1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
|
//===-- LVBinaryReader.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the LVBinaryReader class.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/LogicalView/Readers/LVBinaryReader.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/FormatVariadic.h"
using namespace llvm;
using namespace llvm::logicalview;
#define DEBUG_TYPE "BinaryReader"
// Function names extracted from the object symbol table.
void LVSymbolTable::add(StringRef Name, LVScope *Function,
LVSectionIndex SectionIndex) {
std::string SymbolName(Name);
if (SymbolNames.find(SymbolName) == SymbolNames.end()) {
SymbolNames.emplace(
std::piecewise_construct, std::forward_as_tuple(SymbolName),
std::forward_as_tuple(Function, 0, SectionIndex, false));
} else {
// Update a recorded entry with its logical scope and section index.
SymbolNames[SymbolName].Scope = Function;
if (SectionIndex)
SymbolNames[SymbolName].SectionIndex = SectionIndex;
}
if (Function && SymbolNames[SymbolName].IsComdat)
Function->setIsComdat();
LLVM_DEBUG({ print(dbgs()); });
}
void LVSymbolTable::add(StringRef Name, LVAddress Address,
LVSectionIndex SectionIndex, bool IsComdat) {
std::string SymbolName(Name);
if (SymbolNames.find(SymbolName) == SymbolNames.end())
SymbolNames.emplace(
std::piecewise_construct, std::forward_as_tuple(SymbolName),
std::forward_as_tuple(nullptr, Address, SectionIndex, IsComdat));
else
// Update a recorded symbol name with its logical scope.
SymbolNames[SymbolName].Address = Address;
LVScope *Function = SymbolNames[SymbolName].Scope;
if (Function && IsComdat)
Function->setIsComdat();
LLVM_DEBUG({ print(dbgs()); });
}
LVSectionIndex LVSymbolTable::update(LVScope *Function) {
LVSectionIndex SectionIndex = getReader().getDotTextSectionIndex();
StringRef Name = Function->getLinkageName();
if (Name.empty())
Name = Function->getName();
std::string SymbolName(Name);
if (SymbolName.empty() || (SymbolNames.find(SymbolName) == SymbolNames.end()))
return SectionIndex;
// Update a recorded entry with its logical scope, only if the scope has
// ranges. That is the case when in DWARF there are 2 DIEs connected via
// the DW_AT_specification.
if (Function->getHasRanges()) {
SymbolNames[SymbolName].Scope = Function;
SectionIndex = SymbolNames[SymbolName].SectionIndex;
} else {
SectionIndex = UndefinedSectionIndex;
}
if (SymbolNames[SymbolName].IsComdat)
Function->setIsComdat();
LLVM_DEBUG({ print(dbgs()); });
return SectionIndex;
}
const LVSymbolTableEntry &LVSymbolTable::getEntry(StringRef Name) {
static LVSymbolTableEntry Empty = LVSymbolTableEntry();
LVSymbolNames::iterator Iter = SymbolNames.find(std::string(Name));
return Iter != SymbolNames.end() ? Iter->second : Empty;
}
LVAddress LVSymbolTable::getAddress(StringRef Name) {
LVSymbolNames::iterator Iter = SymbolNames.find(std::string(Name));
return Iter != SymbolNames.end() ? Iter->second.Address : 0;
}
LVSectionIndex LVSymbolTable::getIndex(StringRef Name) {
LVSymbolNames::iterator Iter = SymbolNames.find(std::string(Name));
return Iter != SymbolNames.end() ? Iter->second.SectionIndex
: getReader().getDotTextSectionIndex();
}
bool LVSymbolTable::getIsComdat(StringRef Name) {
LVSymbolNames::iterator Iter = SymbolNames.find(std::string(Name));
return Iter != SymbolNames.end() ? Iter->second.IsComdat : false;
}
void LVSymbolTable::print(raw_ostream &OS) {
OS << "Symbol Table\n";
for (LVSymbolNames::reference Entry : SymbolNames) {
LVSymbolTableEntry &SymbolName = Entry.second;
LVScope *Scope = SymbolName.Scope;
LVOffset Offset = Scope ? Scope->getOffset() : 0;
OS << "Index: " << hexValue(SymbolName.SectionIndex, 5)
<< " Comdat: " << (SymbolName.IsComdat ? "Y" : "N")
<< " Scope: " << hexValue(Offset)
<< " Address: " << hexValue(SymbolName.Address)
<< " Name: " << Entry.first << "\n";
}
}
void LVBinaryReader::addToSymbolTable(StringRef Name, LVScope *Function,
LVSectionIndex SectionIndex) {
SymbolTable.add(Name, Function, SectionIndex);
}
void LVBinaryReader::addToSymbolTable(StringRef Name, LVAddress Address,
LVSectionIndex SectionIndex,
bool IsComdat) {
SymbolTable.add(Name, Address, SectionIndex, IsComdat);
}
LVSectionIndex LVBinaryReader::updateSymbolTable(LVScope *Function) {
return SymbolTable.update(Function);
}
const LVSymbolTableEntry &LVBinaryReader::getSymbolTableEntry(StringRef Name) {
return SymbolTable.getEntry(Name);
}
LVAddress LVBinaryReader::getSymbolTableAddress(StringRef Name) {
return SymbolTable.getAddress(Name);
}
LVSectionIndex LVBinaryReader::getSymbolTableIndex(StringRef Name) {
return SymbolTable.getIndex(Name);
}
bool LVBinaryReader::getSymbolTableIsComdat(StringRef Name) {
return SymbolTable.getIsComdat(Name);
}
void LVBinaryReader::mapVirtualAddress(const object::ObjectFile &Obj) {
for (const object::SectionRef &Section : Obj.sections()) {
if (!Section.isText() || Section.isVirtual() || !Section.getSize())
continue;
// Record section information required for symbol resolution.
// Note: The section index returned by 'getIndex()' is one based.
Sections.emplace(Section.getIndex(), Section);
addSectionAddress(Section);
// Identify the ".text" section.
Expected<StringRef> SectionNameOrErr = Section.getName();
if (!SectionNameOrErr) {
consumeError(SectionNameOrErr.takeError());
continue;
}
if ((*SectionNameOrErr).equals(".text") ||
(*SectionNameOrErr).equals(".code"))
DotTextSectionIndex = Section.getIndex();
}
// Process the symbol table.
mapRangeAddress(Obj);
LLVM_DEBUG({
dbgs() << "\nSections Information:\n";
for (LVSections::reference Entry : Sections) {
LVSectionIndex SectionIndex = Entry.first;
const object::SectionRef Section = Entry.second;
Expected<StringRef> SectionNameOrErr = Section.getName();
if (!SectionNameOrErr)
consumeError(SectionNameOrErr.takeError());
dbgs() << "\nIndex: " << format_decimal(SectionIndex, 3)
<< " Name: " << *SectionNameOrErr << "\n"
<< "Size: " << hexValue(Section.getSize()) << "\n"
<< "VirtualAddress: " << hexValue(VirtualAddress) << "\n"
<< "SectionAddress: " << hexValue(Section.getAddress()) << "\n";
}
dbgs() << "\nObject Section Information:\n";
for (LVSectionAddresses::const_reference Entry : SectionAddresses)
dbgs() << "[" << hexValue(Entry.first) << ":"
<< hexValue(Entry.first + Entry.second.getSize())
<< "] Size: " << hexValue(Entry.second.getSize()) << "\n";
});
}
void LVBinaryReader::mapVirtualAddress(const object::COFFObjectFile &COFFObj) {
ErrorOr<uint64_t> ImageBase = COFFObj.getImageBase();
if (ImageBase)
ImageBaseAddress = ImageBase.get();
LLVM_DEBUG({
dbgs() << "ImageBaseAddress: " << hexValue(ImageBaseAddress) << "\n";
});
uint32_t Flags = COFF::IMAGE_SCN_CNT_CODE | COFF::IMAGE_SCN_LNK_COMDAT;
for (const object::SectionRef &Section : COFFObj.sections()) {
if (!Section.isText() || Section.isVirtual() || !Section.getSize())
continue;
const object::coff_section *COFFSection = COFFObj.getCOFFSection(Section);
VirtualAddress = COFFSection->VirtualAddress;
bool IsComdat = (COFFSection->Characteristics & Flags) == Flags;
// Record section information required for symbol resolution.
// Note: The section index returned by 'getIndex()' is zero based.
Sections.emplace(Section.getIndex() + 1, Section);
addSectionAddress(Section);
// Additional initialization on the specific object format.
mapRangeAddress(COFFObj, Section, IsComdat);
}
LLVM_DEBUG({
dbgs() << "\nSections Information:\n";
for (LVSections::reference Entry : Sections) {
LVSectionIndex SectionIndex = Entry.first;
const object::SectionRef Section = Entry.second;
const object::coff_section *COFFSection = COFFObj.getCOFFSection(Section);
Expected<StringRef> SectionNameOrErr = Section.getName();
if (!SectionNameOrErr)
consumeError(SectionNameOrErr.takeError());
dbgs() << "\nIndex: " << format_decimal(SectionIndex, 3)
<< " Name: " << *SectionNameOrErr << "\n"
<< "Size: " << hexValue(Section.getSize()) << "\n"
<< "VirtualAddress: " << hexValue(VirtualAddress) << "\n"
<< "SectionAddress: " << hexValue(Section.getAddress()) << "\n"
<< "PointerToRawData: " << hexValue(COFFSection->PointerToRawData)
<< "\n"
<< "SizeOfRawData: " << hexValue(COFFSection->SizeOfRawData)
<< "\n";
}
dbgs() << "\nObject Section Information:\n";
for (LVSectionAddresses::const_reference Entry : SectionAddresses)
dbgs() << "[" << hexValue(Entry.first) << ":"
<< hexValue(Entry.first + Entry.second.getSize())
<< "] Size: " << hexValue(Entry.second.getSize()) << "\n";
});
}
Error LVBinaryReader::loadGenericTargetInfo(StringRef TheTriple,
StringRef TheFeatures) {
std::string TargetLookupError;
const Target *TheTarget =
TargetRegistry::lookupTarget(std::string(TheTriple), TargetLookupError);
if (!TheTarget)
return createStringError(errc::invalid_argument, TargetLookupError.c_str());
// Register information.
MCRegisterInfo *RegisterInfo = TheTarget->createMCRegInfo(TheTriple);
if (!RegisterInfo)
return createStringError(errc::invalid_argument,
"no register info for target " + TheTriple);
MRI.reset(RegisterInfo);
// Assembler properties and features.
MCTargetOptions MCOptions;
MCAsmInfo *AsmInfo(TheTarget->createMCAsmInfo(*MRI, TheTriple, MCOptions));
if (!AsmInfo)
return createStringError(errc::invalid_argument,
"no assembly info for target " + TheTriple);
MAI.reset(AsmInfo);
// Target subtargets.
StringRef CPU;
MCSubtargetInfo *SubtargetInfo(
TheTarget->createMCSubtargetInfo(TheTriple, CPU, TheFeatures));
if (!SubtargetInfo)
return createStringError(errc::invalid_argument,
"no subtarget info for target " + TheTriple);
STI.reset(SubtargetInfo);
// Instructions Info.
MCInstrInfo *InstructionInfo(TheTarget->createMCInstrInfo());
if (!InstructionInfo)
return createStringError(errc::invalid_argument,
"no instruction info for target " + TheTriple);
MII.reset(InstructionInfo);
MC = std::make_unique<MCContext>(Triple(TheTriple), MAI.get(), MRI.get(),
STI.get());
// Assembler.
MCDisassembler *DisAsm(TheTarget->createMCDisassembler(*STI, *MC));
if (!DisAsm)
return createStringError(errc::invalid_argument,
"no disassembler for target " + TheTriple);
MD.reset(DisAsm);
MCInstPrinter *InstructionPrinter(TheTarget->createMCInstPrinter(
Triple(TheTriple), AsmInfo->getAssemblerDialect(), *MAI, *MII, *MRI));
if (!InstructionPrinter)
return createStringError(errc::invalid_argument,
"no target assembly language printer for target " +
TheTriple);
MIP.reset(InstructionPrinter);
InstructionPrinter->setPrintImmHex(true);
return Error::success();
}
Expected<std::pair<uint64_t, object::SectionRef>>
LVBinaryReader::getSection(LVScope *Scope, LVAddress Address,
LVSectionIndex SectionIndex) {
// Return the 'text' section with the code for this logical scope.
// COFF: SectionIndex is zero. Use 'SectionAddresses' data.
// ELF: SectionIndex is the section index in the file.
if (SectionIndex) {
LVSections::iterator Iter = Sections.find(SectionIndex);
if (Iter == Sections.end()) {
return createStringError(errc::invalid_argument,
"invalid section index for: '%s'",
Scope->getName().str().c_str());
}
const object::SectionRef Section = Iter->second;
return std::make_pair(Section.getAddress(), Section);
}
// Ensure a valid starting address for the public names.
LVSectionAddresses::const_iterator Iter =
SectionAddresses.upper_bound(Address);
if (Iter == SectionAddresses.begin())
return createStringError(errc::invalid_argument,
"invalid section address for: '%s'",
Scope->getName().str().c_str());
// Get section that contains the code for this function.
Iter = SectionAddresses.lower_bound(Address);
if (Iter != SectionAddresses.begin())
--Iter;
return std::make_pair(Iter->first, Iter->second);
}
void LVBinaryReader::addSectionRange(LVSectionIndex SectionIndex,
LVScope *Scope) {
LVRange *ScopesWithRanges = getSectionRanges(SectionIndex);
ScopesWithRanges->addEntry(Scope);
}
void LVBinaryReader::addSectionRange(LVSectionIndex SectionIndex,
LVScope *Scope, LVAddress LowerAddress,
LVAddress UpperAddress) {
LVRange *ScopesWithRanges = getSectionRanges(SectionIndex);
ScopesWithRanges->addEntry(Scope, LowerAddress, UpperAddress);
}
LVRange *LVBinaryReader::getSectionRanges(LVSectionIndex SectionIndex) {
// Check if we already have a mapping for this section index.
LVSectionRanges::iterator IterSection = SectionRanges.find(SectionIndex);
if (IterSection == SectionRanges.end())
IterSection =
SectionRanges.emplace(SectionIndex, std::make_unique<LVRange>()).first;
LVRange *Range = IterSection->second.get();
assert(Range && "Range is null.");
return Range;
}
Error LVBinaryReader::createInstructions(LVScope *Scope,
LVSectionIndex SectionIndex,
const LVNameInfo &NameInfo) {
assert(Scope && "Scope is null.");
// Skip stripped functions.
if (Scope->getIsDiscarded())
return Error::success();
// Find associated address and size for the given function entry point.
LVAddress Address = NameInfo.first;
uint64_t Size = NameInfo.second;
LLVM_DEBUG({
dbgs() << "\nPublic Name instructions: '" << Scope->getName() << "' / '"
<< Scope->getLinkageName() << "'\n"
<< "DIE Offset: " << hexValue(Scope->getOffset()) << " Range: ["
<< hexValue(Address) << ":" << hexValue(Address + Size) << "]\n";
});
Expected<std::pair<uint64_t, const object::SectionRef>> SectionOrErr =
getSection(Scope, Address, SectionIndex);
if (!SectionOrErr)
return SectionOrErr.takeError();
const object::SectionRef Section = (*SectionOrErr).second;
uint64_t SectionAddress = (*SectionOrErr).first;
Expected<StringRef> SectionContentsOrErr = Section.getContents();
if (!SectionContentsOrErr)
return SectionOrErr.takeError();
// There are cases where the section size is smaller than the [LowPC,HighPC]
// range; it causes us to decode invalid addresses. The recorded size in the
// logical scope is one less than the real size.
LLVM_DEBUG({
dbgs() << " Size: " << hexValue(Size)
<< ", Section Size: " << hexValue(Section.getSize()) << "\n";
});
Size = std::min(Size + 1, Section.getSize());
ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(*SectionContentsOrErr);
uint64_t Offset = Address - SectionAddress;
uint8_t const *Begin = Bytes.data() + Offset;
uint8_t const *End = Bytes.data() + Offset + Size;
LLVM_DEBUG({
Expected<StringRef> SectionNameOrErr = Section.getName();
if (!SectionNameOrErr)
consumeError(SectionNameOrErr.takeError());
else
dbgs() << "Section Index: " << hexValue(Section.getIndex()) << " ["
<< hexValue((uint64_t)Section.getAddress()) << ":"
<< hexValue((uint64_t)Section.getAddress() + Section.getSize(), 10)
<< "] Name: '" << *SectionNameOrErr << "'\n"
<< "Begin: " << hexValue((uint64_t)Begin)
<< ", End: " << hexValue((uint64_t)End) << "\n";
});
// Address for first instruction line.
LVAddress FirstAddress = Address;
auto InstructionsSP = std::make_unique<LVLines>();
LVLines &Instructions = *InstructionsSP;
DiscoveredLines.emplace_back(std::move(InstructionsSP));
while (Begin < End) {
MCInst Instruction;
uint64_t BytesConsumed = 0;
SmallVector<char, 64> InsnStr;
raw_svector_ostream Annotations(InsnStr);
MCDisassembler::DecodeStatus const S =
MD->getInstruction(Instruction, BytesConsumed,
ArrayRef<uint8_t>(Begin, End), Address, outs());
switch (S) {
case MCDisassembler::Fail:
LLVM_DEBUG({ dbgs() << "Invalid instruction\n"; });
if (BytesConsumed == 0)
// Skip invalid bytes
BytesConsumed = 1;
break;
case MCDisassembler::SoftFail:
LLVM_DEBUG({ dbgs() << "Potentially undefined instruction:"; });
[[fallthrough]];
case MCDisassembler::Success: {
std::string Buffer;
raw_string_ostream Stream(Buffer);
StringRef AnnotationsStr = Annotations.str();
MIP->printInst(&Instruction, Address, AnnotationsStr, *STI, Stream);
LLVM_DEBUG({
std::string BufferCodes;
raw_string_ostream StreamCodes(BufferCodes);
StreamCodes << format_bytes(
ArrayRef<uint8_t>(Begin, Begin + BytesConsumed), std::nullopt, 16,
16);
dbgs() << "[" << hexValue((uint64_t)Begin) << "] "
<< "Size: " << format_decimal(BytesConsumed, 2) << " ("
<< formatv("{0}",
fmt_align(StreamCodes.str(), AlignStyle::Left, 32))
<< ") " << hexValue((uint64_t)Address) << ": " << Stream.str()
<< "\n";
});
// Here we add logical lines to the Instructions. Later on,
// the 'processLines()' function will move each created logical line
// to its enclosing logical scope, using the debug ranges information
// and they will be released when its scope parent is deleted.
LVLineAssembler *Line = createLineAssembler();
Line->setAddress(Address);
Line->setName(StringRef(Stream.str()).trim());
Instructions.push_back(Line);
break;
}
}
Address += BytesConsumed;
Begin += BytesConsumed;
}
LLVM_DEBUG({
size_t Index = 0;
dbgs() << "\nSectionIndex: " << format_decimal(SectionIndex, 3)
<< " Scope DIE: " << hexValue(Scope->getOffset()) << "\n"
<< "Address: " << hexValue(FirstAddress)
<< format(" - Collected instructions lines: %d\n",
Instructions.size());
for (const LVLine *Line : Instructions)
dbgs() << format_decimal(++Index, 5) << ": "
<< hexValue(Line->getOffset()) << ", (" << Line->getName()
<< ")\n";
});
// The scope in the assembler names is linked to its own instructions.
ScopeInstructions.add(SectionIndex, Scope, &Instructions);
AssemblerMappings.add(SectionIndex, FirstAddress, Scope);
return Error::success();
}
Error LVBinaryReader::createInstructions(LVScope *Function,
LVSectionIndex SectionIndex) {
if (!options().getPrintInstructions())
return Error::success();
LVNameInfo Name = CompileUnit->findPublicName(Function);
if (Name.first != LVAddress(UINT64_MAX))
return createInstructions(Function, SectionIndex, Name);
return Error::success();
}
Error LVBinaryReader::createInstructions() {
if (!options().getPrintInstructions())
return Error::success();
LLVM_DEBUG({
size_t Index = 1;
dbgs() << "\nPublic Names (Scope):\n";
for (LVPublicNames::const_reference Name : CompileUnit->getPublicNames()) {
LVScope *Scope = Name.first;
const LVNameInfo &NameInfo = Name.second;
LVAddress Address = NameInfo.first;
uint64_t Size = NameInfo.second;
dbgs() << format_decimal(Index++, 5) << ": "
<< "DIE Offset: " << hexValue(Scope->getOffset()) << " Range: ["
<< hexValue(Address) << ":" << hexValue(Address + Size) << "] "
<< "Name: '" << Scope->getName() << "' / '"
<< Scope->getLinkageName() << "'\n";
}
});
// For each public name in the current compile unit, create the line
// records that represent the executable instructions.
for (LVPublicNames::const_reference Name : CompileUnit->getPublicNames()) {
LVScope *Scope = Name.first;
// The symbol table extracted from the object file always contains a
// non-empty name (linkage name). However, the logical scope does not
// guarantee to have a name for the linkage name (main is one case).
// For those cases, set the linkage name the same as the name.
if (!Scope->getLinkageNameIndex())
Scope->setLinkageName(Scope->getName());
LVSectionIndex SectionIndex = getSymbolTableIndex(Scope->getLinkageName());
if (Error Err = createInstructions(Scope, SectionIndex, Name.second))
return Err;
}
return Error::success();
}
// During the traversal of the debug information sections, we created the
// logical lines representing the disassembled instructions from the text
// section and the logical lines representing the line records from the
// debug line section. Using the ranges associated with the logical scopes,
// we will allocate those logical lines to their logical scopes.
void LVBinaryReader::processLines(LVLines *DebugLines,
LVSectionIndex SectionIndex,
LVScope *Function) {
assert(DebugLines && "DebugLines is null.");
// Just return if this compilation unit does not have any line records
// and no instruction lines were created.
if (DebugLines->empty() && !options().getPrintInstructions())
return;
// Merge the debug lines and instruction lines using their text address;
// the logical line representing the debug line record is followed by the
// line(s) representing the disassembled instructions, whose addresses are
// equal or greater that the line address and less than the address of the
// next debug line record.
LLVM_DEBUG({
size_t Index = 1;
size_t PerLine = 4;
dbgs() << format("\nProcess debug lines: %d\n", DebugLines->size());
for (const LVLine *Line : *DebugLines) {
dbgs() << format_decimal(Index, 5) << ": " << hexValue(Line->getOffset())
<< ", (" << Line->getLineNumber() << ")"
<< ((Index % PerLine) ? " " : "\n");
++Index;
}
dbgs() << ((Index % PerLine) ? "\n" : "");
});
bool TraverseLines = true;
LVLines::iterator Iter = DebugLines->begin();
while (TraverseLines && Iter != DebugLines->end()) {
uint64_t DebugAddress = (*Iter)->getAddress();
// Get the function with an entry point that matches this line and
// its associated assembler entries. In the case of COMDAT, the input
// 'Function' is not null. Use it to find its address ranges.
LVScope *Scope = Function;
if (!Function) {
Scope = AssemblerMappings.find(SectionIndex, DebugAddress);
if (!Scope) {
++Iter;
continue;
}
}
// Get the associated instructions for the found 'Scope'.
LVLines InstructionLines;
LVLines *Lines = ScopeInstructions.find(SectionIndex, Scope);
if (Lines)
InstructionLines = std::move(*Lines);
LLVM_DEBUG({
size_t Index = 0;
dbgs() << "\nSectionIndex: " << format_decimal(SectionIndex, 3)
<< " Scope DIE: " << hexValue(Scope->getOffset()) << "\n"
<< format("Process instruction lines: %d\n",
InstructionLines.size());
for (const LVLine *Line : InstructionLines)
dbgs() << format_decimal(++Index, 5) << ": "
<< hexValue(Line->getOffset()) << ", (" << Line->getName()
<< ")\n";
});
// Continue with next debug line if there are not instructions lines.
if (InstructionLines.empty()) {
++Iter;
continue;
}
for (LVLine *InstructionLine : InstructionLines) {
uint64_t InstructionAddress = InstructionLine->getAddress();
LLVM_DEBUG({
dbgs() << "Instruction address: " << hexValue(InstructionAddress)
<< "\n";
});
if (TraverseLines) {
while (Iter != DebugLines->end()) {
DebugAddress = (*Iter)->getAddress();
LLVM_DEBUG({
bool IsDebug = (*Iter)->getIsLineDebug();
dbgs() << "Line " << (IsDebug ? "dbg:" : "ins:") << " ["
<< hexValue(DebugAddress) << "]";
if (IsDebug)
dbgs() << format(" %d", (*Iter)->getLineNumber());
dbgs() << "\n";
});
// Instruction address before debug line.
if (InstructionAddress < DebugAddress) {
LLVM_DEBUG({
dbgs() << "Inserted instruction address: "
<< hexValue(InstructionAddress) << " before line: "
<< format("%d", (*Iter)->getLineNumber()) << " ["
<< hexValue(DebugAddress) << "]\n";
});
Iter = DebugLines->insert(Iter, InstructionLine);
// The returned iterator points to the inserted instruction.
// Skip it and point to the line acting as reference.
++Iter;
break;
}
++Iter;
}
if (Iter == DebugLines->end()) {
// We have reached the end of the source lines and the current
// instruction line address is greater than the last source line.
TraverseLines = false;
DebugLines->push_back(InstructionLine);
}
} else {
DebugLines->push_back(InstructionLine);
}
}
}
LLVM_DEBUG({
dbgs() << format("Lines after merge: %d\n", DebugLines->size());
size_t Index = 0;
for (const LVLine *Line : *DebugLines) {
dbgs() << format_decimal(++Index, 5) << ": "
<< hexValue(Line->getOffset()) << ", ("
<< ((Line->getIsLineDebug())
? Line->lineNumberAsStringStripped(/*ShowZero=*/true)
: Line->getName())
<< ")\n";
}
});
// If this compilation unit does not have line records, traverse its scopes
// and take any collected instruction lines as the working set in order
// to move them to their associated scope.
if (DebugLines->empty()) {
if (const LVScopes *Scopes = CompileUnit->getScopes())
for (LVScope *Scope : *Scopes) {
LVLines *Lines = ScopeInstructions.find(Scope);
if (Lines) {
LLVM_DEBUG({
size_t Index = 0;
dbgs() << "\nSectionIndex: " << format_decimal(SectionIndex, 3)
<< " Scope DIE: " << hexValue(Scope->getOffset()) << "\n"
<< format("Instruction lines: %d\n", Lines->size());
for (const LVLine *Line : *Lines)
dbgs() << format_decimal(++Index, 5) << ": "
<< hexValue(Line->getOffset()) << ", (" << Line->getName()
<< ")\n";
});
if (Scope->getIsArtificial()) {
// Add the instruction lines to their artificial scope.
for (LVLine *Line : *Lines)
Scope->addElement(Line);
} else {
DebugLines->append(*Lines);
}
Lines->clear();
}
}
}
LVRange *ScopesWithRanges = getSectionRanges(SectionIndex);
ScopesWithRanges->startSearch();
// Process collected lines.
LVScope *Scope;
for (LVLine *Line : *DebugLines) {
// Using the current line address, get its associated lexical scope and
// add the line information to it.
Scope = ScopesWithRanges->getEntry(Line->getAddress());
if (!Scope) {
// If missing scope, use the compile unit.
Scope = CompileUnit;
LLVM_DEBUG({
dbgs() << "Adding line to CU: " << hexValue(Line->getOffset()) << ", ("
<< ((Line->getIsLineDebug())
? Line->lineNumberAsStringStripped(/*ShowZero=*/true)
: Line->getName())
<< ")\n";
});
}
// Add line object to scope.
Scope->addElement(Line);
// Report any line zero.
if (options().getWarningLines() && Line->getIsLineDebug() &&
!Line->getLineNumber())
CompileUnit->addLineZero(Line);
// Some compilers generate ranges in the compile unit; other compilers
// only DW_AT_low_pc/DW_AT_high_pc. In order to correctly map global
// variables, we need to generate the map ranges for the compile unit.
// If we use the ranges stored at the scope level, there are cases where
// the address referenced by a symbol location, is not in the enclosing
// scope, but in an outer one. By using the ranges stored in the compile
// unit, we can catch all those addresses.
if (Line->getIsLineDebug())
CompileUnit->addMapping(Line, SectionIndex);
// Resolve any given pattern.
patterns().resolvePatternMatch(Line);
}
ScopesWithRanges->endSearch();
}
void LVBinaryReader::processLines(LVLines *DebugLines,
LVSectionIndex SectionIndex) {
assert(DebugLines && "DebugLines is null.");
if (DebugLines->empty() && !ScopeInstructions.findMap(SectionIndex))
return;
// If the Compile Unit does not contain comdat functions, use the whole
// set of debug lines, as the addresses don't have conflicts.
if (!CompileUnit->getHasComdatScopes()) {
processLines(DebugLines, SectionIndex, nullptr);
return;
}
// Find the indexes for the lines whose address is zero.
std::vector<size_t> AddressZero;
LVLines::iterator It =
std::find_if(std::begin(*DebugLines), std::end(*DebugLines),
[](LVLine *Line) { return !Line->getAddress(); });
while (It != std::end(*DebugLines)) {
AddressZero.emplace_back(std::distance(std::begin(*DebugLines), It));
It = std::find_if(std::next(It), std::end(*DebugLines),
[](LVLine *Line) { return !Line->getAddress(); });
}
// If the set of debug lines does not contain any line with address zero,
// use the whole set. It means we are dealing with an initialization
// section from a fully linked binary.
if (AddressZero.empty()) {
processLines(DebugLines, SectionIndex, nullptr);
return;
}
// The Compile unit contains comdat functions. Traverse the collected
// debug lines and identify logical groups based on their start and
// address. Each group starts with a zero address.
// Begin, End, Address, IsDone.
using LVBucket = std::tuple<size_t, size_t, LVAddress, bool>;
std::vector<LVBucket> Buckets;
LVAddress Address;
size_t Begin = 0;
size_t End = 0;
size_t Index = 0;
for (Index = 0; Index < AddressZero.size() - 1; ++Index) {
Begin = AddressZero[Index];
End = AddressZero[Index + 1] - 1;
Address = (*DebugLines)[End]->getAddress();
Buckets.emplace_back(Begin, End, Address, false);
}
// Add the last bucket.
if (Index) {
Begin = AddressZero[Index];
End = DebugLines->size() - 1;
Address = (*DebugLines)[End]->getAddress();
Buckets.emplace_back(Begin, End, Address, false);
}
LLVM_DEBUG({
dbgs() << "\nDebug Lines buckets: " << Buckets.size() << "\n";
for (LVBucket &Bucket : Buckets) {
dbgs() << "Begin: " << format_decimal(std::get<0>(Bucket), 5) << ", "
<< "End: " << format_decimal(std::get<1>(Bucket), 5) << ", "
<< "Address: " << hexValue(std::get<2>(Bucket)) << "\n";
}
});
// Traverse the sections and buckets looking for matches on the section
// sizes. In the unlikely event of different buckets with the same size
// process them in order and mark them as done.
LVLines Group;
for (LVSections::reference Entry : Sections) {
LVSectionIndex SectionIndex = Entry.first;
const object::SectionRef Section = Entry.second;
uint64_t Size = Section.getSize();
LLVM_DEBUG({
dbgs() << "\nSection Index: " << format_decimal(SectionIndex, 3)
<< " , Section Size: " << hexValue(Section.getSize())
<< " , Section Address: " << hexValue(Section.getAddress())
<< "\n";
});
for (LVBucket &Bucket : Buckets) {
if (std::get<3>(Bucket))
// Already done for previous section.
continue;
if (Size == std::get<2>(Bucket)) {
// We have a match on the section size.
Group.clear();
LVLines::iterator IterStart = DebugLines->begin() + std::get<0>(Bucket);
LVLines::iterator IterEnd =
DebugLines->begin() + std::get<1>(Bucket) + 1;
for (LVLines::iterator Iter = IterStart; Iter < IterEnd; ++Iter)
Group.push_back(*Iter);
processLines(&Group, SectionIndex, /*Function=*/nullptr);
std::get<3>(Bucket) = true;
break;
}
}
}
}
// Traverse the scopes for the given 'Function' looking for any inlined
// scopes with inlined lines, which are found in 'CUInlineeLines'.
void LVBinaryReader::includeInlineeLines(LVSectionIndex SectionIndex,
LVScope *Function) {
SmallVector<LVInlineeLine::iterator> InlineeIters;
std::function<void(LVScope * Parent)> FindInlinedScopes =
[&](LVScope *Parent) {
if (const LVScopes *Scopes = Parent->getScopes())
for (LVScope *Scope : *Scopes) {
LVInlineeLine::iterator Iter = CUInlineeLines.find(Scope);
if (Iter != CUInlineeLines.end())
InlineeIters.push_back(Iter);
FindInlinedScopes(Scope);
}
};
// Find all inlined scopes for the given 'Function'.
FindInlinedScopes(Function);
for (LVInlineeLine::iterator InlineeIter : InlineeIters) {
LVScope *Scope = InlineeIter->first;
addToSymbolTable(Scope->getLinkageName(), Scope, SectionIndex);
// TODO: Convert this into a reference.
LVLines *InlineeLines = InlineeIter->second.get();
LLVM_DEBUG({
dbgs() << "Inlined lines for: " << Scope->getName() << "\n";
for (const LVLine *Line : *InlineeLines)
dbgs() << "[" << hexValue(Line->getAddress()) << "] "
<< Line->getLineNumber() << "\n";
dbgs() << format("Debug lines: %d\n", CULines.size());
for (const LVLine *Line : CULines)
dbgs() << "Line address: " << hexValue(Line->getOffset()) << ", ("
<< Line->getLineNumber() << ")\n";
;
});
// The inlined lines must be merged using its address, in order to keep
// the real order of the instructions. The inlined lines are mixed with
// the other non-inlined lines.
if (InlineeLines->size()) {
// First address of inlinee code.
uint64_t InlineeStart = (InlineeLines->front())->getAddress();
LVLines::iterator Iter = std::find_if(
CULines.begin(), CULines.end(), [&](LVLine *Item) -> bool {
return Item->getAddress() == InlineeStart;
});
if (Iter != CULines.end()) {
// 'Iter' points to the line where the inlined function is called.
// Emulate the DW_AT_call_line attribute.
Scope->setCallLineNumber((*Iter)->getLineNumber());
// Mark the referenced line as the start of the inlined function.
// Skip the first line during the insertion, as the address and
// line number as the same. Otherwise we have to erase and insert.
(*Iter)->setLineNumber((*InlineeLines->begin())->getLineNumber());
++Iter;
CULines.insert(Iter, InlineeLines->begin() + 1, InlineeLines->end());
}
}
// Remove this set of lines from the container; each inlined function
// creates an unique set of lines. Remove only the created container.
CUInlineeLines.erase(InlineeIter);
InlineeLines->clear();
}
LLVM_DEBUG({
dbgs() << "Merged Inlined lines for: " << Function->getName() << "\n";
dbgs() << format("Debug lines: %d\n", CULines.size());
for (const LVLine *Line : CULines)
dbgs() << "Line address: " << hexValue(Line->getOffset()) << ", ("
<< Line->getLineNumber() << ")\n";
;
});
}
void LVBinaryReader::print(raw_ostream &OS) const {
OS << "LVBinaryReader\n";
LLVM_DEBUG(dbgs() << "PrintReader\n");
}
|