1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
//===-- ConstString.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/Stream.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/FormatProviders.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/Threading.h"
#include <array>
#include <utility>
#include <cinttypes>
#include <cstdint>
#include <cstring>
using namespace lldb_private;
class Pool {
public:
/// The default BumpPtrAllocatorImpl slab size.
static const size_t AllocatorSlabSize = 4096;
static const size_t SizeThreshold = AllocatorSlabSize;
/// Every Pool has its own allocator which receives an equal share of
/// the ConstString allocations. This means that when allocating many
/// ConstStrings, every allocator sees only its small share of allocations and
/// assumes LLDB only allocated a small amount of memory so far. In reality
/// LLDB allocated a total memory that is N times as large as what the
/// allocator sees (where N is the number of string pools). This causes that
/// the BumpPtrAllocator continues a long time to allocate memory in small
/// chunks which only makes sense when allocating a small amount of memory
/// (which is true from the perspective of a single allocator). On some
/// systems doing all these small memory allocations causes LLDB to spend
/// a lot of time in malloc, so we need to force all these allocators to
/// behave like one allocator in terms of scaling their memory allocations
/// with increased demand. To do this we set the growth delay for each single
/// allocator to a rate so that our pool of allocators scales their memory
/// allocations similar to a single BumpPtrAllocatorImpl.
///
/// Currently we have 256 string pools and the normal growth delay of the
/// BumpPtrAllocatorImpl is 128 (i.e., the memory allocation size increases
/// every 128 full chunks), so by changing the delay to 1 we get a
/// total growth delay in our allocator collection of 256/1 = 256. This is
/// still only half as fast as a normal allocator but we can't go any faster
/// without decreasing the number of string pools.
static const size_t AllocatorGrowthDelay = 1;
typedef llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, AllocatorSlabSize,
SizeThreshold, AllocatorGrowthDelay>
Allocator;
typedef const char *StringPoolValueType;
typedef llvm::StringMap<StringPoolValueType, Allocator> StringPool;
typedef llvm::StringMapEntry<StringPoolValueType> StringPoolEntryType;
static StringPoolEntryType &
GetStringMapEntryFromKeyData(const char *keyData) {
return StringPoolEntryType::GetStringMapEntryFromKeyData(keyData);
}
static size_t GetConstCStringLength(const char *ccstr) {
if (ccstr != nullptr) {
// Since the entry is read only, and we derive the entry entirely from
// the pointer, we don't need the lock.
const StringPoolEntryType &entry = GetStringMapEntryFromKeyData(ccstr);
return entry.getKey().size();
}
return 0;
}
StringPoolValueType GetMangledCounterpart(const char *ccstr) const {
if (ccstr != nullptr) {
const uint8_t h = hash(llvm::StringRef(ccstr));
llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
return GetStringMapEntryFromKeyData(ccstr).getValue();
}
return nullptr;
}
const char *GetConstCString(const char *cstr) {
if (cstr != nullptr)
return GetConstCStringWithLength(cstr, strlen(cstr));
return nullptr;
}
const char *GetConstCStringWithLength(const char *cstr, size_t cstr_len) {
if (cstr != nullptr)
return GetConstCStringWithStringRef(llvm::StringRef(cstr, cstr_len));
return nullptr;
}
const char *GetConstCStringWithStringRef(llvm::StringRef string_ref) {
if (string_ref.data()) {
const uint8_t h = hash(string_ref);
{
llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
auto it = m_string_pools[h].m_string_map.find(string_ref);
if (it != m_string_pools[h].m_string_map.end())
return it->getKeyData();
}
llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
StringPoolEntryType &entry =
*m_string_pools[h]
.m_string_map.insert(std::make_pair(string_ref, nullptr))
.first;
return entry.getKeyData();
}
return nullptr;
}
const char *
GetConstCStringAndSetMangledCounterPart(llvm::StringRef demangled,
const char *mangled_ccstr) {
const char *demangled_ccstr = nullptr;
{
const uint8_t h = hash(demangled);
llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
// Make or update string pool entry with the mangled counterpart
StringPool &map = m_string_pools[h].m_string_map;
StringPoolEntryType &entry = *map.try_emplace(demangled).first;
entry.second = mangled_ccstr;
// Extract the const version of the demangled_cstr
demangled_ccstr = entry.getKeyData();
}
{
// Now assign the demangled const string as the counterpart of the
// mangled const string...
const uint8_t h = hash(llvm::StringRef(mangled_ccstr));
llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
GetStringMapEntryFromKeyData(mangled_ccstr).setValue(demangled_ccstr);
}
// Return the constant demangled C string
return demangled_ccstr;
}
const char *GetConstTrimmedCStringWithLength(const char *cstr,
size_t cstr_len) {
if (cstr != nullptr) {
const size_t trimmed_len = strnlen(cstr, cstr_len);
return GetConstCStringWithLength(cstr, trimmed_len);
}
return nullptr;
}
ConstString::MemoryStats GetMemoryStats() const {
ConstString::MemoryStats stats;
for (const auto &pool : m_string_pools) {
llvm::sys::SmartScopedReader<false> rlock(pool.m_mutex);
const Allocator &alloc = pool.m_string_map.getAllocator();
stats.bytes_total += alloc.getTotalMemory();
stats.bytes_used += alloc.getBytesAllocated();
}
return stats;
}
protected:
uint8_t hash(llvm::StringRef s) const {
uint32_t h = llvm::djbHash(s);
return ((h >> 24) ^ (h >> 16) ^ (h >> 8) ^ h) & 0xff;
}
struct PoolEntry {
mutable llvm::sys::SmartRWMutex<false> m_mutex;
StringPool m_string_map;
};
std::array<PoolEntry, 256> m_string_pools;
};
// Frameworks and dylibs aren't supposed to have global C++ initializers so we
// hide the string pool in a static function so that it will get initialized on
// the first call to this static function.
//
// Note, for now we make the string pool a pointer to the pool, because we
// can't guarantee that some objects won't get destroyed after the global
// destructor chain is run, and trying to make sure no destructors touch
// ConstStrings is difficult. So we leak the pool instead.
static Pool &StringPool() {
static llvm::once_flag g_pool_initialization_flag;
static Pool *g_string_pool = nullptr;
llvm::call_once(g_pool_initialization_flag,
[]() { g_string_pool = new Pool(); });
return *g_string_pool;
}
ConstString::ConstString(const char *cstr)
: m_string(StringPool().GetConstCString(cstr)) {}
ConstString::ConstString(const char *cstr, size_t cstr_len)
: m_string(StringPool().GetConstCStringWithLength(cstr, cstr_len)) {}
ConstString::ConstString(llvm::StringRef s)
: m_string(StringPool().GetConstCStringWithStringRef(s)) {}
bool ConstString::operator<(ConstString rhs) const {
if (m_string == rhs.m_string)
return false;
llvm::StringRef lhs_string_ref(GetStringRef());
llvm::StringRef rhs_string_ref(rhs.GetStringRef());
// If both have valid C strings, then return the comparison
if (lhs_string_ref.data() && rhs_string_ref.data())
return lhs_string_ref < rhs_string_ref;
// Else one of them was nullptr, so if LHS is nullptr then it is less than
return lhs_string_ref.data() == nullptr;
}
Stream &lldb_private::operator<<(Stream &s, ConstString str) {
const char *cstr = str.GetCString();
if (cstr != nullptr)
s << cstr;
return s;
}
size_t ConstString::GetLength() const {
return Pool::GetConstCStringLength(m_string);
}
bool ConstString::Equals(ConstString lhs, ConstString rhs,
const bool case_sensitive) {
if (lhs.m_string == rhs.m_string)
return true;
// Since the pointers weren't equal, and identical ConstStrings always have
// identical pointers, the result must be false for case sensitive equality
// test.
if (case_sensitive)
return false;
// perform case insensitive equality test
llvm::StringRef lhs_string_ref(lhs.GetStringRef());
llvm::StringRef rhs_string_ref(rhs.GetStringRef());
return lhs_string_ref.equals_insensitive(rhs_string_ref);
}
int ConstString::Compare(ConstString lhs, ConstString rhs,
const bool case_sensitive) {
// If the iterators are the same, this is the same string
const char *lhs_cstr = lhs.m_string;
const char *rhs_cstr = rhs.m_string;
if (lhs_cstr == rhs_cstr)
return 0;
if (lhs_cstr && rhs_cstr) {
llvm::StringRef lhs_string_ref(lhs.GetStringRef());
llvm::StringRef rhs_string_ref(rhs.GetStringRef());
if (case_sensitive) {
return lhs_string_ref.compare(rhs_string_ref);
} else {
return lhs_string_ref.compare_insensitive(rhs_string_ref);
}
}
if (lhs_cstr)
return +1; // LHS isn't nullptr but RHS is
else
return -1; // LHS is nullptr but RHS isn't
}
void ConstString::Dump(Stream *s, const char *fail_value) const {
if (s != nullptr) {
const char *cstr = AsCString(fail_value);
if (cstr != nullptr)
s->PutCString(cstr);
}
}
void ConstString::DumpDebug(Stream *s) const {
const char *cstr = GetCString();
size_t cstr_len = GetLength();
// Only print the parens if we have a non-nullptr string
const char *parens = cstr ? "\"" : "";
s->Printf("%*p: ConstString, string = %s%s%s, length = %" PRIu64,
static_cast<int>(sizeof(void *) * 2),
static_cast<const void *>(this), parens, cstr, parens,
static_cast<uint64_t>(cstr_len));
}
void ConstString::SetCString(const char *cstr) {
m_string = StringPool().GetConstCString(cstr);
}
void ConstString::SetString(llvm::StringRef s) {
m_string = StringPool().GetConstCStringWithStringRef(s);
}
void ConstString::SetStringWithMangledCounterpart(llvm::StringRef demangled,
ConstString mangled) {
m_string = StringPool().GetConstCStringAndSetMangledCounterPart(
demangled, mangled.m_string);
}
bool ConstString::GetMangledCounterpart(ConstString &counterpart) const {
counterpart.m_string = StringPool().GetMangledCounterpart(m_string);
return (bool)counterpart;
}
void ConstString::SetCStringWithLength(const char *cstr, size_t cstr_len) {
m_string = StringPool().GetConstCStringWithLength(cstr, cstr_len);
}
void ConstString::SetTrimmedCStringWithLength(const char *cstr,
size_t cstr_len) {
m_string = StringPool().GetConstTrimmedCStringWithLength(cstr, cstr_len);
}
ConstString::MemoryStats ConstString::GetMemoryStats() {
return StringPool().GetMemoryStats();
}
void llvm::format_provider<ConstString>::format(const ConstString &CS,
llvm::raw_ostream &OS,
llvm::StringRef Options) {
format_provider<StringRef>::format(CS.GetStringRef(), OS, Options);
}
|