1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
//===-- Timer.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/Timer.h"
#include "lldb/Utility/Stream.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Signposts.h"
#include <algorithm>
#include <map>
#include <mutex>
#include <utility>
#include <vector>
#include <cassert>
#include <cinttypes>
#include <cstdarg>
#include <cstdio>
using namespace lldb_private;
#define TIMER_INDENT_AMOUNT 2
namespace {
typedef std::vector<Timer *> TimerStack;
static std::atomic<Timer::Category *> g_categories;
} // end of anonymous namespace
/// Allows llvm::Timer to emit signposts when supported.
static llvm::ManagedStatic<llvm::SignpostEmitter> Signposts;
std::atomic<bool> Timer::g_quiet(true);
std::atomic<unsigned> Timer::g_display_depth(0);
static std::mutex &GetFileMutex() {
static std::mutex *g_file_mutex_ptr = new std::mutex();
return *g_file_mutex_ptr;
}
static TimerStack &GetTimerStackForCurrentThread() {
static thread_local TimerStack g_stack;
return g_stack;
}
Timer::Category::Category(const char *cat) : m_name(cat) {
m_nanos.store(0, std::memory_order_release);
m_nanos_total.store(0, std::memory_order_release);
m_count.store(0, std::memory_order_release);
Category *expected = g_categories;
do {
m_next = expected;
} while (!g_categories.compare_exchange_weak(expected, this));
}
void Timer::SetQuiet(bool value) { g_quiet = value; }
Timer::Timer(Timer::Category &category, const char *format, ...)
: m_category(category), m_total_start(std::chrono::steady_clock::now()) {
Signposts->startInterval(this, m_category.GetName());
TimerStack &stack = GetTimerStackForCurrentThread();
stack.push_back(this);
if (!g_quiet && stack.size() <= g_display_depth) {
std::lock_guard<std::mutex> lock(GetFileMutex());
// Indent
::fprintf(stdout, "%*s", int(stack.size() - 1) * TIMER_INDENT_AMOUNT, "");
// Print formatted string
va_list args;
va_start(args, format);
::vfprintf(stdout, format, args);
va_end(args);
// Newline
::fprintf(stdout, "\n");
}
}
Timer::~Timer() {
using namespace std::chrono;
auto stop_time = steady_clock::now();
auto total_dur = stop_time - m_total_start;
auto timer_dur = total_dur - m_child_duration;
Signposts->endInterval(this, m_category.GetName());
TimerStack &stack = GetTimerStackForCurrentThread();
if (!g_quiet && stack.size() <= g_display_depth) {
std::lock_guard<std::mutex> lock(GetFileMutex());
::fprintf(stdout, "%*s%.9f sec (%.9f sec)\n",
int(stack.size() - 1) * TIMER_INDENT_AMOUNT, "",
duration<double>(total_dur).count(),
duration<double>(timer_dur).count());
}
assert(stack.back() == this);
stack.pop_back();
if (!stack.empty())
stack.back()->ChildDuration(total_dur);
// Keep total results for each category so we can dump results.
m_category.m_nanos += std::chrono::nanoseconds(timer_dur).count();
m_category.m_nanos_total += std::chrono::nanoseconds(total_dur).count();
m_category.m_count++;
}
void Timer::SetDisplayDepth(uint32_t depth) { g_display_depth = depth; }
/* binary function predicate:
* - returns whether a person is less than another person
*/
namespace {
struct Stats {
const char *name;
uint64_t nanos;
uint64_t nanos_total;
uint64_t count;
};
} // namespace
static bool CategoryMapIteratorSortCriterion(const Stats &lhs,
const Stats &rhs) {
return lhs.nanos > rhs.nanos;
}
void Timer::ResetCategoryTimes() {
for (Category *i = g_categories; i; i = i->m_next) {
i->m_nanos.store(0, std::memory_order_release);
i->m_nanos_total.store(0, std::memory_order_release);
i->m_count.store(0, std::memory_order_release);
}
}
void Timer::DumpCategoryTimes(Stream &s) {
std::vector<Stats> sorted;
for (Category *i = g_categories; i; i = i->m_next) {
uint64_t nanos = i->m_nanos.load(std::memory_order_acquire);
if (nanos) {
uint64_t nanos_total = i->m_nanos_total.load(std::memory_order_acquire);
uint64_t count = i->m_count.load(std::memory_order_acquire);
Stats stats{i->m_name, nanos, nanos_total, count};
sorted.push_back(stats);
}
}
if (sorted.empty())
return; // Later code will break without any elements.
// Sort by time
llvm::sort(sorted, CategoryMapIteratorSortCriterion);
for (const auto &stats : sorted)
s.Printf("%.9f sec (total: %.3fs; child: %.3fs; count: %" PRIu64
") for %s\n",
stats.nanos / 1000000000., stats.nanos_total / 1000000000.,
(stats.nanos_total - stats.nanos) / 1000000000., stats.count,
stats.name);
}
|