1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
|
//===- DWARFUnit.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFListTable.h"
#include "llvm/DebugInfo/DWARF/DWARFObject.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>
#include <vector>
using namespace llvm;
using namespace dwarf;
void DWARFUnitVector::addUnitsForSection(DWARFContext &C,
const DWARFSection &Section,
DWARFSectionKind SectionKind) {
const DWARFObject &D = C.getDWARFObj();
addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(),
&D.getLocSection(), D.getStrSection(),
D.getStrOffsetsSection(), &D.getAddrSection(),
D.getLineSection(), D.isLittleEndian(), false, false,
SectionKind);
}
void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C,
const DWARFSection &DWOSection,
DWARFSectionKind SectionKind,
bool Lazy) {
const DWARFObject &D = C.getDWARFObj();
addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(),
&D.getLocDWOSection(), D.getStrDWOSection(),
D.getStrOffsetsDWOSection(), &D.getAddrSection(),
D.getLineDWOSection(), C.isLittleEndian(), true, Lazy,
SectionKind);
}
void DWARFUnitVector::addUnitsImpl(
DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section,
const DWARFDebugAbbrev *DA, const DWARFSection *RS,
const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS,
const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO,
bool Lazy, DWARFSectionKind SectionKind) {
DWARFDataExtractor Data(Obj, Section, LE, 0);
// Lazy initialization of Parser, now that we have all section info.
if (!Parser) {
Parser = [=, &Context, &Obj, &Section, &SOS,
&LS](uint64_t Offset, DWARFSectionKind SectionKind,
const DWARFSection *CurSection,
const DWARFUnitIndex::Entry *IndexEntry)
-> std::unique_ptr<DWARFUnit> {
const DWARFSection &InfoSection = CurSection ? *CurSection : Section;
DWARFDataExtractor Data(Obj, InfoSection, LE, 0);
if (!Data.isValidOffset(Offset))
return nullptr;
DWARFUnitHeader Header;
if (!Header.extract(Context, Data, &Offset, SectionKind))
return nullptr;
if (!IndexEntry && IsDWO) {
const DWARFUnitIndex &Index = getDWARFUnitIndex(
Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO);
if (Index) {
if (Header.isTypeUnit())
IndexEntry = Index.getFromHash(Header.getTypeHash());
else if (auto DWOId = Header.getDWOId())
IndexEntry = Index.getFromHash(*DWOId);
}
if (!IndexEntry)
IndexEntry = Index.getFromOffset(Header.getOffset());
}
if (IndexEntry && !Header.applyIndexEntry(IndexEntry))
return nullptr;
std::unique_ptr<DWARFUnit> U;
if (Header.isTypeUnit())
U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA,
RS, LocSection, SS, SOS, AOS, LS,
LE, IsDWO, *this);
else
U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header,
DA, RS, LocSection, SS, SOS,
AOS, LS, LE, IsDWO, *this);
return U;
};
}
if (Lazy)
return;
// Find a reasonable insertion point within the vector. We skip over
// (a) units from a different section, (b) units from the same section
// but with lower offset-within-section. This keeps units in order
// within a section, although not necessarily within the object file,
// even if we do lazy parsing.
auto I = this->begin();
uint64_t Offset = 0;
while (Data.isValidOffset(Offset)) {
if (I != this->end() &&
(&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) {
++I;
continue;
}
auto U = Parser(Offset, SectionKind, &Section, nullptr);
// If parsing failed, we're done with this section.
if (!U)
break;
Offset = U->getNextUnitOffset();
I = std::next(this->insert(I, std::move(U)));
}
}
DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) {
auto I = llvm::upper_bound(*this, Unit,
[](const std::unique_ptr<DWARFUnit> &LHS,
const std::unique_ptr<DWARFUnit> &RHS) {
return LHS->getOffset() < RHS->getOffset();
});
return this->insert(I, std::move(Unit))->get();
}
DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const {
auto end = begin() + getNumInfoUnits();
auto *CU =
std::upper_bound(begin(), end, Offset,
[](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
return LHS < RHS->getNextUnitOffset();
});
if (CU != end && (*CU)->getOffset() <= Offset)
return CU->get();
return nullptr;
}
DWARFUnit *
DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) {
const auto *CUOff = E.getContribution(DW_SECT_INFO);
if (!CUOff)
return nullptr;
uint64_t Offset = CUOff->getOffset();
auto end = begin() + getNumInfoUnits();
auto *CU =
std::upper_bound(begin(), end, CUOff->getOffset(),
[](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
return LHS < RHS->getNextUnitOffset();
});
if (CU != end && (*CU)->getOffset() <= Offset)
return CU->get();
if (!Parser)
return nullptr;
auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E);
if (!U)
return nullptr;
auto *NewCU = U.get();
this->insert(CU, std::move(U));
++NumInfoUnits;
return NewCU;
}
DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA,
const DWARFSection *RS, const DWARFSection *LocSection,
StringRef SS, const DWARFSection &SOS,
const DWARFSection *AOS, const DWARFSection &LS, bool LE,
bool IsDWO, const DWARFUnitVector &UnitVector)
: Context(DC), InfoSection(Section), Header(Header), Abbrev(DA),
RangeSection(RS), LineSection(LS), StringSection(SS),
StringOffsetSection(SOS), AddrOffsetSection(AOS), IsLittleEndian(LE),
IsDWO(IsDWO), UnitVector(UnitVector) {
clear();
}
DWARFUnit::~DWARFUnit() = default;
DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const {
return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, IsLittleEndian,
getAddressByteSize());
}
std::optional<object::SectionedAddress>
DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const {
if (!AddrOffsetSectionBase) {
auto R = Context.info_section_units();
// Surprising if a DWO file has more than one skeleton unit in it - this
// probably shouldn't be valid, but if a use case is found, here's where to
// support it (probably have to linearly search for the matching skeleton CU
// here)
if (IsDWO && hasSingleElement(R))
return (*R.begin())->getAddrOffsetSectionItem(Index);
return std::nullopt;
}
uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize();
if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
return std::nullopt;
DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
IsLittleEndian, getAddressByteSize());
uint64_t Section;
uint64_t Address = DA.getRelocatedAddress(&Offset, &Section);
return {{Address, Section}};
}
Expected<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const {
if (!StringOffsetsTableContribution)
return make_error<StringError>(
"DW_FORM_strx used without a valid string offsets table",
inconvertibleErrorCode());
unsigned ItemSize = getDwarfStringOffsetsByteSize();
uint64_t Offset = getStringOffsetsBase() + Index * ItemSize;
if (StringOffsetSection.Data.size() < Offset + ItemSize)
return make_error<StringError>("DW_FORM_strx uses index " + Twine(Index) +
", which is too large",
inconvertibleErrorCode());
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
IsLittleEndian, 0);
return DA.getRelocatedValue(ItemSize, &Offset);
}
bool DWARFUnitHeader::extract(DWARFContext &Context,
const DWARFDataExtractor &debug_info,
uint64_t *offset_ptr,
DWARFSectionKind SectionKind) {
Offset = *offset_ptr;
Error Err = Error::success();
IndexEntry = nullptr;
std::tie(Length, FormParams.Format) =
debug_info.getInitialLength(offset_ptr, &Err);
FormParams.Version = debug_info.getU16(offset_ptr, &Err);
if (FormParams.Version >= 5) {
UnitType = debug_info.getU8(offset_ptr, &Err);
FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
AbbrOffset = debug_info.getRelocatedValue(
FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
} else {
AbbrOffset = debug_info.getRelocatedValue(
FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
// Fake a unit type based on the section type. This isn't perfect,
// but distinguishing compile and type units is generally enough.
if (SectionKind == DW_SECT_EXT_TYPES)
UnitType = DW_UT_type;
else
UnitType = DW_UT_compile;
}
if (isTypeUnit()) {
TypeHash = debug_info.getU64(offset_ptr, &Err);
TypeOffset = debug_info.getUnsigned(
offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err);
} else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton)
DWOId = debug_info.getU64(offset_ptr, &Err);
if (Err) {
Context.getWarningHandler()(joinErrors(
createStringError(
errc::invalid_argument,
"DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset),
std::move(Err)));
return false;
}
// Header fields all parsed, capture the size of this unit header.
assert(*offset_ptr - Offset <= 255 && "unexpected header size");
Size = uint8_t(*offset_ptr - Offset);
uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength();
if (!debug_info.isValidOffset(getNextUnitOffset() - 1)) {
Context.getWarningHandler()(
createStringError(errc::invalid_argument,
"DWARF unit from offset 0x%8.8" PRIx64 " incl. "
"to offset 0x%8.8" PRIx64 " excl. "
"extends past section size 0x%8.8zx",
Offset, NextCUOffset, debug_info.size()));
return false;
}
if (!DWARFContext::isSupportedVersion(getVersion())) {
Context.getWarningHandler()(createStringError(
errc::invalid_argument,
"DWARF unit at offset 0x%8.8" PRIx64 " "
"has unsupported version %" PRIu16 ", supported are 2-%u",
Offset, getVersion(), DWARFContext::getMaxSupportedVersion()));
return false;
}
// Type offset is unit-relative; should be after the header and before
// the end of the current unit.
if (isTypeUnit() && TypeOffset < Size) {
Context.getWarningHandler()(
createStringError(errc::invalid_argument,
"DWARF type unit at offset "
"0x%8.8" PRIx64 " "
"has its relocated type_offset 0x%8.8" PRIx64 " "
"pointing inside the header",
Offset, Offset + TypeOffset));
return false;
}
if (isTypeUnit() &&
TypeOffset >= getUnitLengthFieldByteSize() + getLength()) {
Context.getWarningHandler()(createStringError(
errc::invalid_argument,
"DWARF type unit from offset 0x%8.8" PRIx64 " incl. "
"to offset 0x%8.8" PRIx64 " excl. has its "
"relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end",
Offset, NextCUOffset, Offset + TypeOffset));
return false;
}
if (Error SizeErr = DWARFContext::checkAddressSizeSupported(
getAddressByteSize(), errc::invalid_argument,
"DWARF unit at offset 0x%8.8" PRIx64, Offset)) {
Context.getWarningHandler()(std::move(SizeErr));
return false;
}
// Keep track of the highest DWARF version we encounter across all units.
Context.setMaxVersionIfGreater(getVersion());
return true;
}
bool DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) {
assert(Entry);
assert(!IndexEntry);
IndexEntry = Entry;
if (AbbrOffset)
return false;
auto *UnitContrib = IndexEntry->getContribution();
if (!UnitContrib ||
UnitContrib->getLength() != (getLength() + getUnitLengthFieldByteSize()))
return false;
auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV);
if (!AbbrEntry)
return false;
AbbrOffset = AbbrEntry->getOffset();
return true;
}
Error DWARFUnit::extractRangeList(uint64_t RangeListOffset,
DWARFDebugRangeList &RangeList) const {
// Require that compile unit is extracted.
assert(!DieArray.empty());
DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
IsLittleEndian, getAddressByteSize());
uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
return RangeList.extract(RangesData, &ActualRangeListOffset);
}
void DWARFUnit::clear() {
Abbrevs = nullptr;
BaseAddr.reset();
RangeSectionBase = 0;
LocSectionBase = 0;
AddrOffsetSectionBase = std::nullopt;
SU = nullptr;
clearDIEs(false);
AddrDieMap.clear();
if (DWO)
DWO->clear();
DWO.reset();
}
const char *DWARFUnit::getCompilationDir() {
return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
}
void DWARFUnit::extractDIEsToVector(
bool AppendCUDie, bool AppendNonCUDies,
std::vector<DWARFDebugInfoEntry> &Dies) const {
if (!AppendCUDie && !AppendNonCUDies)
return;
// Set the offset to that of the first DIE and calculate the start of the
// next compilation unit header.
uint64_t DIEOffset = getOffset() + getHeaderSize();
uint64_t NextCUOffset = getNextUnitOffset();
DWARFDebugInfoEntry DIE;
DWARFDataExtractor DebugInfoData = getDebugInfoExtractor();
// The end offset has been already checked by DWARFUnitHeader::extract.
assert(DebugInfoData.isValidOffset(NextCUOffset - 1));
std::vector<uint32_t> Parents;
std::vector<uint32_t> PrevSiblings;
bool IsCUDie = true;
assert(
((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) &&
"Dies array is not empty");
// Fill Parents and Siblings stacks with initial value.
Parents.push_back(UINT32_MAX);
if (!AppendCUDie)
Parents.push_back(0);
PrevSiblings.push_back(0);
// Start to extract dies.
do {
assert(Parents.size() > 0 && "Empty parents stack");
assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) &&
"Wrong parent index");
// Extract die. Stop if any error occurred.
if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
Parents.back()))
break;
// If previous sibling is remembered then update it`s SiblingIdx field.
if (PrevSiblings.back() > 0) {
assert(PrevSiblings.back() < Dies.size() &&
"Previous sibling index is out of Dies boundaries");
Dies[PrevSiblings.back()].setSiblingIdx(Dies.size());
}
// Store die into the Dies vector.
if (IsCUDie) {
if (AppendCUDie)
Dies.push_back(DIE);
if (!AppendNonCUDies)
break;
// The average bytes per DIE entry has been seen to be
// around 14-20 so let's pre-reserve the needed memory for
// our DIE entries accordingly.
Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
} else {
// Remember last previous sibling.
PrevSiblings.back() = Dies.size();
Dies.push_back(DIE);
}
// Check for new children scope.
if (const DWARFAbbreviationDeclaration *AbbrDecl =
DIE.getAbbreviationDeclarationPtr()) {
if (AbbrDecl->hasChildren()) {
if (AppendCUDie || !IsCUDie) {
assert(Dies.size() > 0 && "Dies does not contain any die");
Parents.push_back(Dies.size() - 1);
PrevSiblings.push_back(0);
}
} else if (IsCUDie)
// Stop if we have single compile unit die w/o children.
break;
} else {
// NULL DIE: finishes current children scope.
Parents.pop_back();
PrevSiblings.pop_back();
}
if (IsCUDie)
IsCUDie = false;
// Stop when compile unit die is removed from the parents stack.
} while (Parents.size() > 1);
}
void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
if (Error e = tryExtractDIEsIfNeeded(CUDieOnly))
Context.getRecoverableErrorHandler()(std::move(e));
}
Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) {
if ((CUDieOnly && !DieArray.empty()) ||
DieArray.size() > 1)
return Error::success(); // Already parsed.
bool HasCUDie = !DieArray.empty();
extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
if (DieArray.empty())
return Error::success();
// If CU DIE was just parsed, copy several attribute values from it.
if (HasCUDie)
return Error::success();
DWARFDie UnitDie(this, &DieArray[0]);
if (std::optional<uint64_t> DWOId =
toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id)))
Header.setDWOId(*DWOId);
if (!IsDWO) {
assert(AddrOffsetSectionBase == std::nullopt);
assert(RangeSectionBase == 0);
assert(LocSectionBase == 0);
AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base));
if (!AddrOffsetSectionBase)
AddrOffsetSectionBase =
toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base));
RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0);
}
// In general, in DWARF v5 and beyond we derive the start of the unit's
// contribution to the string offsets table from the unit DIE's
// DW_AT_str_offsets_base attribute. Split DWARF units do not use this
// attribute, so we assume that there is a contribution to the string
// offsets table starting at offset 0 of the debug_str_offsets.dwo section.
// In both cases we need to determine the format of the contribution,
// which may differ from the unit's format.
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
IsLittleEndian, 0);
if (IsDWO || getVersion() >= 5) {
auto StringOffsetOrError =
IsDWO ? determineStringOffsetsTableContributionDWO(DA)
: determineStringOffsetsTableContribution(DA);
if (!StringOffsetOrError)
return createStringError(errc::invalid_argument,
"invalid reference to or invalid content in "
".debug_str_offsets[.dwo]: " +
toString(StringOffsetOrError.takeError()));
StringOffsetsTableContribution = *StringOffsetOrError;
}
// DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to
// describe address ranges.
if (getVersion() >= 5) {
// In case of DWP, the base offset from the index has to be added.
if (IsDWO) {
uint64_t ContributionBaseOffset = 0;
if (auto *IndexEntry = Header.getIndexEntry())
if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS))
ContributionBaseOffset = Contrib->getOffset();
setRangesSection(
&Context.getDWARFObj().getRnglistsDWOSection(),
ContributionBaseOffset +
DWARFListTableHeader::getHeaderSize(Header.getFormat()));
} else
setRangesSection(&Context.getDWARFObj().getRnglistsSection(),
toSectionOffset(UnitDie.find(DW_AT_rnglists_base),
DWARFListTableHeader::getHeaderSize(
Header.getFormat())));
}
if (IsDWO) {
// If we are reading a package file, we need to adjust the location list
// data based on the index entries.
StringRef Data = Header.getVersion() >= 5
? Context.getDWARFObj().getLoclistsDWOSection().Data
: Context.getDWARFObj().getLocDWOSection().Data;
if (auto *IndexEntry = Header.getIndexEntry())
if (const auto *C = IndexEntry->getContribution(
Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC))
Data = Data.substr(C->getOffset(), C->getLength());
DWARFDataExtractor DWARFData(Data, IsLittleEndian, getAddressByteSize());
LocTable =
std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion());
LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat());
} else if (getVersion() >= 5) {
LocTable = std::make_unique<DWARFDebugLoclists>(
DWARFDataExtractor(Context.getDWARFObj(),
Context.getDWARFObj().getLoclistsSection(),
IsLittleEndian, getAddressByteSize()),
getVersion());
} else {
LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor(
Context.getDWARFObj(), Context.getDWARFObj().getLocSection(),
IsLittleEndian, getAddressByteSize()));
}
// Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
// skeleton CU DIE, so that DWARF users not aware of it are not broken.
return Error::success();
}
bool DWARFUnit::parseDWO(StringRef DWOAlternativeLocation) {
if (IsDWO)
return false;
if (DWO)
return false;
DWARFDie UnitDie = getUnitDIE();
if (!UnitDie)
return false;
auto DWOFileName = getVersion() >= 5
? dwarf::toString(UnitDie.find(DW_AT_dwo_name))
: dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
if (!DWOFileName)
return false;
auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
SmallString<16> AbsolutePath;
if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
*CompilationDir) {
sys::path::append(AbsolutePath, *CompilationDir);
}
sys::path::append(AbsolutePath, *DWOFileName);
auto DWOId = getDWOId();
if (!DWOId)
return false;
auto DWOContext = Context.getDWOContext(AbsolutePath);
if (!DWOContext) {
// Use the alternative location to get the DWARF context for the DWO object.
if (DWOAlternativeLocation.empty())
return false;
// If the alternative context does not correspond to the original DWO object
// (different hashes), the below 'getDWOCompileUnitForHash' call will catch
// the issue, with a returned null context.
DWOContext = Context.getDWOContext(DWOAlternativeLocation);
if (!DWOContext)
return false;
}
DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
if (!DWOCU)
return false;
DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
DWO->setSkeletonUnit(this);
// Share .debug_addr and .debug_ranges section with compile unit in .dwo
if (AddrOffsetSectionBase)
DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase);
if (getVersion() == 4) {
auto DWORangesBase = UnitDie.getRangesBaseAttribute();
DWO->setRangesSection(RangeSection, DWORangesBase.value_or(0));
}
return true;
}
void DWARFUnit::clearDIEs(bool KeepCUDie) {
// Do not use resize() + shrink_to_fit() to free memory occupied by dies.
// shrink_to_fit() is a *non-binding* request to reduce capacity() to size().
// It depends on the implementation whether the request is fulfilled.
// Create a new vector with a small capacity and assign it to the DieArray to
// have previous contents freed.
DieArray = (KeepCUDie && !DieArray.empty())
? std::vector<DWARFDebugInfoEntry>({DieArray[0]})
: std::vector<DWARFDebugInfoEntry>();
}
Expected<DWARFAddressRangesVector>
DWARFUnit::findRnglistFromOffset(uint64_t Offset) {
if (getVersion() <= 4) {
DWARFDebugRangeList RangeList;
if (Error E = extractRangeList(Offset, RangeList))
return std::move(E);
return RangeList.getAbsoluteRanges(getBaseAddress());
}
DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
IsLittleEndian, Header.getAddressByteSize());
DWARFDebugRnglistTable RnglistTable;
auto RangeListOrError = RnglistTable.findList(RangesData, Offset);
if (RangeListOrError)
return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this);
return RangeListOrError.takeError();
}
Expected<DWARFAddressRangesVector>
DWARFUnit::findRnglistFromIndex(uint32_t Index) {
if (auto Offset = getRnglistOffset(Index))
return findRnglistFromOffset(*Offset);
return createStringError(errc::invalid_argument,
"invalid range list table index %d (possibly "
"missing the entire range list table)",
Index);
}
Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() {
DWARFDie UnitDie = getUnitDIE();
if (!UnitDie)
return createStringError(errc::invalid_argument, "No unit DIE");
// First, check if unit DIE describes address ranges for the whole unit.
auto CUDIERangesOrError = UnitDie.getAddressRanges();
if (!CUDIERangesOrError)
return createStringError(errc::invalid_argument,
"decoding address ranges: %s",
toString(CUDIERangesOrError.takeError()).c_str());
return *CUDIERangesOrError;
}
Expected<DWARFLocationExpressionsVector>
DWARFUnit::findLoclistFromOffset(uint64_t Offset) {
DWARFLocationExpressionsVector Result;
Error InterpretationError = Error::success();
Error ParseError = getLocationTable().visitAbsoluteLocationList(
Offset, getBaseAddress(),
[this](uint32_t Index) { return getAddrOffsetSectionItem(Index); },
[&](Expected<DWARFLocationExpression> L) {
if (L)
Result.push_back(std::move(*L));
else
InterpretationError =
joinErrors(L.takeError(), std::move(InterpretationError));
return !InterpretationError;
});
if (ParseError || InterpretationError)
return joinErrors(std::move(ParseError), std::move(InterpretationError));
return Result;
}
void DWARFUnit::updateAddressDieMap(DWARFDie Die) {
if (Die.isSubroutineDIE()) {
auto DIERangesOrError = Die.getAddressRanges();
if (DIERangesOrError) {
for (const auto &R : DIERangesOrError.get()) {
// Ignore 0-sized ranges.
if (R.LowPC == R.HighPC)
continue;
auto B = AddrDieMap.upper_bound(R.LowPC);
if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) {
// The range is a sub-range of existing ranges, we need to split the
// existing range.
if (R.HighPC < B->second.first)
AddrDieMap[R.HighPC] = B->second;
if (R.LowPC > B->first)
AddrDieMap[B->first].first = R.LowPC;
}
AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die);
}
} else
llvm::consumeError(DIERangesOrError.takeError());
}
// Parent DIEs are added to the AddrDieMap prior to the Children DIEs to
// simplify the logic to update AddrDieMap. The child's range will always
// be equal or smaller than the parent's range. With this assumption, when
// adding one range into the map, it will at most split a range into 3
// sub-ranges.
for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling())
updateAddressDieMap(Child);
}
DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
extractDIEsIfNeeded(false);
if (AddrDieMap.empty())
updateAddressDieMap(getUnitDIE());
auto R = AddrDieMap.upper_bound(Address);
if (R == AddrDieMap.begin())
return DWARFDie();
// upper_bound's previous item contains Address.
--R;
if (Address >= R->second.first)
return DWARFDie();
return R->second.second;
}
void DWARFUnit::updateVariableDieMap(DWARFDie Die) {
for (DWARFDie Child : Die) {
if (isType(Child.getTag()))
continue;
updateVariableDieMap(Child);
}
if (Die.getTag() != DW_TAG_variable)
return;
Expected<DWARFLocationExpressionsVector> Locations =
Die.getLocations(DW_AT_location);
if (!Locations) {
// Missing DW_AT_location is fine here.
consumeError(Locations.takeError());
return;
}
uint64_t Address = UINT64_MAX;
for (const DWARFLocationExpression &Location : *Locations) {
uint8_t AddressSize = getAddressByteSize();
DataExtractor Data(Location.Expr, /*IsLittleEndian=*/true, AddressSize);
DWARFExpression Expr(Data, AddressSize);
auto It = Expr.begin();
if (It == Expr.end())
continue;
// Match exactly the main sequence used to describe global variables:
// `DW_OP_addr[x] [+ DW_OP_plus_uconst]`. Currently, this is the sequence
// that LLVM produces for DILocalVariables and DIGlobalVariables. If, in
// future, the DWARF producer (`DwarfCompileUnit::addLocationAttribute()` is
// a good starting point) is extended to use further expressions, this code
// needs to be updated.
uint64_t LocationAddr;
if (It->getCode() == dwarf::DW_OP_addr) {
LocationAddr = It->getRawOperand(0);
} else if (It->getCode() == dwarf::DW_OP_addrx) {
uint64_t DebugAddrOffset = It->getRawOperand(0);
if (auto Pointer = getAddrOffsetSectionItem(DebugAddrOffset)) {
LocationAddr = Pointer->Address;
}
} else {
continue;
}
// Read the optional 2nd operand, a DW_OP_plus_uconst.
if (++It != Expr.end()) {
if (It->getCode() != dwarf::DW_OP_plus_uconst)
continue;
LocationAddr += It->getRawOperand(0);
// Probe for a 3rd operand, if it exists, bail.
if (++It != Expr.end())
continue;
}
Address = LocationAddr;
break;
}
// Get the size of the global variable. If all else fails (i.e. the global has
// no type), then we use a size of one to still allow symbolization of the
// exact address.
uint64_t GVSize = 1;
if (DWARFDie BaseType = Die.getAttributeValueAsReferencedDie(DW_AT_type))
if (std::optional<uint64_t> Size = Die.getTypeSize(getAddressByteSize()))
GVSize = *Size;
if (Address != UINT64_MAX)
VariableDieMap[Address] = {Address + GVSize, Die};
}
DWARFDie DWARFUnit::getVariableForAddress(uint64_t Address) {
extractDIEsIfNeeded(false);
auto RootDie = getUnitDIE();
auto RootLookup = RootsParsedForVariables.insert(RootDie.getOffset());
if (RootLookup.second)
updateVariableDieMap(RootDie);
auto R = VariableDieMap.upper_bound(Address);
if (R == VariableDieMap.begin())
return DWARFDie();
// upper_bound's previous item contains Address.
--R;
if (Address >= R->second.first)
return DWARFDie();
return R->second.second;
}
void
DWARFUnit::getInlinedChainForAddress(uint64_t Address,
SmallVectorImpl<DWARFDie> &InlinedChain) {
assert(InlinedChain.empty());
// Try to look for subprogram DIEs in the DWO file.
parseDWO();
// First, find the subroutine that contains the given address (the leaf
// of inlined chain).
DWARFDie SubroutineDIE =
(DWO ? *DWO : *this).getSubroutineForAddress(Address);
while (SubroutineDIE) {
if (SubroutineDIE.isSubprogramDIE()) {
InlinedChain.push_back(SubroutineDIE);
return;
}
if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine)
InlinedChain.push_back(SubroutineDIE);
SubroutineDIE = SubroutineDIE.getParent();
}
}
const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context,
DWARFSectionKind Kind) {
if (Kind == DW_SECT_INFO)
return Context.getCUIndex();
assert(Kind == DW_SECT_EXT_TYPES);
return Context.getTUIndex();
}
DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) {
if (const DWARFDebugInfoEntry *Entry = getParentEntry(Die))
return DWARFDie(this, Entry);
return DWARFDie();
}
const DWARFDebugInfoEntry *
DWARFUnit::getParentEntry(const DWARFDebugInfoEntry *Die) const {
if (!Die)
return nullptr;
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
if (std::optional<uint32_t> ParentIdx = Die->getParentIdx()) {
assert(*ParentIdx < DieArray.size() &&
"ParentIdx is out of DieArray boundaries");
return getDebugInfoEntry(*ParentIdx);
}
return nullptr;
}
DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) {
if (const DWARFDebugInfoEntry *Sibling = getSiblingEntry(Die))
return DWARFDie(this, Sibling);
return DWARFDie();
}
const DWARFDebugInfoEntry *
DWARFUnit::getSiblingEntry(const DWARFDebugInfoEntry *Die) const {
if (!Die)
return nullptr;
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
assert(*SiblingIdx < DieArray.size() &&
"SiblingIdx is out of DieArray boundaries");
return &DieArray[*SiblingIdx];
}
return nullptr;
}
DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) {
if (const DWARFDebugInfoEntry *Sibling = getPreviousSiblingEntry(Die))
return DWARFDie(this, Sibling);
return DWARFDie();
}
const DWARFDebugInfoEntry *
DWARFUnit::getPreviousSiblingEntry(const DWARFDebugInfoEntry *Die) const {
if (!Die)
return nullptr;
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
std::optional<uint32_t> ParentIdx = Die->getParentIdx();
if (!ParentIdx)
// Die is a root die, there is no previous sibling.
return nullptr;
assert(*ParentIdx < DieArray.size() &&
"ParentIdx is out of DieArray boundaries");
assert(getDIEIndex(Die) > 0 && "Die is a root die");
uint32_t PrevDieIdx = getDIEIndex(Die) - 1;
if (PrevDieIdx == *ParentIdx)
// Immediately previous node is parent, there is no previous sibling.
return nullptr;
while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) {
PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx();
assert(PrevDieIdx < DieArray.size() &&
"PrevDieIdx is out of DieArray boundaries");
assert(PrevDieIdx >= *ParentIdx &&
"PrevDieIdx is not a child of parent of Die");
}
return &DieArray[PrevDieIdx];
}
DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) {
if (const DWARFDebugInfoEntry *Child = getFirstChildEntry(Die))
return DWARFDie(this, Child);
return DWARFDie();
}
const DWARFDebugInfoEntry *
DWARFUnit::getFirstChildEntry(const DWARFDebugInfoEntry *Die) const {
if (!Die)
return nullptr;
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
if (!Die->hasChildren())
return nullptr;
// TODO: Instead of checking here for invalid die we might reject
// invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
// We do not want access out of bounds when parsing corrupted debug data.
size_t I = getDIEIndex(Die) + 1;
if (I >= DieArray.size())
return nullptr;
return &DieArray[I];
}
DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) {
if (const DWARFDebugInfoEntry *Child = getLastChildEntry(Die))
return DWARFDie(this, Child);
return DWARFDie();
}
const DWARFDebugInfoEntry *
DWARFUnit::getLastChildEntry(const DWARFDebugInfoEntry *Die) const {
if (!Die)
return nullptr;
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
if (!Die->hasChildren())
return nullptr;
if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
assert(*SiblingIdx < DieArray.size() &&
"SiblingIdx is out of DieArray boundaries");
assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null &&
"Bad end of children marker");
return &DieArray[*SiblingIdx - 1];
}
// If SiblingIdx is set for non-root dies we could be sure that DWARF is
// correct and "end of children marker" must be found. For root die we do not
// have such a guarantee(parsing root die might be stopped if "end of children
// marker" is missing, SiblingIdx is always zero for root die). That is why we
// do not use assertion for checking for "end of children marker" for root
// die.
// TODO: Instead of checking here for invalid die we might reject
// invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
if (getDIEIndex(Die) == 0 && DieArray.size() > 1 &&
DieArray.back().getTag() == dwarf::DW_TAG_null) {
// For the unit die we might take last item from DieArray.
assert(getDIEIndex(Die) ==
getDIEIndex(const_cast<DWARFUnit *>(this)->getUnitDIE()) &&
"Bad unit die");
return &DieArray.back();
}
return nullptr;
}
const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const {
if (!Abbrevs) {
Expected<const DWARFAbbreviationDeclarationSet *> AbbrevsOrError =
Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset());
if (!AbbrevsOrError) {
// FIXME: We should propagate this error upwards.
consumeError(AbbrevsOrError.takeError());
return nullptr;
}
Abbrevs = *AbbrevsOrError;
}
return Abbrevs;
}
std::optional<object::SectionedAddress> DWARFUnit::getBaseAddress() {
if (BaseAddr)
return BaseAddr;
DWARFDie UnitDie = (SU ? SU : this)->getUnitDIE();
std::optional<DWARFFormValue> PC =
UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
BaseAddr = toSectionedAddress(PC);
return BaseAddr;
}
Expected<StrOffsetsContributionDescriptor>
StrOffsetsContributionDescriptor::validateContributionSize(
DWARFDataExtractor &DA) {
uint8_t EntrySize = getDwarfOffsetByteSize();
// In order to ensure that we don't read a partial record at the end of
// the section we validate for a multiple of the entry size.
uint64_t ValidationSize = alignTo(Size, EntrySize);
// Guard against overflow.
if (ValidationSize >= Size)
if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
return *this;
return createStringError(errc::invalid_argument, "length exceeds section size");
}
// Look for a DWARF64-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Expected<StrOffsetsContributionDescriptor>
parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
if (!DA.isValidOffsetForDataOfSize(Offset, 16))
return createStringError(errc::invalid_argument, "section offset exceeds section size");
if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64)
return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit");
uint64_t Size = DA.getU64(&Offset);
uint8_t Version = DA.getU16(&Offset);
(void)DA.getU16(&Offset); // padding
// The encoded length includes the 2-byte version field and the 2-byte
// padding, so we need to subtract them out when we populate the descriptor.
return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64);
}
// Look for a DWARF32-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Expected<StrOffsetsContributionDescriptor>
parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
if (!DA.isValidOffsetForDataOfSize(Offset, 8))
return createStringError(errc::invalid_argument, "section offset exceeds section size");
uint32_t ContributionSize = DA.getU32(&Offset);
if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved)
return createStringError(errc::invalid_argument, "invalid length");
uint8_t Version = DA.getU16(&Offset);
(void)DA.getU16(&Offset); // padding
// The encoded length includes the 2-byte version field and the 2-byte
// padding, so we need to subtract them out when we populate the descriptor.
return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version,
DWARF32);
}
static Expected<StrOffsetsContributionDescriptor>
parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA,
llvm::dwarf::DwarfFormat Format,
uint64_t Offset) {
StrOffsetsContributionDescriptor Desc;
switch (Format) {
case dwarf::DwarfFormat::DWARF64: {
if (Offset < 16)
return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix");
auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16);
if (!DescOrError)
return DescOrError.takeError();
Desc = *DescOrError;
break;
}
case dwarf::DwarfFormat::DWARF32: {
if (Offset < 8)
return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix");
auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8);
if (!DescOrError)
return DescOrError.takeError();
Desc = *DescOrError;
break;
}
}
return Desc.validateContributionSize(DA);
}
Expected<std::optional<StrOffsetsContributionDescriptor>>
DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) {
assert(!IsDWO);
auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base));
if (!OptOffset)
return std::nullopt;
auto DescOrError =
parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset);
if (!DescOrError)
return DescOrError.takeError();
return *DescOrError;
}
Expected<std::optional<StrOffsetsContributionDescriptor>>
DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA) {
assert(IsDWO);
uint64_t Offset = 0;
auto IndexEntry = Header.getIndexEntry();
const auto *C =
IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr;
if (C)
Offset = C->getOffset();
if (getVersion() >= 5) {
if (DA.getData().data() == nullptr)
return std::nullopt;
Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16;
// Look for a valid contribution at the given offset.
auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset);
if (!DescOrError)
return DescOrError.takeError();
return *DescOrError;
}
// Prior to DWARF v5, we derive the contribution size from the
// index table (in a package file). In a .dwo file it is simply
// the length of the string offsets section.
StrOffsetsContributionDescriptor Desc;
if (C)
Desc = StrOffsetsContributionDescriptor(C->getOffset(), C->getLength(), 4,
Header.getFormat());
else if (!IndexEntry && !StringOffsetSection.Data.empty())
Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(),
4, Header.getFormat());
else
return std::nullopt;
auto DescOrError = Desc.validateContributionSize(DA);
if (!DescOrError)
return DescOrError.takeError();
return *DescOrError;
}
std::optional<uint64_t> DWARFUnit::getRnglistOffset(uint32_t Index) {
DataExtractor RangesData(RangeSection->Data, IsLittleEndian,
getAddressByteSize());
DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection,
IsLittleEndian, 0);
if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
RangesData, RangeSectionBase, getFormat(), Index))
return *Off + RangeSectionBase;
return std::nullopt;
}
std::optional<uint64_t> DWARFUnit::getLoclistOffset(uint32_t Index) {
if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
LocTable->getData(), LocSectionBase, getFormat(), Index))
return *Off + LocSectionBase;
return std::nullopt;
}
|