1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
|
//===---- Delinearization.cpp - MultiDimensional Index Delinearization ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements an analysis pass that tries to delinearize all GEP
// instructions in all loops using the SCEV analysis functionality. This pass is
// only used for testing purposes: if your pass needs delinearization, please
// use the on-demand SCEVAddRecExpr::delinearize() function.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Delinearization.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionDivision.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DL_NAME "delinearize"
#define DEBUG_TYPE DL_NAME
// Return true when S contains at least an undef value.
static inline bool containsUndefs(const SCEV *S) {
return SCEVExprContains(S, [](const SCEV *S) {
if (const auto *SU = dyn_cast<SCEVUnknown>(S))
return isa<UndefValue>(SU->getValue());
return false;
});
}
namespace {
// Collect all steps of SCEV expressions.
struct SCEVCollectStrides {
ScalarEvolution &SE;
SmallVectorImpl<const SCEV *> &Strides;
SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
: SE(SE), Strides(S) {}
bool follow(const SCEV *S) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
Strides.push_back(AR->getStepRecurrence(SE));
return true;
}
bool isDone() const { return false; }
};
// Collect all SCEVUnknown and SCEVMulExpr expressions.
struct SCEVCollectTerms {
SmallVectorImpl<const SCEV *> &Terms;
SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
bool follow(const SCEV *S) {
if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
isa<SCEVSignExtendExpr>(S)) {
if (!containsUndefs(S))
Terms.push_back(S);
// Stop recursion: once we collected a term, do not walk its operands.
return false;
}
// Keep looking.
return true;
}
bool isDone() const { return false; }
};
// Check if a SCEV contains an AddRecExpr.
struct SCEVHasAddRec {
bool &ContainsAddRec;
SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
ContainsAddRec = false;
}
bool follow(const SCEV *S) {
if (isa<SCEVAddRecExpr>(S)) {
ContainsAddRec = true;
// Stop recursion: once we collected a term, do not walk its operands.
return false;
}
// Keep looking.
return true;
}
bool isDone() const { return false; }
};
// Find factors that are multiplied with an expression that (possibly as a
// subexpression) contains an AddRecExpr. In the expression:
//
// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
//
// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
// parameters as they form a product with an induction variable.
//
// This collector expects all array size parameters to be in the same MulExpr.
// It might be necessary to later add support for collecting parameters that are
// spread over different nested MulExpr.
struct SCEVCollectAddRecMultiplies {
SmallVectorImpl<const SCEV *> &Terms;
ScalarEvolution &SE;
SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T,
ScalarEvolution &SE)
: Terms(T), SE(SE) {}
bool follow(const SCEV *S) {
if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
bool HasAddRec = false;
SmallVector<const SCEV *, 0> Operands;
for (const auto *Op : Mul->operands()) {
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
if (Unknown && !isa<CallInst>(Unknown->getValue())) {
Operands.push_back(Op);
} else if (Unknown) {
HasAddRec = true;
} else {
bool ContainsAddRec = false;
SCEVHasAddRec ContiansAddRec(ContainsAddRec);
visitAll(Op, ContiansAddRec);
HasAddRec |= ContainsAddRec;
}
}
if (Operands.size() == 0)
return true;
if (!HasAddRec)
return false;
Terms.push_back(SE.getMulExpr(Operands));
// Stop recursion: once we collected a term, do not walk its operands.
return false;
}
// Keep looking.
return true;
}
bool isDone() const { return false; }
};
} // end anonymous namespace
/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
/// two places:
/// 1) The strides of AddRec expressions.
/// 2) Unknowns that are multiplied with AddRec expressions.
void llvm::collectParametricTerms(ScalarEvolution &SE, const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Terms) {
SmallVector<const SCEV *, 4> Strides;
SCEVCollectStrides StrideCollector(SE, Strides);
visitAll(Expr, StrideCollector);
LLVM_DEBUG({
dbgs() << "Strides:\n";
for (const SCEV *S : Strides)
dbgs() << *S << "\n";
});
for (const SCEV *S : Strides) {
SCEVCollectTerms TermCollector(Terms);
visitAll(S, TermCollector);
}
LLVM_DEBUG({
dbgs() << "Terms:\n";
for (const SCEV *T : Terms)
dbgs() << *T << "\n";
});
SCEVCollectAddRecMultiplies MulCollector(Terms, SE);
visitAll(Expr, MulCollector);
}
static bool findArrayDimensionsRec(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes) {
int Last = Terms.size() - 1;
const SCEV *Step = Terms[Last];
// End of recursion.
if (Last == 0) {
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
SmallVector<const SCEV *, 2> Qs;
for (const SCEV *Op : M->operands())
if (!isa<SCEVConstant>(Op))
Qs.push_back(Op);
Step = SE.getMulExpr(Qs);
}
Sizes.push_back(Step);
return true;
}
for (const SCEV *&Term : Terms) {
// Normalize the terms before the next call to findArrayDimensionsRec.
const SCEV *Q, *R;
SCEVDivision::divide(SE, Term, Step, &Q, &R);
// Bail out when GCD does not evenly divide one of the terms.
if (!R->isZero())
return false;
Term = Q;
}
// Remove all SCEVConstants.
erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
if (Terms.size() > 0)
if (!findArrayDimensionsRec(SE, Terms, Sizes))
return false;
Sizes.push_back(Step);
return true;
}
// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
for (const SCEV *T : Terms)
if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
return true;
return false;
}
// Return the number of product terms in S.
static inline int numberOfTerms(const SCEV *S) {
if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
return Expr->getNumOperands();
return 1;
}
static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
if (isa<SCEVConstant>(T))
return nullptr;
if (isa<SCEVUnknown>(T))
return T;
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
SmallVector<const SCEV *, 2> Factors;
for (const SCEV *Op : M->operands())
if (!isa<SCEVConstant>(Op))
Factors.push_back(Op);
return SE.getMulExpr(Factors);
}
return T;
}
void llvm::findArrayDimensions(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) {
if (Terms.size() < 1 || !ElementSize)
return;
// Early return when Terms do not contain parameters: we do not delinearize
// non parametric SCEVs.
if (!containsParameters(Terms))
return;
LLVM_DEBUG({
dbgs() << "Terms:\n";
for (const SCEV *T : Terms)
dbgs() << *T << "\n";
});
// Remove duplicates.
array_pod_sort(Terms.begin(), Terms.end());
Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
// Put larger terms first.
llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
return numberOfTerms(LHS) > numberOfTerms(RHS);
});
// Try to divide all terms by the element size. If term is not divisible by
// element size, proceed with the original term.
for (const SCEV *&Term : Terms) {
const SCEV *Q, *R;
SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
if (!Q->isZero())
Term = Q;
}
SmallVector<const SCEV *, 4> NewTerms;
// Remove constant factors.
for (const SCEV *T : Terms)
if (const SCEV *NewT = removeConstantFactors(SE, T))
NewTerms.push_back(NewT);
LLVM_DEBUG({
dbgs() << "Terms after sorting:\n";
for (const SCEV *T : NewTerms)
dbgs() << *T << "\n";
});
if (NewTerms.empty() || !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sizes.clear();
return;
}
// The last element to be pushed into Sizes is the size of an element.
Sizes.push_back(ElementSize);
LLVM_DEBUG({
dbgs() << "Sizes:\n";
for (const SCEV *S : Sizes)
dbgs() << *S << "\n";
});
}
void llvm::computeAccessFunctions(ScalarEvolution &SE, const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes) {
// Early exit in case this SCEV is not an affine multivariate function.
if (Sizes.empty())
return;
if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
if (!AR->isAffine())
return;
const SCEV *Res = Expr;
int Last = Sizes.size() - 1;
for (int i = Last; i >= 0; i--) {
const SCEV *Q, *R;
SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
LLVM_DEBUG({
dbgs() << "Res: " << *Res << "\n";
dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
dbgs() << "Res divided by Sizes[i]:\n";
dbgs() << "Quotient: " << *Q << "\n";
dbgs() << "Remainder: " << *R << "\n";
});
Res = Q;
// Do not record the last subscript corresponding to the size of elements in
// the array.
if (i == Last) {
// Bail out if the byte offset is non-zero.
if (!R->isZero()) {
Subscripts.clear();
Sizes.clear();
return;
}
continue;
}
// Record the access function for the current subscript.
Subscripts.push_back(R);
}
// Also push in last position the remainder of the last division: it will be
// the access function of the innermost dimension.
Subscripts.push_back(Res);
std::reverse(Subscripts.begin(), Subscripts.end());
LLVM_DEBUG({
dbgs() << "Subscripts:\n";
for (const SCEV *S : Subscripts)
dbgs() << *S << "\n";
});
}
/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
/// sizes of an array access. Returns the remainder of the delinearization that
/// is the offset start of the array. The SCEV->delinearize algorithm computes
/// the multiples of SCEV coefficients: that is a pattern matching of sub
/// expressions in the stride and base of a SCEV corresponding to the
/// computation of a GCD (greatest common divisor) of base and stride. When
/// SCEV->delinearize fails, it returns the SCEV unchanged.
///
/// For example: when analyzing the memory access A[i][j][k] in this loop nest
///
/// void foo(long n, long m, long o, double A[n][m][o]) {
///
/// for (long i = 0; i < n; i++)
/// for (long j = 0; j < m; j++)
/// for (long k = 0; k < o; k++)
/// A[i][j][k] = 1.0;
/// }
///
/// the delinearization input is the following AddRec SCEV:
///
/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
///
/// From this SCEV, we are able to say that the base offset of the access is %A
/// because it appears as an offset that does not divide any of the strides in
/// the loops:
///
/// CHECK: Base offset: %A
///
/// and then SCEV->delinearize determines the size of some of the dimensions of
/// the array as these are the multiples by which the strides are happening:
///
/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double)
/// bytes.
///
/// Note that the outermost dimension remains of UnknownSize because there are
/// no strides that would help identifying the size of the last dimension: when
/// the array has been statically allocated, one could compute the size of that
/// dimension by dividing the overall size of the array by the size of the known
/// dimensions: %m * %o * 8.
///
/// Finally delinearize provides the access functions for the array reference
/// that does correspond to A[i][j][k] of the above C testcase:
///
/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
///
/// The testcases are checking the output of a function pass:
/// DelinearizationPass that walks through all loads and stores of a function
/// asking for the SCEV of the memory access with respect to all enclosing
/// loops, calling SCEV->delinearize on that and printing the results.
void llvm::delinearize(ScalarEvolution &SE, const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) {
// First step: collect parametric terms.
SmallVector<const SCEV *, 4> Terms;
collectParametricTerms(SE, Expr, Terms);
if (Terms.empty())
return;
// Second step: find subscript sizes.
findArrayDimensions(SE, Terms, Sizes, ElementSize);
if (Sizes.empty())
return;
// Third step: compute the access functions for each subscript.
computeAccessFunctions(SE, Expr, Subscripts, Sizes);
if (Subscripts.empty())
return;
LLVM_DEBUG({
dbgs() << "succeeded to delinearize " << *Expr << "\n";
dbgs() << "ArrayDecl[UnknownSize]";
for (const SCEV *S : Sizes)
dbgs() << "[" << *S << "]";
dbgs() << "\nArrayRef";
for (const SCEV *S : Subscripts)
dbgs() << "[" << *S << "]";
dbgs() << "\n";
});
}
bool llvm::getIndexExpressionsFromGEP(ScalarEvolution &SE,
const GetElementPtrInst *GEP,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<int> &Sizes) {
assert(Subscripts.empty() && Sizes.empty() &&
"Expected output lists to be empty on entry to this function.");
assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
Type *Ty = nullptr;
bool DroppedFirstDim = false;
for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
const SCEV *Expr = SE.getSCEV(GEP->getOperand(i));
if (i == 1) {
Ty = GEP->getSourceElementType();
if (auto *Const = dyn_cast<SCEVConstant>(Expr))
if (Const->getValue()->isZero()) {
DroppedFirstDim = true;
continue;
}
Subscripts.push_back(Expr);
continue;
}
auto *ArrayTy = dyn_cast<ArrayType>(Ty);
if (!ArrayTy) {
Subscripts.clear();
Sizes.clear();
return false;
}
Subscripts.push_back(Expr);
if (!(DroppedFirstDim && i == 2))
Sizes.push_back(ArrayTy->getNumElements());
Ty = ArrayTy->getElementType();
}
return !Subscripts.empty();
}
bool llvm::tryDelinearizeFixedSizeImpl(
ScalarEvolution *SE, Instruction *Inst, const SCEV *AccessFn,
SmallVectorImpl<const SCEV *> &Subscripts, SmallVectorImpl<int> &Sizes) {
Value *SrcPtr = getLoadStorePointerOperand(Inst);
// Check the simple case where the array dimensions are fixed size.
auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
if (!SrcGEP)
return false;
getIndexExpressionsFromGEP(*SE, SrcGEP, Subscripts, Sizes);
// Check that the two size arrays are non-empty and equal in length and
// value.
// TODO: it would be better to let the caller to clear Subscripts, similar
// to how we handle Sizes.
if (Sizes.empty() || Subscripts.size() <= 1) {
Subscripts.clear();
return false;
}
// Check that for identical base pointers we do not miss index offsets
// that have been added before this GEP is applied.
Value *SrcBasePtr = SrcGEP->getOperand(0)->stripPointerCasts();
const SCEVUnknown *SrcBase =
dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFn));
if (!SrcBase || SrcBasePtr != SrcBase->getValue()) {
Subscripts.clear();
return false;
}
assert(Subscripts.size() == Sizes.size() + 1 &&
"Expected equal number of entries in the list of size and "
"subscript.");
return true;
}
namespace {
class Delinearization : public FunctionPass {
Delinearization(const Delinearization &); // do not implement
protected:
Function *F;
LoopInfo *LI;
ScalarEvolution *SE;
public:
static char ID; // Pass identification, replacement for typeid
Delinearization() : FunctionPass(ID) {
initializeDelinearizationPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
void print(raw_ostream &O, const Module *M = nullptr) const override;
};
void printDelinearization(raw_ostream &O, Function *F, LoopInfo *LI,
ScalarEvolution *SE) {
O << "Delinearization on function " << F->getName() << ":\n";
for (Instruction &Inst : instructions(F)) {
// Only analyze loads and stores.
if (!isa<StoreInst>(&Inst) && !isa<LoadInst>(&Inst) &&
!isa<GetElementPtrInst>(&Inst))
continue;
const BasicBlock *BB = Inst.getParent();
// Delinearize the memory access as analyzed in all the surrounding loops.
// Do not analyze memory accesses outside loops.
for (Loop *L = LI->getLoopFor(BB); L != nullptr; L = L->getParentLoop()) {
const SCEV *AccessFn = SE->getSCEVAtScope(getPointerOperand(&Inst), L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFn));
// Do not delinearize if we cannot find the base pointer.
if (!BasePointer)
break;
AccessFn = SE->getMinusSCEV(AccessFn, BasePointer);
O << "\n";
O << "Inst:" << Inst << "\n";
O << "In Loop with Header: " << L->getHeader()->getName() << "\n";
O << "AccessFunction: " << *AccessFn << "\n";
SmallVector<const SCEV *, 3> Subscripts, Sizes;
delinearize(*SE, AccessFn, Subscripts, Sizes, SE->getElementSize(&Inst));
if (Subscripts.size() == 0 || Sizes.size() == 0 ||
Subscripts.size() != Sizes.size()) {
O << "failed to delinearize\n";
continue;
}
O << "Base offset: " << *BasePointer << "\n";
O << "ArrayDecl[UnknownSize]";
int Size = Subscripts.size();
for (int i = 0; i < Size - 1; i++)
O << "[" << *Sizes[i] << "]";
O << " with elements of " << *Sizes[Size - 1] << " bytes.\n";
O << "ArrayRef";
for (int i = 0; i < Size; i++)
O << "[" << *Subscripts[i] << "]";
O << "\n";
}
}
}
} // end anonymous namespace
void Delinearization::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
}
bool Delinearization::runOnFunction(Function &F) {
this->F = &F;
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
return false;
}
void Delinearization::print(raw_ostream &O, const Module *) const {
printDelinearization(O, F, LI, SE);
}
char Delinearization::ID = 0;
static const char delinearization_name[] = "Delinearization";
INITIALIZE_PASS_BEGIN(Delinearization, DL_NAME, delinearization_name, true,
true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(Delinearization, DL_NAME, delinearization_name, true, true)
FunctionPass *llvm::createDelinearizationPass() { return new Delinearization; }
DelinearizationPrinterPass::DelinearizationPrinterPass(raw_ostream &OS)
: OS(OS) {}
PreservedAnalyses DelinearizationPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
printDelinearization(OS, &F, &AM.getResult<LoopAnalysis>(F),
&AM.getResult<ScalarEvolutionAnalysis>(F));
return PreservedAnalyses::all();
}
|