}
}
void DumpInstruction(const TraceDumper::TraceItem &item) {
m_j.attribute("loadAddress", formatv("{0:x}", item.load_address));
if (item.symbol_info) {
m_j.attribute("module", ToOptionalString(GetModuleName(item)));
m_j.attribute(
"symbol",
ToOptionalString(item.symbol_info->sc.GetFunctionName().AsCString()));
if (lldb::InstructionSP instruction = item.symbol_info->instruction) {
ExecutionContext exe_ctx = item.symbol_info->exe_ctx;
m_j.attribute("mnemonic",
ToOptionalString(instruction->GetMnemonic(&exe_ctx)));
if (m_options.show_control_flow_kind) {
lldb::InstructionControlFlowKind instruction_control_flow_kind =
instruction->GetControlFlowKind(&exe_ctx);
m_j.attribute("controlFlowKind",
ToOptionalString(
Instruction::GetNameForInstructionControlFlowKind(
instruction_control_flow_kind)));
}
}
if (IsLineEntryValid(item.symbol_info->sc.line_entry)) {
m_j.attribute(
"source",
ToOptionalString(
item.symbol_info->sc.line_entry.file.GetPath().c_str()));
m_j.attribute("line", item.symbol_info->sc.line_entry.line);
m_j.attribute("column", item.symbol_info->sc.line_entry.column);
}
}
}
void TraceItem(const TraceDumper::TraceItem &item) override {
m_j.object([&] {
m_j.attribute("id", item.id);
if (m_options.show_timestamps)
m_j.attribute("timestamp_ns", item.timestamp
? std::optional<std::string>(
std::to_string(*item.timestamp))
: std::nullopt);
if (item.event) {
DumpEvent(item);
} else if (item.error) {
m_j.attribute("error", *item.error);
} else {
DumpInstruction(item);
}
});
}
private:
Stream &m_s;
TraceDumperOptions m_options;
json::OStream m_j;
};
static std::unique_ptr<TraceDumper::OutputWriter>
CreateWriter(Stream &s, const TraceDumperOptions &options, Thread &thread) {
if (options.json)
return std::unique_ptr<TraceDumper::OutputWriter>(
new OutputWriterJSON(s, options));
else
return std::unique_ptr<TraceDumper::OutputWriter>(
new OutputWriterCLI(s, options, thread));
}
TraceDumper::TraceDumper(lldb::TraceCursorSP cursor_sp, Stream &s,
const TraceDumperOptions &options)
: m_cursor_sp(std::move(cursor_sp)), m_options(options),
m_writer_up(CreateWriter(
s, m_options, *m_cursor_sp->GetExecutionContextRef().GetThreadSP())) {
if (m_options.id)
m_cursor_sp->GoToId(*m_options.id);
else if (m_options.forwards)
m_cursor_sp->Seek(0, lldb::eTraceCursorSeekTypeBeginning);
else
m_cursor_sp->Seek(0, lldb::eTraceCursorSeekTypeEnd);
m_cursor_sp->SetForwards(m_options.forwards);
if (m_options.skip) {
m_cursor_sp->Seek((m_options.forwards ? 1 : -1) * *m_options.skip,
lldb::eTraceCursorSeekTypeCurrent);
}
}
TraceDumper::TraceItem TraceDumper::CreatRawTraceItem() {
TraceItem item = {};
item.id = m_cursor_sp->GetId();
if (m_options.show_timestamps)
item.timestamp = m_cursor_sp->GetWallClockTime();
return item;
}
/// Find the symbol context for the given address reusing the previous
/// instruction's symbol context when possible.
static SymbolContext
CalculateSymbolContext(const Address &address,
const SymbolContext &prev_symbol_context) {
AddressRange range;
if (prev_symbol_context.GetAddressRange(eSymbolContextEverything, 0,
/*inline_block_range*/ true, range) &&
range.Contains(address))
return prev_symbol_context;
SymbolContext sc;
address.CalculateSymbolContext(&sc, eSymbolContextEverything);
return sc;
}
/// Find the disassembler for the given address reusing the previous
/// instruction's disassembler when possible.
static std::tuple<DisassemblerSP, InstructionSP>
CalculateDisass(const TraceDumper::SymbolInfo &symbol_info,
const TraceDumper::SymbolInfo &prev_symbol_info,
const ExecutionContext &exe_ctx) {
if (prev_symbol_info.disassembler) {
if (InstructionSP instruction =
prev_symbol_info.disassembler->GetInstructionList()
.GetInstructionAtAddress(symbol_info.address))
return std::make_tuple(prev_symbol_info.disassembler, instruction);
}
if (symbol_info.sc.function) {
if (DisassemblerSP disassembler =
symbol_info.sc.function->GetInstructions(exe_ctx, nullptr)) {
if (InstructionSP instruction =
disassembler->GetInstructionList().GetInstructionAtAddress(
symbol_info.address))
return std::make_tuple(disassembler, instruction);
}
}
// We fallback to a single instruction disassembler
Target &target = exe_ctx.GetTargetRef();
const ArchSpec arch = target.GetArchitecture();
AddressRange range(symbol_info.address, arch.GetMaximumOpcodeByteSize());
DisassemblerSP disassembler =
Disassembler::DisassembleRange(arch, /*plugin_name*/ nullptr,
/*flavor*/ nullptr, target, range);
return std::make_tuple(
disassembler,
disassembler ? disassembler->GetInstructionList().GetInstructionAtAddress(
symbol_info.address)
: InstructionSP());
}
static TraceDumper::SymbolInfo
CalculateSymbolInfo(const ExecutionContext &exe_ctx, lldb::addr_t load_address,
const TraceDumper::SymbolInfo &prev_symbol_info) {
TraceDumper::SymbolInfo symbol_info;
symbol_info.exe_ctx = exe_ctx;
symbol_info.address.SetLoadAddress(load_address, exe_ctx.GetTargetPtr());
symbol_info.sc =
CalculateSymbolContext(symbol_info.address, prev_symbol_info.sc);
std::tie(symbol_info.disassembler, symbol_info.instruction) =
CalculateDisass(symbol_info, prev_symbol_info, exe_ctx);
return symbol_info;
}
std::optional<lldb::user_id_t> TraceDumper::DumpInstructions(size_t count) {
ThreadSP thread_sp = m_cursor_sp->GetExecutionContextRef().GetThreadSP();
SymbolInfo prev_symbol_info;
std::optional<lldb::user_id_t> last_id;
ExecutionContext exe_ctx;
thread_sp->GetProcess()->GetTarget().CalculateExecutionContext(exe_ctx);
for (size_t insn_seen = 0; insn_seen < count && m_cursor_sp->HasValue();
m_cursor_sp->Next()) {
last_id = m_cursor_sp->GetId();
TraceItem item = CreatRawTraceItem();
if (m_cursor_sp->IsEvent() && m_options.show_events) {
item.event = m_cursor_sp->GetEventType();
switch (*item.event) {
case eTraceEventCPUChanged:
item.cpu_id = m_cursor_sp->GetCPU();
break;
case eTraceEventHWClockTick:
item.hw_clock = m_cursor_sp->GetHWClock();
break;
case eTraceEventDisabledHW:
case eTraceEventDisabledSW:
break;
case eTraceEventSyncPoint:
item.sync_point_metadata = m_cursor_sp->GetSyncPointMetadata();
break;
}
m_writer_up->TraceItem(item);
} else if (m_cursor_sp->IsError()) {
item.error = m_cursor_sp->GetError();
m_writer_up->TraceItem(item);
} else if (m_cursor_sp->IsInstruction() && !m_options.only_events) {
insn_seen++;
item.load_address = m_cursor_sp->GetLoadAddress();
if (!m_options.raw) {
SymbolInfo symbol_info =
CalculateSymbolInfo(exe_ctx, item.load_address, prev_symbol_info);
item.prev_symbol_info = prev_symbol_info;
item.symbol_info = symbol_info;
prev_symbol_info = symbol_info;
}
m_writer_up->TraceItem(item);
}
}
if (!m_cursor_sp->HasValue())
m_writer_up->NoMoreData();
return last_id;
}
void TraceDumper::FunctionCall::TracedSegment::AppendInsn(
const TraceCursorSP &cursor_sp,
const TraceDumper::SymbolInfo &symbol_info) {
m_last_insn_id = cursor_sp->GetId();
m_last_symbol_info = symbol_info;
}
lldb::user_id_t
TraceDumper::FunctionCall::TracedSegment::GetFirstInstructionID() const {
return m_first_insn_id;
}
lldb::user_id_t
TraceDumper::FunctionCall::TracedSegment::GetLastInstructionID() const {
return m_last_insn_id;
}
void TraceDumper::FunctionCall::TracedSegment::IfNestedCall(
std::function<void(const FunctionCall &function_call)> callback) const {
if (m_nested_call)
callback(*m_nested_call);
}
const TraceDumper::FunctionCall &
TraceDumper::FunctionCall::TracedSegment::GetOwningCall() const {
return m_owning_call;
}
TraceDumper::FunctionCall &
TraceDumper::FunctionCall::TracedSegment::CreateNestedCall(
const TraceCursorSP &cursor_sp,
const TraceDumper::SymbolInfo &symbol_info) {
m_nested_call = std::make_unique<FunctionCall>(cursor_sp, symbol_info);
m_nested_call->SetParentCall(m_owning_call);
return *m_nested_call;
}
const TraceDumper::SymbolInfo &
TraceDumper::FunctionCall::TracedSegment::GetFirstInstructionSymbolInfo()
const {
return m_first_symbol_info;
}
const TraceDumper::SymbolInfo &
TraceDumper::FunctionCall::TracedSegment::GetLastInstructionSymbolInfo() const {
return m_last_symbol_info;
}
const TraceDumper::FunctionCall &
TraceDumper::FunctionCall::UntracedPrefixSegment::GetNestedCall() const {
return *m_nested_call;
}
TraceDumper::FunctionCall::FunctionCall(
const TraceCursorSP &cursor_sp,
const TraceDumper::SymbolInfo &symbol_info) {
m_is_error = cursor_sp->IsError();
AppendSegment(cursor_sp, symbol_info);
}
void TraceDumper::FunctionCall::AppendSegment(
const TraceCursorSP &cursor_sp,
const TraceDumper::SymbolInfo &symbol_info) {
m_traced_segments.emplace_back(cursor_sp, symbol_info, *this);
}
const TraceDumper::SymbolInfo &
TraceDumper::FunctionCall::GetSymbolInfo() const {
return m_traced_segments.back().GetLastInstructionSymbolInfo();
}
bool TraceDumper::FunctionCall::IsError() const { return m_is_error; }
const std::deque<TraceDumper::FunctionCall::TracedSegment> &
TraceDumper::FunctionCall::GetTracedSegments() const {
return m_traced_segments;
}
TraceDumper::FunctionCall::TracedSegment &
TraceDumper::FunctionCall::GetLastTracedSegment() {
return m_traced_segments.back();
}
const std::optional<TraceDumper::FunctionCall::UntracedPrefixSegment> &
TraceDumper::FunctionCall::GetUntracedPrefixSegment() const {
return m_untraced_prefix_segment;
}
void TraceDumper::FunctionCall::SetUntracedPrefixSegment(
TraceDumper::FunctionCallUP &&nested_call) {
m_untraced_prefix_segment.emplace(std::move(nested_call));
}
TraceDumper::FunctionCall *TraceDumper::FunctionCall::GetParentCall() const {
return m_parent_call;
}
void TraceDumper::FunctionCall::SetParentCall(
TraceDumper::FunctionCall &parent_call) {
m_parent_call = &parent_call;
}
/// Given an instruction that happens after a return, find the ancestor function
/// call that owns it. If this ancestor doesn't exist, create a new ancestor and
/// make it the root of the tree.
///
/// \param[in] last_function_call
/// The function call that performs the return.
///
/// \param[in] symbol_info
/// The symbol information of the instruction after the return.
///
/// \param[in] cursor_sp
/// The cursor pointing to the instruction after the return.
///
/// \param[in,out] roots
/// The object owning the roots. It might be modified if a new root needs to
/// be created.
///
/// \return
/// A reference to the function call that owns the new instruction
static TraceDumper::FunctionCall &AppendReturnedInstructionToFunctionCallForest(
TraceDumper::FunctionCall &last_function_call,
const TraceDumper::SymbolInfo &symbol_info, const TraceCursorSP &cursor_sp,
std::vector<TraceDumper::FunctionCallUP> &roots) {
// We omit the current node because we can't return to itself.
TraceDumper::FunctionCall *ancestor = last_function_call.GetParentCall();
for (; ancestor; ancestor = ancestor->GetParentCall()) {
// This loop traverses the tree until it finds a call that we can return to.
if (IsSameInstructionSymbolContext(ancestor->GetSymbolInfo(), symbol_info,
/*check_source_line_info=*/false)) {
// We returned to this symbol, so we are assuming we are returning there
// Note: If this is not robust enough, we should actually check if we
// returning to the instruction that follows the last instruction from
// that call, as that's the behavior of CALL instructions.
ancestor->AppendSegment(cursor_sp, symbol_info);
return *ancestor;
}
}
// We didn't find the call we were looking for, so we now create a synthetic
// one that will contain the new instruction in its first traced segment.
TraceDumper::FunctionCallUP new_root =
std::make_unique<TraceDumper::FunctionCall>(cursor_sp, symbol_info);
// This new root will own the previous root through an untraced prefix segment.
new_root->SetUntracedPrefixSegment(std::move(roots.back()));
roots.pop_back();
// We update the roots container to point to the new root
roots.emplace_back(std::move(new_root));
return *roots.back();
}
/// Append an instruction to a function call forest. The new instruction might
/// be appended to the current segment, to a new nest call, or return to an
/// ancestor call.
///
/// \param[in] exe_ctx
/// The exeuction context of the traced thread.
///
/// \param[in] last_function_call
/// The chronologically most recent function call before the new instruction.
///
/// \param[in] prev_symbol_info
/// The symbol information of the previous instruction in the trace.
///
/// \param[in] symbol_info
/// The symbol information of the new instruction.
///
/// \param[in] cursor_sp
/// The cursor pointing to the new instruction.
///
/// \param[in,out] roots
/// The object owning the roots. It might be modified if a new root needs to
/// be created.
///
/// \return
/// A reference to the function call that owns the new instruction.
static TraceDumper::FunctionCall &AppendInstructionToFunctionCallForest(
const ExecutionContext &exe_ctx,
TraceDumper::FunctionCall *last_function_call,
const TraceDumper::SymbolInfo &prev_symbol_info,
const TraceDumper::SymbolInfo &symbol_info, const TraceCursorSP &cursor_sp,
std::vector<TraceDumper::FunctionCallUP> &roots) {
if (!last_function_call || last_function_call->IsError()) {
// We create a brand new root
roots.emplace_back(
std::make_unique<TraceDumper::FunctionCall>(cursor_sp, symbol_info));
return *roots.back();
}
AddressRange range;
if (symbol_info.sc.GetAddressRange(
eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol,
0, /*inline_block_range*/ true, range)) {
if (range.GetBaseAddress() == symbol_info.address) {
// Our instruction is the first instruction of a function. This has
// to be a call. This should also identify if a trampoline or the linker
// is making a call using a non-CALL instruction.
return last_function_call->GetLastTracedSegment().CreateNestedCall(
cursor_sp, symbol_info);
}
}
if (IsSameInstructionSymbolContext(prev_symbol_info, symbol_info,
/*check_source_line_info=*/false)) {
// We are still in the same function. This can't be a call because otherwise
// we would be in the first instruction of the symbol.
last_function_call->GetLastTracedSegment().AppendInsn(cursor_sp,
symbol_info);
return *last_function_call;
}
// Now we are in a different symbol. Let's see if this is a return or a
// call
const InstructionSP &insn = last_function_call->GetLastTracedSegment()
.GetLastInstructionSymbolInfo()
.instruction;
InstructionControlFlowKind insn_kind =
insn ? insn->GetControlFlowKind(&exe_ctx)
: eInstructionControlFlowKindOther;
switch (insn_kind) {
case lldb::eInstructionControlFlowKindCall:
case lldb::eInstructionControlFlowKindFarCall: {
// This is a regular call
return last_function_call->GetLastTracedSegment().CreateNestedCall(
cursor_sp, symbol_info);
}
case lldb::eInstructionControlFlowKindFarReturn:
case lldb::eInstructionControlFlowKindReturn: {
// We should have caught most trampolines and linker functions earlier, so
// let's assume this is a regular return.
return AppendReturnedInstructionToFunctionCallForest(
*last_function_call, symbol_info, cursor_sp, roots);
}
default:
// we changed symbols not using a call or return and we are not in the
// beginning of a symbol, so this should be something very artificial
// or maybe a jump to some label in the middle of it section.
// We first check if it's a return from an inline method
if (prev_symbol_info.sc.block &&
prev_symbol_info.sc.block->GetContainingInlinedBlock()) {
return AppendReturnedInstructionToFunctionCallForest(
*last_function_call, symbol_info, cursor_sp, roots);
}
// Now We assume it's a call. We should revisit this in the future.
// Ideally we should be able to decide whether to create a new tree,
// or go deeper or higher in the stack.
return last_function_call->GetLastTracedSegment().CreateNestedCall(
cursor_sp, symbol_info);
}
}
/// Append an error to a function call forest. The new error might be appended
/// to the current segment if it contains errors or will create a new root.
///
/// \param[in] last_function_call
/// The chronologically most recent function call before the new error.
///
/// \param[in] cursor_sp
/// The cursor pointing to the new error.
///
/// \param[in,out] roots
/// The object owning the roots. It might be modified if a new root needs to
/// be created.
///
/// \return
/// A reference to the function call that owns the new error.
TraceDumper::FunctionCall &AppendErrorToFunctionCallForest(
TraceDumper::FunctionCall *last_function_call, TraceCursorSP &cursor_sp,
std::vector<TraceDumper::FunctionCallUP> &roots) {
if (last_function_call && last_function_call->IsError()) {
last_function_call->GetLastTracedSegment().AppendInsn(
cursor_sp, TraceDumper::SymbolInfo{});
return *last_function_call;
} else {
roots.emplace_back(std::make_unique<TraceDumper::FunctionCall>(
cursor_sp, TraceDumper::SymbolInfo{}));
return *roots.back();
}
}
static std::vector<TraceDumper::FunctionCallUP>
CreateFunctionCallForest(TraceCursorSP &cursor_sp,
const ExecutionContext &exe_ctx) {
std::vector<TraceDumper::FunctionCallUP> roots;
TraceDumper::SymbolInfo prev_symbol_info;
TraceDumper::FunctionCall *last_function_call = nullptr;
for (; cursor_sp->HasValue(); cursor_sp->Next()) {
if (cursor_sp->IsError()) {
last_function_call = &AppendErrorToFunctionCallForest(last_function_call,
cursor_sp, roots);
prev_symbol_info = {};
} else if (cursor_sp->IsInstruction()) {
TraceDumper::SymbolInfo symbol_info = CalculateSymbolInfo(
exe_ctx, cursor_sp->GetLoadAddress(), prev_symbol_info);
last_function_call = &AppendInstructionToFunctionCallForest(
exe_ctx, last_function_call, prev_symbol_info, symbol_info, cursor_sp,
roots);
prev_symbol_info = symbol_info;
} else if (cursor_sp->GetEventType() == eTraceEventCPUChanged) {
// TODO: In case of a CPU change, we create a new root because we haven't
// investigated yet if a call tree can safely continue or if interrupts
// could have polluted the original call tree.
last_function_call = nullptr;
prev_symbol_info = {};
}
}
return roots;
}
void TraceDumper::DumpFunctionCalls() {
ThreadSP thread_sp = m_cursor_sp->GetExecutionContextRef().GetThreadSP();
ExecutionContext exe_ctx;
thread_sp->GetProcess()->GetTarget().CalculateExecutionContext(exe_ctx);
m_writer_up->FunctionCallForest(
CreateFunctionCallForest(m_cursor_sp, exe_ctx));
}
|