1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
|
//===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions identifies calls to builtin functions that allocate
// or free memory.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <optional>
#include <type_traits>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "memory-builtins"
enum AllocType : uint8_t {
OpNewLike = 1<<0, // allocates; never returns null
MallocLike = 1<<1, // allocates; may return null
StrDupLike = 1<<2,
MallocOrOpNewLike = MallocLike | OpNewLike,
AllocLike = MallocOrOpNewLike | StrDupLike,
AnyAlloc = AllocLike
};
enum class MallocFamily {
Malloc,
CPPNew, // new(unsigned int)
CPPNewAligned, // new(unsigned int, align_val_t)
CPPNewArray, // new[](unsigned int)
CPPNewArrayAligned, // new[](unsigned long, align_val_t)
MSVCNew, // new(unsigned int)
MSVCArrayNew, // new[](unsigned int)
VecMalloc,
KmpcAllocShared,
};
StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
switch (Family) {
case MallocFamily::Malloc:
return "malloc";
case MallocFamily::CPPNew:
return "_Znwm";
case MallocFamily::CPPNewAligned:
return "_ZnwmSt11align_val_t";
case MallocFamily::CPPNewArray:
return "_Znam";
case MallocFamily::CPPNewArrayAligned:
return "_ZnamSt11align_val_t";
case MallocFamily::MSVCNew:
return "??2@YAPAXI@Z";
case MallocFamily::MSVCArrayNew:
return "??_U@YAPAXI@Z";
case MallocFamily::VecMalloc:
return "vec_malloc";
case MallocFamily::KmpcAllocShared:
return "__kmpc_alloc_shared";
}
llvm_unreachable("missing an alloc family");
}
struct AllocFnsTy {
AllocType AllocTy;
unsigned NumParams;
// First and Second size parameters (or -1 if unused)
int FstParam, SndParam;
// Alignment parameter for aligned_alloc and aligned new
int AlignParam;
// Name of default allocator function to group malloc/free calls by family
MallocFamily Family;
};
// clang-format off
// FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
// know which functions are nounwind, noalias, nocapture parameters, etc.
static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
{LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int)
{LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow)
{LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t)
{LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow)
{LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long)
{LibFunc_Znwm12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, __hot_cold_t)
{LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow)
{LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow, __hot_cold_t)
{LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t)
{LibFunc_ZnwmSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, __hot_cold_t)
{LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow)
{LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow, __hot_cold_t)
{LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int)
{LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow)
{LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
{LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
{LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long)
{LibFunc_Znam12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, __hot_cold_t)
{LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow)
{LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, nothrow, __hot_cold_t)
{LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
{LibFunc_ZnamSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, __hot_cold_t)
{LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
{LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, nothrow, __hot_cold_t)
{LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int)
{LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow)
{LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long)
{LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow)
{LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int)
{LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow)
{LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long)
{LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow)
{LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}},
{LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}},
{LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}},
{LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}},
{LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}},
};
// clang-format on
static const Function *getCalledFunction(const Value *V,
bool &IsNoBuiltin) {
// Don't care about intrinsics in this case.
if (isa<IntrinsicInst>(V))
return nullptr;
const auto *CB = dyn_cast<CallBase>(V);
if (!CB)
return nullptr;
IsNoBuiltin = CB->isNoBuiltin();
if (const Function *Callee = CB->getCalledFunction())
return Callee;
return nullptr;
}
/// Returns the allocation data for the given value if it's a call to a known
/// allocation function.
static std::optional<AllocFnsTy>
getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
const TargetLibraryInfo *TLI) {
// Don't perform a slow TLI lookup, if this function doesn't return a pointer
// and thus can't be an allocation function.
if (!Callee->getReturnType()->isPointerTy())
return std::nullopt;
// Make sure that the function is available.
LibFunc TLIFn;
if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
return std::nullopt;
const auto *Iter = find_if(
AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
return P.first == TLIFn;
});
if (Iter == std::end(AllocationFnData))
return std::nullopt;
const AllocFnsTy *FnData = &Iter->second;
if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
return std::nullopt;
// Check function prototype.
int FstParam = FnData->FstParam;
int SndParam = FnData->SndParam;
FunctionType *FTy = Callee->getFunctionType();
if (FTy->getReturnType()->isPointerTy() &&
FTy->getNumParams() == FnData->NumParams &&
(FstParam < 0 ||
(FTy->getParamType(FstParam)->isIntegerTy(32) ||
FTy->getParamType(FstParam)->isIntegerTy(64))) &&
(SndParam < 0 ||
FTy->getParamType(SndParam)->isIntegerTy(32) ||
FTy->getParamType(SndParam)->isIntegerTy(64)))
return *FnData;
return std::nullopt;
}
static std::optional<AllocFnsTy>
getAllocationData(const Value *V, AllocType AllocTy,
const TargetLibraryInfo *TLI) {
bool IsNoBuiltinCall;
if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
if (!IsNoBuiltinCall)
return getAllocationDataForFunction(Callee, AllocTy, TLI);
return std::nullopt;
}
static std::optional<AllocFnsTy>
getAllocationData(const Value *V, AllocType AllocTy,
function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
bool IsNoBuiltinCall;
if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
if (!IsNoBuiltinCall)
return getAllocationDataForFunction(
Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
return std::nullopt;
}
static std::optional<AllocFnsTy>
getAllocationSize(const Value *V, const TargetLibraryInfo *TLI) {
bool IsNoBuiltinCall;
const Function *Callee =
getCalledFunction(V, IsNoBuiltinCall);
if (!Callee)
return std::nullopt;
// Prefer to use existing information over allocsize. This will give us an
// accurate AllocTy.
if (!IsNoBuiltinCall)
if (std::optional<AllocFnsTy> Data =
getAllocationDataForFunction(Callee, AnyAlloc, TLI))
return Data;
Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
if (Attr == Attribute())
return std::nullopt;
std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs();
AllocFnsTy Result;
// Because allocsize only tells us how many bytes are allocated, we're not
// really allowed to assume anything, so we use MallocLike.
Result.AllocTy = MallocLike;
Result.NumParams = Callee->getNumOperands();
Result.FstParam = Args.first;
Result.SndParam = Args.second.value_or(-1);
// Allocsize has no way to specify an alignment argument
Result.AlignParam = -1;
return Result;
}
static AllocFnKind getAllocFnKind(const Value *V) {
if (const auto *CB = dyn_cast<CallBase>(V)) {
Attribute Attr = CB->getFnAttr(Attribute::AllocKind);
if (Attr.isValid())
return AllocFnKind(Attr.getValueAsInt());
}
return AllocFnKind::Unknown;
}
static AllocFnKind getAllocFnKind(const Function *F) {
Attribute Attr = F->getFnAttribute(Attribute::AllocKind);
if (Attr.isValid())
return AllocFnKind(Attr.getValueAsInt());
return AllocFnKind::Unknown;
}
static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) {
return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown;
}
static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) {
return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown;
}
/// Tests if a value is a call or invoke to a library function that
/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
/// like).
bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
return getAllocationData(V, AnyAlloc, TLI).has_value() ||
checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
}
bool llvm::isAllocationFn(
const Value *V,
function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
return getAllocationData(V, AnyAlloc, GetTLI).has_value() ||
checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
}
/// Tests if a value is a call or invoke to a library function that
/// allocates memory via new.
bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
return getAllocationData(V, OpNewLike, TLI).has_value();
}
/// Tests if a value is a call or invoke to a library function that
/// allocates memory similar to malloc or calloc.
bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
// TODO: Function behavior does not match name.
return getAllocationData(V, MallocOrOpNewLike, TLI).has_value();
}
/// Tests if a value is a call or invoke to a library function that
/// allocates memory (either malloc, calloc, or strdup like).
bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
return getAllocationData(V, AllocLike, TLI).has_value() ||
checkFnAllocKind(V, AllocFnKind::Alloc);
}
/// Tests if a functions is a call or invoke to a library function that
/// reallocates memory (e.g., realloc).
bool llvm::isReallocLikeFn(const Function *F) {
return checkFnAllocKind(F, AllocFnKind::Realloc);
}
Value *llvm::getReallocatedOperand(const CallBase *CB) {
if (checkFnAllocKind(CB, AllocFnKind::Realloc))
return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
return nullptr;
}
bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) {
// Note: Removability is highly dependent on the source language. For
// example, recent C++ requires direct calls to the global allocation
// [basic.stc.dynamic.allocation] to be observable unless part of a new
// expression [expr.new paragraph 13].
// Historically we've treated the C family allocation routines and operator
// new as removable
return isAllocLikeFn(CB, TLI);
}
Value *llvm::getAllocAlignment(const CallBase *V,
const TargetLibraryInfo *TLI) {
const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
if (FnData && FnData->AlignParam >= 0) {
return V->getOperand(FnData->AlignParam);
}
return V->getArgOperandWithAttribute(Attribute::AllocAlign);
}
/// When we're compiling N-bit code, and the user uses parameters that are
/// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
/// trouble with APInt size issues. This function handles resizing + overflow
/// checks for us. Check and zext or trunc \p I depending on IntTyBits and
/// I's value.
static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
// More bits than we can handle. Checking the bit width isn't necessary, but
// it's faster than checking active bits, and should give `false` in the
// vast majority of cases.
if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
return false;
if (I.getBitWidth() != IntTyBits)
I = I.zextOrTrunc(IntTyBits);
return true;
}
std::optional<APInt>
llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI,
function_ref<const Value *(const Value *)> Mapper) {
// Note: This handles both explicitly listed allocation functions and
// allocsize. The code structure could stand to be cleaned up a bit.
std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
if (!FnData)
return std::nullopt;
// Get the index type for this address space, results and intermediate
// computations are performed at that width.
auto &DL = CB->getModule()->getDataLayout();
const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
// Handle strdup-like functions separately.
if (FnData->AllocTy == StrDupLike) {
APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
if (!Size)
return std::nullopt;
// Strndup limits strlen.
if (FnData->FstParam > 0) {
const ConstantInt *Arg =
dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
if (!Arg)
return std::nullopt;
APInt MaxSize = Arg->getValue().zext(IntTyBits);
if (Size.ugt(MaxSize))
Size = MaxSize + 1;
}
return Size;
}
const ConstantInt *Arg =
dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
if (!Arg)
return std::nullopt;
APInt Size = Arg->getValue();
if (!CheckedZextOrTrunc(Size, IntTyBits))
return std::nullopt;
// Size is determined by just 1 parameter.
if (FnData->SndParam < 0)
return Size;
Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
if (!Arg)
return std::nullopt;
APInt NumElems = Arg->getValue();
if (!CheckedZextOrTrunc(NumElems, IntTyBits))
return std::nullopt;
bool Overflow;
Size = Size.umul_ov(NumElems, Overflow);
if (Overflow)
return std::nullopt;
return Size;
}
Constant *llvm::getInitialValueOfAllocation(const Value *V,
const TargetLibraryInfo *TLI,
Type *Ty) {
auto *Alloc = dyn_cast<CallBase>(V);
if (!Alloc)
return nullptr;
// malloc are uninitialized (undef)
if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value())
return UndefValue::get(Ty);
AllocFnKind AK = getAllocFnKind(Alloc);
if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown)
return UndefValue::get(Ty);
if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown)
return Constant::getNullValue(Ty);
return nullptr;
}
struct FreeFnsTy {
unsigned NumParams;
// Name of default allocator function to group malloc/free calls by family
MallocFamily Family;
};
// clang-format off
static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
{LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*)
{LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*)
{LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*)
{LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*)
{LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*)
{LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*)
{LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint)
{LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong)
{LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow)
{LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t)
{LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint)
{LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong)
{LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow)
{LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
{LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint)
{LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong)
{LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow)
{LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow)
{LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint)
{LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong)
{LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow)
{LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow)
{LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free
{LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow)
{LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
{LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t)
{LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t)
{LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
{LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
};
// clang-format on
std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
const LibFunc TLIFn) {
const auto *Iter =
find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
return P.first == TLIFn;
});
if (Iter == std::end(FreeFnData))
return std::nullopt;
return Iter->second;
}
std::optional<StringRef>
llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) {
bool IsNoBuiltin;
const Function *Callee = getCalledFunction(I, IsNoBuiltin);
if (Callee == nullptr || IsNoBuiltin)
return std::nullopt;
LibFunc TLIFn;
if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) {
// Callee is some known library function.
const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI);
if (AllocData)
return mangledNameForMallocFamily(AllocData->Family);
const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
if (FreeData)
return mangledNameForMallocFamily(FreeData->Family);
}
// Callee isn't a known library function, still check attributes.
if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc |
AllocFnKind::Realloc)) {
Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family");
if (Attr.isValid())
return Attr.getValueAsString();
}
return std::nullopt;
}
/// isLibFreeFunction - Returns true if the function is a builtin free()
bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
if (!FnData)
return checkFnAllocKind(F, AllocFnKind::Free);
// Check free prototype.
// FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
// attribute will exist.
FunctionType *FTy = F->getFunctionType();
if (!FTy->getReturnType()->isVoidTy())
return false;
if (FTy->getNumParams() != FnData->NumParams)
return false;
if (!FTy->getParamType(0)->isPointerTy())
return false;
return true;
}
Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) {
bool IsNoBuiltinCall;
const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall);
if (Callee == nullptr || IsNoBuiltinCall)
return nullptr;
LibFunc TLIFn;
if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) &&
isLibFreeFunction(Callee, TLIFn)) {
// All currently supported free functions free the first argument.
return CB->getArgOperand(0);
}
if (checkFnAllocKind(CB, AllocFnKind::Free))
return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
return nullptr;
}
//===----------------------------------------------------------------------===//
// Utility functions to compute size of objects.
//
static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
if (Data.second.isNegative() || Data.first.ult(Data.second))
return APInt(Data.first.getBitWidth(), 0);
return Data.first - Data.second;
}
/// Compute the size of the object pointed by Ptr. Returns true and the
/// object size in Size if successful, and false otherwise.
/// If RoundToAlign is true, then Size is rounded up to the alignment of
/// allocas, byval arguments, and global variables.
bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
if (!Visitor.bothKnown(Data))
return false;
Size = getSizeWithOverflow(Data).getZExtValue();
return true;
}
Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
const DataLayout &DL,
const TargetLibraryInfo *TLI,
bool MustSucceed) {
return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr,
MustSucceed);
}
Value *llvm::lowerObjectSizeCall(
IntrinsicInst *ObjectSize, const DataLayout &DL,
const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed,
SmallVectorImpl<Instruction *> *InsertedInstructions) {
assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
"ObjectSize must be a call to llvm.objectsize!");
bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
ObjectSizeOpts EvalOptions;
EvalOptions.AA = AA;
// Unless we have to fold this to something, try to be as accurate as
// possible.
if (MustSucceed)
EvalOptions.EvalMode =
MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
else
EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset;
EvalOptions.NullIsUnknownSize =
cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
auto *ResultType = cast<IntegerType>(ObjectSize->getType());
bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
if (StaticOnly) {
// FIXME: Does it make sense to just return a failure value if the size won't
// fit in the output and `!MustSucceed`?
uint64_t Size;
if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
isUIntN(ResultType->getBitWidth(), Size))
return ConstantInt::get(ResultType, Size);
} else {
LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
SizeOffsetEvalType SizeOffsetPair =
Eval.compute(ObjectSize->getArgOperand(0));
if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) {
if (InsertedInstructions)
InsertedInstructions->push_back(I);
}));
Builder.SetInsertPoint(ObjectSize);
// If we've outside the end of the object, then we can always access
// exactly 0 bytes.
Value *ResultSize =
Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
Value *UseZero =
Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
Value *Ret = Builder.CreateSelect(
UseZero, ConstantInt::get(ResultType, 0), ResultSize);
// The non-constant size expression cannot evaluate to -1.
if (!isa<Constant>(SizeOffsetPair.first) ||
!isa<Constant>(SizeOffsetPair.second))
Builder.CreateAssumption(
Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
return Ret;
}
}
if (!MustSucceed)
return nullptr;
return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
}
STATISTIC(ObjectVisitorArgument,
"Number of arguments with unsolved size and offset");
STATISTIC(ObjectVisitorLoad,
"Number of load instructions with unsolved size and offset");
APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
if (Options.RoundToAlign && Alignment)
return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment));
return Size;
}
ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
const TargetLibraryInfo *TLI,
LLVMContext &Context,
ObjectSizeOpts Options)
: DL(DL), TLI(TLI), Options(Options) {
// Pointer size must be rechecked for each object visited since it could have
// a different address space.
}
SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
// Stripping pointer casts can strip address space casts which can change the
// index type size. The invariant is that we use the value type to determine
// the index type size and if we stripped address space casts we have to
// readjust the APInt as we pass it upwards in order for the APInt to match
// the type the caller passed in.
APInt Offset(InitialIntTyBits, 0);
V = V->stripAndAccumulateConstantOffsets(
DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
// Later we use the index type size and zero but it will match the type of the
// value that is passed to computeImpl.
IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
Zero = APInt::getZero(IntTyBits);
bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
if (!IndexTypeSizeChanged && Offset.isZero())
return computeImpl(V);
// We stripped an address space cast that changed the index type size or we
// accumulated some constant offset (or both). Readjust the bit width to match
// the argument index type size and apply the offset, as required.
SizeOffsetType SOT = computeImpl(V);
if (IndexTypeSizeChanged) {
if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits))
SOT.first = APInt();
if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits))
SOT.second = APInt();
}
// If the computed offset is "unknown" we cannot add the stripped offset.
return {SOT.first,
SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second};
}
SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If we have already seen this instruction, bail out. Cycles can happen in
// unreachable code after constant propagation.
if (!SeenInsts.insert(I).second)
return unknown();
return visit(*I);
}
if (Argument *A = dyn_cast<Argument>(V))
return visitArgument(*A);
if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
return visitConstantPointerNull(*P);
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return visitGlobalAlias(*GA);
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return visitGlobalVariable(*GV);
if (UndefValue *UV = dyn_cast<UndefValue>(V))
return visitUndefValue(*UV);
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
<< *V << '\n');
return unknown();
}
bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
return ::CheckedZextOrTrunc(I, IntTyBits);
}
SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
return unknown();
APInt Size(IntTyBits, ElemSize.getKnownMinValue());
if (!I.isArrayAllocation())
return std::make_pair(align(Size, I.getAlign()), Zero);
Value *ArraySize = I.getArraySize();
if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
APInt NumElems = C->getValue();
if (!CheckedZextOrTrunc(NumElems))
return unknown();
bool Overflow;
Size = Size.umul_ov(NumElems, Overflow);
return Overflow ? unknown()
: std::make_pair(align(Size, I.getAlign()), Zero);
}
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
Type *MemoryTy = A.getPointeeInMemoryValueType();
// No interprocedural analysis is done at the moment.
if (!MemoryTy|| !MemoryTy->isSized()) {
++ObjectVisitorArgument;
return unknown();
}
APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
return std::make_pair(align(Size, A.getParamAlign()), Zero);
}
SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
if (std::optional<APInt> Size = getAllocSize(&CB, TLI))
return std::make_pair(*Size, Zero);
return unknown();
}
SizeOffsetType
ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
// If null is unknown, there's nothing we can do. Additionally, non-zero
// address spaces can make use of null, so we don't presume to know anything
// about that.
//
// TODO: How should this work with address space casts? We currently just drop
// them on the floor, but it's unclear what we should do when a NULL from
// addrspace(1) gets casted to addrspace(0) (or vice-versa).
if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
return unknown();
return std::make_pair(Zero, Zero);
}
SizeOffsetType
ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
return unknown();
}
SizeOffsetType
ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
// Easy cases were already folded by previous passes.
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
if (GA.isInterposable())
return unknown();
return compute(GA.getAliasee());
}
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() ||
((!GV.hasInitializer() || GV.isInterposable()) &&
Options.EvalMode != ObjectSizeOpts::Mode::Min))
return unknown();
APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
return std::make_pair(align(Size, GV.getAlign()), Zero);
}
SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
// clueless
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::findLoadSizeOffset(
LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From,
SmallDenseMap<BasicBlock *, SizeOffsetType, 8> &VisitedBlocks,
unsigned &ScannedInstCount) {
constexpr unsigned MaxInstsToScan = 128;
auto Where = VisitedBlocks.find(&BB);
if (Where != VisitedBlocks.end())
return Where->second;
auto Unknown = [this, &BB, &VisitedBlocks]() {
return VisitedBlocks[&BB] = unknown();
};
auto Known = [&BB, &VisitedBlocks](SizeOffsetType SO) {
return VisitedBlocks[&BB] = SO;
};
do {
Instruction &I = *From;
if (I.isDebugOrPseudoInst())
continue;
if (++ScannedInstCount > MaxInstsToScan)
return Unknown();
if (!I.mayWriteToMemory())
continue;
if (auto *SI = dyn_cast<StoreInst>(&I)) {
AliasResult AR =
Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand());
switch ((AliasResult::Kind)AR) {
case AliasResult::NoAlias:
continue;
case AliasResult::MustAlias:
if (SI->getValueOperand()->getType()->isPointerTy())
return Known(compute(SI->getValueOperand()));
else
return Unknown(); // No handling of non-pointer values by `compute`.
default:
return Unknown();
}
}
if (auto *CB = dyn_cast<CallBase>(&I)) {
Function *Callee = CB->getCalledFunction();
// Bail out on indirect call.
if (!Callee)
return Unknown();
LibFunc TLIFn;
if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) ||
!TLI->has(TLIFn))
return Unknown();
// TODO: There's probably more interesting case to support here.
if (TLIFn != LibFunc_posix_memalign)
return Unknown();
AliasResult AR =
Options.AA->alias(CB->getOperand(0), Load.getPointerOperand());
switch ((AliasResult::Kind)AR) {
case AliasResult::NoAlias:
continue;
case AliasResult::MustAlias:
break;
default:
return Unknown();
}
// Is the error status of posix_memalign correctly checked? If not it
// would be incorrect to assume it succeeds and load doesn't see the
// previous value.
std::optional<bool> Checked = isImpliedByDomCondition(
ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL);
if (!Checked || !*Checked)
return Unknown();
Value *Size = CB->getOperand(2);
auto *C = dyn_cast<ConstantInt>(Size);
if (!C)
return Unknown();
return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)});
}
return Unknown();
} while (From-- != BB.begin());
SmallVector<SizeOffsetType> PredecessorSizeOffsets;
for (auto *PredBB : predecessors(&BB)) {
PredecessorSizeOffsets.push_back(findLoadSizeOffset(
Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()),
VisitedBlocks, ScannedInstCount));
if (!bothKnown(PredecessorSizeOffsets.back()))
return Unknown();
}
if (PredecessorSizeOffsets.empty())
return Unknown();
return Known(std::accumulate(PredecessorSizeOffsets.begin() + 1,
PredecessorSizeOffsets.end(),
PredecessorSizeOffsets.front(),
[this](SizeOffsetType LHS, SizeOffsetType RHS) {
return combineSizeOffset(LHS, RHS);
}));
}
SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) {
if (!Options.AA) {
++ObjectVisitorLoad;
return unknown();
}
SmallDenseMap<BasicBlock *, SizeOffsetType, 8> VisitedBlocks;
unsigned ScannedInstCount = 0;
SizeOffsetType SO =
findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI),
VisitedBlocks, ScannedInstCount);
if (!bothKnown(SO))
++ObjectVisitorLoad;
return SO;
}
SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS,
SizeOffsetType RHS) {
if (!bothKnown(LHS) || !bothKnown(RHS))
return unknown();
switch (Options.EvalMode) {
case ObjectSizeOpts::Mode::Min:
return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS;
case ObjectSizeOpts::Mode::Max:
return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS;
case ObjectSizeOpts::Mode::ExactSizeFromOffset:
return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS
: unknown();
case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset:
return LHS == RHS && LHS.second.eq(RHS.second) ? LHS : unknown();
}
llvm_unreachable("missing an eval mode");
}
SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) {
if (PN.getNumIncomingValues() == 0)
return unknown();
auto IncomingValues = PN.incoming_values();
return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(),
compute(*IncomingValues.begin()),
[this](SizeOffsetType LHS, Value *VRHS) {
return combineSizeOffset(LHS, compute(VRHS));
});
}
SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
return combineSizeOffset(compute(I.getTrueValue()),
compute(I.getFalseValue()));
}
SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
return std::make_pair(Zero, Zero);
}
SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
<< '\n');
return unknown();
}
ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
ObjectSizeOpts EvalOpts)
: DL(DL), TLI(TLI), Context(Context),
Builder(Context, TargetFolder(DL),
IRBuilderCallbackInserter(
[&](Instruction *I) { InsertedInstructions.insert(I); })),
EvalOpts(EvalOpts) {
// IntTy and Zero must be set for each compute() since the address space may
// be different for later objects.
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
// XXX - Are vectors of pointers possible here?
IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
Zero = ConstantInt::get(IntTy, 0);
SizeOffsetEvalType Result = compute_(V);
if (!bothKnown(Result)) {
// Erase everything that was computed in this iteration from the cache, so
// that no dangling references are left behind. We could be a bit smarter if
// we kept a dependency graph. It's probably not worth the complexity.
for (const Value *SeenVal : SeenVals) {
CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
// non-computable results can be safely cached
if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
CacheMap.erase(CacheIt);
}
// Erase any instructions we inserted as part of the traversal.
for (Instruction *I : InsertedInstructions) {
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
I->eraseFromParent();
}
}
SeenVals.clear();
InsertedInstructions.clear();
return Result;
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
SizeOffsetType Const = Visitor.compute(V);
if (Visitor.bothKnown(Const))
return std::make_pair(ConstantInt::get(Context, Const.first),
ConstantInt::get(Context, Const.second));
V = V->stripPointerCasts();
// Check cache.
CacheMapTy::iterator CacheIt = CacheMap.find(V);
if (CacheIt != CacheMap.end())
return CacheIt->second;
// Always generate code immediately before the instruction being
// processed, so that the generated code dominates the same BBs.
BuilderTy::InsertPointGuard Guard(Builder);
if (Instruction *I = dyn_cast<Instruction>(V))
Builder.SetInsertPoint(I);
// Now compute the size and offset.
SizeOffsetEvalType Result;
// Record the pointers that were handled in this run, so that they can be
// cleaned later if something fails. We also use this set to break cycles that
// can occur in dead code.
if (!SeenVals.insert(V).second) {
Result = unknown();
} else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Result = visitGEPOperator(*GEP);
} else if (Instruction *I = dyn_cast<Instruction>(V)) {
Result = visit(*I);
} else if (isa<Argument>(V) ||
(isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
isa<GlobalAlias>(V) ||
isa<GlobalVariable>(V)) {
// Ignore values where we cannot do more than ObjectSizeVisitor.
Result = unknown();
} else {
LLVM_DEBUG(
dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
<< '\n');
Result = unknown();
}
// Don't reuse CacheIt since it may be invalid at this point.
CacheMap[V] = Result;
return Result;
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
if (!I.getAllocatedType()->isSized())
return unknown();
// must be a VLA
assert(I.isArrayAllocation());
// If needed, adjust the alloca's operand size to match the pointer indexing
// size. Subsequent math operations expect the types to match.
Value *ArraySize = Builder.CreateZExtOrTrunc(
I.getArraySize(),
DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace()));
assert(ArraySize->getType() == Zero->getType() &&
"Expected zero constant to have pointer index type");
Value *Size = ConstantInt::get(ArraySize->getType(),
DL.getTypeAllocSize(I.getAllocatedType()));
Size = Builder.CreateMul(Size, ArraySize);
return std::make_pair(Size, Zero);
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
if (!FnData)
return unknown();
// Handle strdup-like functions separately.
if (FnData->AllocTy == StrDupLike) {
// TODO: implement evaluation of strdup/strndup
return unknown();
}
Value *FirstArg = CB.getArgOperand(FnData->FstParam);
FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
if (FnData->SndParam < 0)
return std::make_pair(FirstArg, Zero);
Value *SecondArg = CB.getArgOperand(FnData->SndParam);
SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
Value *Size = Builder.CreateMul(FirstArg, SecondArg);
return std::make_pair(Size, Zero);
}
SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
return unknown();
}
SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
return unknown();
}
SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
if (!bothKnown(PtrData))
return unknown();
Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
Offset = Builder.CreateAdd(PtrData.second, Offset);
return std::make_pair(PtrData.first, Offset);
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
// clueless
return unknown();
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) {
return unknown();
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
// Create 2 PHIs: one for size and another for offset.
PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
// Insert right away in the cache to handle recursive PHIs.
CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
// Compute offset/size for each PHI incoming pointer.
for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
if (!bothKnown(EdgeData)) {
OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy));
OffsetPHI->eraseFromParent();
InsertedInstructions.erase(OffsetPHI);
SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy));
SizePHI->eraseFromParent();
InsertedInstructions.erase(SizePHI);
return unknown();
}
SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
}
Value *Size = SizePHI, *Offset = OffsetPHI;
if (Value *Tmp = SizePHI->hasConstantValue()) {
Size = Tmp;
SizePHI->replaceAllUsesWith(Size);
SizePHI->eraseFromParent();
InsertedInstructions.erase(SizePHI);
}
if (Value *Tmp = OffsetPHI->hasConstantValue()) {
Offset = Tmp;
OffsetPHI->replaceAllUsesWith(Offset);
OffsetPHI->eraseFromParent();
InsertedInstructions.erase(OffsetPHI);
}
return std::make_pair(Size, Offset);
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
return unknown();
if (TrueSide == FalseSide)
return TrueSide;
Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
FalseSide.first);
Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
FalseSide.second);
return std::make_pair(Size, Offset);
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
<< '\n');
return unknown();
}
|