1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
"""Reader for training log.
See lib/Analysis/TrainingLogger.cpp for a description of the format.
"""
import ctypes
import dataclasses
import io
import json
import math
import sys
from typing import List, Optional
_element_types = {
"float": ctypes.c_float,
"double": ctypes.c_double,
"int8_t": ctypes.c_int8,
"uint8_t": ctypes.c_uint8,
"int16_t": ctypes.c_int16,
"uint16_t": ctypes.c_uint16,
"int32_t": ctypes.c_int32,
"uint32_t": ctypes.c_uint32,
"int64_t": ctypes.c_int64,
"uint64_t": ctypes.c_uint64,
}
@dataclasses.dataclass(frozen=True)
class TensorSpec:
name: str
port: int
shape: List[int]
element_type: type
@staticmethod
def from_dict(d: dict):
name = d["name"]
port = d["port"]
shape = [int(e) for e in d["shape"]]
element_type_str = d["type"]
if element_type_str not in _element_types:
raise ValueError(f"uknown type: {element_type_str}")
return TensorSpec(
name=name,
port=port,
shape=shape,
element_type=_element_types[element_type_str],
)
class TensorValue:
def __init__(self, spec: TensorSpec, buffer: bytes):
self._spec = spec
self._buffer = buffer
self._view = ctypes.cast(self._buffer, ctypes.POINTER(self._spec.element_type))
self._len = math.prod(self._spec.shape)
def spec(self) -> TensorSpec:
return self._spec
def __len__(self) -> int:
return self._len
def __getitem__(self, index):
if index < 0 or index >= self._len:
raise IndexError(f"Index {index} out of range [0..{self._len})")
return self._view[index]
def read_tensor(fs: io.BufferedReader, ts: TensorSpec) -> TensorValue:
size = math.prod(ts.shape) * ctypes.sizeof(ts.element_type)
data = fs.read(size)
return TensorValue(ts, data)
def pretty_print_tensor_value(tv: TensorValue):
print(f'{tv.spec().name}: {",".join([str(v) for v in tv])}')
def read_header(f: io.BufferedReader):
header = json.loads(f.readline())
tensor_specs = [TensorSpec.from_dict(ts) for ts in header["features"]]
score_spec = TensorSpec.from_dict(header["score"]) if "score" in header else None
advice_spec = TensorSpec.from_dict(header["advice"]) if "advice" in header else None
return tensor_specs, score_spec, advice_spec
def read_one_observation(
context: Optional[str],
event_str: str,
f: io.BufferedReader,
tensor_specs: List[TensorSpec],
score_spec: Optional[TensorSpec],
):
event = json.loads(event_str)
if "context" in event:
context = event["context"]
event = json.loads(f.readline())
observation_id = int(event["observation"])
features = []
for ts in tensor_specs:
features.append(read_tensor(f, ts))
f.readline()
score = None
if score_spec is not None:
score_header = json.loads(f.readline())
assert int(score_header["outcome"]) == observation_id
score = read_tensor(f, score_spec)
f.readline()
return context, observation_id, features, score
def read_stream(fname: str):
with io.BufferedReader(io.FileIO(fname, "rb")) as f:
tensor_specs, score_spec, _ = read_header(f)
context = None
while True:
event_str = f.readline()
if not event_str:
break
context, observation_id, features, score = read_one_observation(
context, event_str, f, tensor_specs, score_spec
)
yield context, observation_id, features, score
def main(args):
last_context = None
for ctx, obs_id, features, score in read_stream(args[1]):
if last_context != ctx:
print(f"context: {ctx}")
last_context = ctx
print(f"observation: {obs_id}")
for fv in features:
pretty_print_tensor_value(fv)
if score:
pretty_print_tensor_value(score)
if __name__ == "__main__":
main(sys.argv)
|