1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
//=== MapperJITLinkMemoryManager.cpp - Memory management with MemoryMapper ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/MapperJITLinkMemoryManager.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/JITLink/JITLink.h"
#include "llvm/Support/Process.h"
using namespace llvm::jitlink;
namespace llvm {
namespace orc {
class MapperJITLinkMemoryManager::InFlightAlloc
: public JITLinkMemoryManager::InFlightAlloc {
public:
InFlightAlloc(MapperJITLinkMemoryManager &Parent, LinkGraph &G,
ExecutorAddr AllocAddr,
std::vector<MemoryMapper::AllocInfo::SegInfo> Segs)
: Parent(Parent), G(G), AllocAddr(AllocAddr), Segs(std::move(Segs)) {}
void finalize(OnFinalizedFunction OnFinalize) override {
MemoryMapper::AllocInfo AI;
AI.MappingBase = AllocAddr;
std::swap(AI.Segments, Segs);
std::swap(AI.Actions, G.allocActions());
Parent.Mapper->initialize(AI, [OnFinalize = std::move(OnFinalize)](
Expected<ExecutorAddr> Result) mutable {
if (!Result) {
OnFinalize(Result.takeError());
return;
}
OnFinalize(FinalizedAlloc(*Result));
});
}
void abandon(OnAbandonedFunction OnFinalize) override {
Parent.Mapper->release({AllocAddr}, std::move(OnFinalize));
}
private:
MapperJITLinkMemoryManager &Parent;
LinkGraph &G;
ExecutorAddr AllocAddr;
std::vector<MemoryMapper::AllocInfo::SegInfo> Segs;
};
MapperJITLinkMemoryManager::MapperJITLinkMemoryManager(
size_t ReservationGranularity, std::unique_ptr<MemoryMapper> Mapper)
: ReservationUnits(ReservationGranularity), AvailableMemory(AMAllocator),
Mapper(std::move(Mapper)) {}
void MapperJITLinkMemoryManager::allocate(const JITLinkDylib *JD, LinkGraph &G,
OnAllocatedFunction OnAllocated) {
BasicLayout BL(G);
// find required address space
auto SegsSizes = BL.getContiguousPageBasedLayoutSizes(Mapper->getPageSize());
if (!SegsSizes) {
OnAllocated(SegsSizes.takeError());
return;
}
auto TotalSize = SegsSizes->total();
auto CompleteAllocation = [this, &G, BL = std::move(BL),
OnAllocated = std::move(OnAllocated)](
Expected<ExecutorAddrRange> Result) mutable {
if (!Result) {
Mutex.unlock();
return OnAllocated(Result.takeError());
}
auto NextSegAddr = Result->Start;
std::vector<MemoryMapper::AllocInfo::SegInfo> SegInfos;
for (auto &KV : BL.segments()) {
auto &AG = KV.first;
auto &Seg = KV.second;
auto TotalSize = Seg.ContentSize + Seg.ZeroFillSize;
Seg.Addr = NextSegAddr;
Seg.WorkingMem = Mapper->prepare(NextSegAddr, TotalSize);
NextSegAddr += alignTo(TotalSize, Mapper->getPageSize());
MemoryMapper::AllocInfo::SegInfo SI;
SI.Offset = Seg.Addr - Result->Start;
SI.ContentSize = Seg.ContentSize;
SI.ZeroFillSize = Seg.ZeroFillSize;
SI.AG = AG;
SI.WorkingMem = Seg.WorkingMem;
SegInfos.push_back(SI);
}
UsedMemory.insert({Result->Start, NextSegAddr - Result->Start});
if (NextSegAddr < Result->End) {
// Save the remaining memory for reuse in next allocation(s)
AvailableMemory.insert(NextSegAddr, Result->End - 1, true);
}
Mutex.unlock();
if (auto Err = BL.apply()) {
OnAllocated(std::move(Err));
return;
}
OnAllocated(std::make_unique<InFlightAlloc>(*this, G, Result->Start,
std::move(SegInfos)));
};
Mutex.lock();
// find an already reserved range that is large enough
ExecutorAddrRange SelectedRange{};
for (AvailableMemoryMap::iterator It = AvailableMemory.begin();
It != AvailableMemory.end(); It++) {
if (It.stop() - It.start() + 1 >= TotalSize) {
SelectedRange = ExecutorAddrRange(It.start(), It.stop() + 1);
It.erase();
break;
}
}
if (SelectedRange.empty()) { // no already reserved range was found
auto TotalAllocation = alignTo(TotalSize, ReservationUnits);
Mapper->reserve(TotalAllocation, std::move(CompleteAllocation));
} else {
CompleteAllocation(SelectedRange);
}
}
void MapperJITLinkMemoryManager::deallocate(
std::vector<FinalizedAlloc> Allocs, OnDeallocatedFunction OnDeallocated) {
std::vector<ExecutorAddr> Bases;
Bases.reserve(Allocs.size());
for (auto &FA : Allocs) {
ExecutorAddr Addr = FA.getAddress();
Bases.push_back(Addr);
}
Mapper->deinitialize(Bases, [this, Allocs = std::move(Allocs),
OnDeallocated = std::move(OnDeallocated)](
llvm::Error Err) mutable {
// TODO: How should we treat memory that we fail to deinitialize?
// We're currently bailing out and treating it as "burned" -- should we
// require that a failure to deinitialize still reset the memory so that
// we can reclaim it?
if (Err) {
for (auto &FA : Allocs)
FA.release();
OnDeallocated(std::move(Err));
return;
}
{
std::lock_guard<std::mutex> Lock(Mutex);
for (auto &FA : Allocs) {
ExecutorAddr Addr = FA.getAddress();
ExecutorAddrDiff Size = UsedMemory[Addr];
UsedMemory.erase(Addr);
AvailableMemory.insert(Addr, Addr + Size - 1, true);
FA.release();
}
}
OnDeallocated(Error::success());
});
}
} // end namespace orc
} // end namespace llvm
|