1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
//===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a model runner using Tensorflow C APIs, allowing the
// loading of a model from a command line option.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TensorSpec.h"
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TFLITE)
#include "llvm/ADT/BitVector.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
#include "llvm/Analysis/MLInlineAdvisor.h"
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
#include "llvm/Analysis/NoInferenceModelRunner.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/Analysis/Utils/TrainingLogger.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include <vector>
#include <optional>
using namespace llvm;
static cl::opt<std::string> TrainingLog(
"training-log", cl::Hidden,
cl::desc("Path where the development - mode inlining log is saved."));
static cl::opt<std::string> TFModelUnderTrainingPath(
"ml-inliner-model-under-training", cl::Hidden,
cl::desc(R"(Path to SavedModel from the previous training iteration.
The directory is also expected to contain a JSON specification of the
outputs expected to be logged, where the first entry must be the
inlining decision. The file containing the specification should be
called output_spec.json. The expected JSON value is an array of
dictionaries. Each dictionary should have 2 keys:
- "tensor_spec, followed by the TensorSpec description of the
output; and
- "logging_name", a string indicating the name to use when
logging the output values.
Example:
[
{
"logging_name" : "some_name",
"tensor_spec" : {
"name" : "model_name",
"port" : 0,
"shape" : [2, 3],
"type" : "float"
}
}
]
The first value must always correspond to the decision.)"));
static cl::opt<std::string> TFOutputSpecOverride(
"ml-inliner-output-spec-override", cl::Hidden,
cl::desc("Override the path to the output spec json file. See "
"-ml-inliner-model-under-training documentation for the "
"specification of that file."));
static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix",
cl::Hidden, cl::init("action_"),
cl::desc("Prefix for feature names."));
namespace {
/// An InlineEvent, used by TrainingLogger.
struct InlineEvent {
/// What the default policy's decision would have been.
int64_t DefaultDecision = 0;
/// What we advised. When training off the default policy, this is the same as
/// DefaultDecision.
int64_t AdvisedDecision = 0;
/// What actually happened. This would be 'false' in the case of an inline
/// error, even if AdvisedDecision were true, otherwise it agrees with
/// AdvisedDecision.
bool Effect = false;
/// What the change in size was: size_after - size_before
int64_t Reward = 0;
};
/// Collect data we may use for training a model.
class TrainingLogger final {
public:
TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR);
/// Log one inlining event.
void logInlineEvent(const InlineEvent &Event,
const MLModelRunner &ModelRunner);
private:
StringRef LogFileName;
const ModelUnderTrainingRunner *const MUTR;
std::unique_ptr<Logger> L;
BitVector Effects;
/// Set these 2 clearly OOB, to make sure we set them later.
size_t DefaultDecisionPos = std::numeric_limits<size_t>::max();
size_t DecisionPos = std::numeric_limits<size_t>::max();
};
/// An extension of the MLInlineAdvisor for the 'development' mode, targeting
/// the offline training scenario. Note that training happens outside of the
/// compiler, this facility is concerned with producing training data ("logs").
/// This InlineAdvisor can operate in the following modes:
///
/// 1) collect logs for the default policy. This is useful for bootstrapping
/// training, which will be considerably faster by starting from a reasonable
/// policy.
///
/// 2) collect logs for the ML policy, using a model from a previous
/// training. Potentially, that model uses internally some small random
/// perturbation of its weights, to induce exploration (setting this up is the
/// responsibility of the training algorithm). The logs would then be used to
/// retrain and improve on this model.
///
/// 3) use the provided model, with no logging. This is useful for end to end
/// validation - the model, in this case, is a release candidate and shouldn't
/// have random perturbations. It is a convenience feature: rather than needing
/// to take the release candidate model and compile it in 'release' mode,
/// validate it, then potentially discard it, it's easier to just pass the model
/// to the compiler, albeit compilation would be slower, as a one-off. Once the
/// model behaves satisfactorily, it can be compiled AOT, for efficiency, in
/// release mode. The expectation is that a well-trained model provides a good
/// policy over a sufficiently diverse codebase, over many changes (i.e.
/// training happens seldom).
class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor {
public:
DevelopmentModeMLInlineAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> ModelRunner,
std::function<bool(CallBase &)> GetDefaultAdvice,
std::unique_ptr<TrainingLogger> Logger);
size_t getTotalSizeEstimate();
void updateNativeSizeEstimate(int64_t Change) {
*CurrentNativeSize += Change;
}
void resetNativeSize(Function *F) {
PreservedAnalyses PA = PreservedAnalyses::all();
PA.abandon<InlineSizeEstimatorAnalysis>();
FAM.invalidate(*F, PA);
}
std::unique_ptr<MLInlineAdvice>
getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
std::optional<size_t> getNativeSizeEstimate(const Function &F) const;
private:
bool isLogging() const { return !!Logger; }
std::unique_ptr<MLInlineAdvice> getMandatoryAdviceImpl(CallBase &CB) override;
const bool IsDoingInference;
std::unique_ptr<TrainingLogger> Logger;
const std::optional<int32_t> InitialNativeSize;
std::optional<int32_t> CurrentNativeSize;
};
/// A variant of MLInlineAdvice that tracks all non-trivial inlining
/// decisions, for training/logging.
class LoggingMLInlineAdvice : public MLInlineAdvice {
public:
LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB,
OptimizationRemarkEmitter &ORE, bool Recommendation,
TrainingLogger &Logger,
std::optional<size_t> CallerSizeEstimateBefore,
std::optional<size_t> CalleeSizeEstimateBefore,
bool DefaultDecision, bool Mandatory = false)
: MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger),
CallerSizeEstimateBefore(CallerSizeEstimateBefore),
CalleeSizeEstimateBefore(CalleeSizeEstimateBefore),
DefaultDecision(DefaultDecision), Mandatory(Mandatory) {}
virtual ~LoggingMLInlineAdvice() = default;
private:
DevelopmentModeMLInlineAdvisor *getAdvisor() const {
return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor);
}
void recordInliningImpl() override {
MLInlineAdvice::recordInliningImpl();
getAdvisor()->resetNativeSize(Caller);
int Reward = std::numeric_limits<int>::max();
if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() &&
!getAdvisor()->isForcedToStop()) {
int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) +
*CalleeSizeEstimateBefore;
Reward = NativeSizeAfter -
(*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore);
getAdvisor()->updateNativeSizeEstimate(Reward);
}
log(Reward, /*Success=*/true);
}
void recordInliningWithCalleeDeletedImpl() override {
MLInlineAdvice::recordInliningWithCalleeDeletedImpl();
getAdvisor()->resetNativeSize(Caller);
if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() &&
!getAdvisor()->isForcedToStop()) {
int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller);
int Reward = NativeSizeAfter -
(*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore);
getAdvisor()->updateNativeSizeEstimate(Reward);
log(Reward, /*Success=*/true);
} else {
log(NoReward, /*Success=*/true);
}
}
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override {
MLInlineAdvice::recordUnsuccessfulInliningImpl(Result);
log(NoReward, /*Success=*/false);
}
void recordUnattemptedInliningImpl() override {
MLInlineAdvice::recordUnattemptedInliningImpl();
log(NoReward, /*Success=*/false);
}
void log(int64_t Reward, bool Success) {
if (Mandatory)
return;
InlineEvent Event;
Event.AdvisedDecision = isInliningRecommended();
Event.DefaultDecision = DefaultDecision;
Event.Effect = Success;
Event.Reward = Reward;
Logger.logInlineEvent(Event, getAdvisor()->getModelRunner());
}
static const int64_t NoReward = 0;
TrainingLogger &Logger;
const std::optional<size_t> CallerSizeEstimateBefore;
const std::optional<size_t> CalleeSizeEstimateBefore;
const int64_t DefaultDecision;
const int64_t Mandatory;
};
static const std::vector<TensorSpec> TrainingOnlyFeatures{
TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}),
TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}),
TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}),
TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})};
static const std::vector<TensorSpec> getInputFeatures() {
std::vector<TensorSpec> InputSpecs;
for (size_t I = 0; I < NumberOfFeatures; ++I)
InputSpecs.push_back(TensorSpec::createSpec<int64_t>(
TFFeedPrefix + FeatureMap[I].name(), FeatureMap[I].shape()));
append_range(InputSpecs, TrainingOnlyFeatures);
return InputSpecs;
}
} // namespace
TrainingLogger::TrainingLogger(StringRef LogFileName,
const ModelUnderTrainingRunner *MUTR)
: LogFileName(LogFileName), MUTR(MUTR) {
// The first output is the inlining decision.
std::vector<TensorSpec> FT(FeatureMap.begin(), FeatureMap.end());
if (MUTR)
append_range(FT, MUTR->extraOutputsForLoggingSpecs());
DefaultDecisionPos = FT.size();
FT.push_back(DefaultDecisionSpec);
DecisionPos = FT.size();
FT.push_back(InlineDecisionSpec);
std::error_code EC;
auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
if (EC)
dbgs() << (EC.message() + ":" + TrainingLog);
L = std::make_unique<Logger>(
std::move(OS), FT, TensorSpec::createSpec<int64_t>(RewardName, {1}),
InlineSizeEstimatorAnalysis::isEvaluatorRequested());
L->switchContext("");
}
/// Log one inlining event.
void TrainingLogger::logInlineEvent(const InlineEvent &Event,
const MLModelRunner &ModelRunner) {
L->startObservation();
size_t CurrentFeature = 0;
for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature)
L->logTensorValue(CurrentFeature,
reinterpret_cast<const char *>(
ModelRunner.getTensorUntyped(CurrentFeature)));
if (MUTR)
for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); ++I) {
const char *RawData =
reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I));
L->logTensorValue(CurrentFeature, RawData);
++CurrentFeature;
}
assert(CurrentFeature == DefaultDecisionPos);
L->logTensorValue(DefaultDecisionPos,
reinterpret_cast<const char *>(&Event.DefaultDecision));
L->logTensorValue(DecisionPos,
reinterpret_cast<const char *>(&Event.AdvisedDecision));
L->endObservation();
if (InlineSizeEstimatorAnalysis::isEvaluatorRequested())
L->logReward(Event.Reward);
// For debugging / later use
Effects.push_back(Event.Effect);
}
DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> ModelRunner,
std::function<bool(CallBase &)> GetDefaultAdvice,
std::unique_ptr<TrainingLogger> Logger)
: MLInlineAdvisor(M, MAM, std::move(ModelRunner), GetDefaultAdvice),
IsDoingInference(isa<ModelUnderTrainingRunner>(getModelRunner())),
Logger(std::move(Logger)),
InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0),
CurrentNativeSize(InitialNativeSize) {
// We cannot have the case of neither inference nor logging.
assert(IsDoingInference || isLogging());
}
std::optional<size_t>
DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const {
if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested())
return std::nullopt;
auto &R =
FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F));
if (!R) {
F.getParent()->getContext().emitError(
"Native size estimator is not present.");
return 0;
}
return *R;
}
std::unique_ptr<MLInlineAdvice>
DevelopmentModeMLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
return std::make_unique<LoggingMLInlineAdvice>(
/*Advisor=*/this,
/*CB=*/CB, /*ORE=*/getCallerORE(CB), /*Recommendation=*/true,
/*Logger=*/*Logger,
/*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
/*CalleeSizeEstimateBefore=*/
getNativeSizeEstimate(*CB.getCalledFunction()),
/*DefaultDecision=*/true, /*Mandatory*/ true);
}
std::unique_ptr<MLInlineAdvice>
DevelopmentModeMLInlineAdvisor::getAdviceFromModel(
CallBase &CB, OptimizationRemarkEmitter &ORE) {
if (IsDoingInference && !isLogging())
return MLInlineAdvisor::getAdviceFromModel(CB, ORE);
bool DefaultAdvice = GetDefaultAdvice(CB);
auto Recommendation =
IsDoingInference ? static_cast<bool>(ModelRunner->evaluate<int64_t>())
: DefaultAdvice;
return std::make_unique<LoggingMLInlineAdvice>(
/*Advisor=*/this,
/*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation,
/*Logger=*/*Logger,
/*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
/*CalleeSizeEstimateBefore=*/
getNativeSizeEstimate(*CB.getCalledFunction()),
/*DefaultDecision=*/DefaultAdvice);
}
size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() {
if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested())
return 0;
size_t Ret = 0;
for (auto &F : M) {
if (F.isDeclaration())
continue;
Ret += *getNativeSizeEstimate(F);
}
return Ret;
}
std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::function<bool(CallBase &)> GetDefaultAdvice) {
auto &Ctx = M.getContext();
std::unique_ptr<MLModelRunner> Runner;
if (TFModelUnderTrainingPath.empty())
Runner.reset(new NoInferenceModelRunner(Ctx, getInputFeatures()));
else
Runner = ModelUnderTrainingRunner::createAndEnsureValid(
Ctx, TFModelUnderTrainingPath, DecisionName, getInputFeatures(),
TFOutputSpecOverride);
if (!Runner)
return nullptr;
std::unique_ptr<TrainingLogger> Logger;
if (!TrainingLog.empty())
Logger = std::make_unique<TrainingLogger>(
TrainingLog, dyn_cast<ModelUnderTrainingRunner>(Runner.get()));
return std::make_unique<DevelopmentModeMLInlineAdvisor>(
M, MAM, std::move(Runner), GetDefaultAdvice, std::move(Logger));
}
#endif // defined(LLVM_HAVE_TFLITE)
|