1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
//===-- RandomIRBuilder.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/RandomIRBuilder.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/FuzzMutate/OpDescriptor.h"
#include "llvm/FuzzMutate/Random.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
using namespace llvm;
using namespace fuzzerop;
/// Return a vector of Blocks that dominates this block, excluding current
/// block.
static std::vector<BasicBlock *> getDominators(BasicBlock *BB) {
std::vector<BasicBlock *> ret;
DominatorTree DT(*BB->getParent());
DomTreeNode *Node = DT.getNode(BB);
// It's possible that an orphan block is not in the dom tree. In that case we
// just return nothing.
if (!Node)
return ret;
Node = Node->getIDom();
while (Node && Node->getBlock()) {
ret.push_back(Node->getBlock());
// Get parent block.
Node = Node->getIDom();
}
return ret;
}
/// Return a vector of Blocks that is dominated by this block, excluding current
/// block
static std::vector<BasicBlock *> getDominatees(BasicBlock *BB) {
DominatorTree DT(*BB->getParent());
std::vector<BasicBlock *> ret;
DomTreeNode *Parent = DT.getNode(BB);
// It's possible that an orphan block is not in the dom tree. In that case we
// just return nothing.
if (!Parent)
return ret;
for (DomTreeNode *Child : Parent->children())
ret.push_back(Child->getBlock());
uint64_t Idx = 0;
while (Idx < ret.size()) {
DomTreeNode *Node = DT[ret[Idx]];
Idx++;
for (DomTreeNode *Child : Node->children())
ret.push_back(Child->getBlock());
}
return ret;
}
AllocaInst *RandomIRBuilder::createStackMemory(Function *F, Type *Ty,
Value *Init) {
/// TODO: For all Allocas, maybe allocate an array.
BasicBlock *EntryBB = &F->getEntryBlock();
DataLayout DL(F->getParent());
AllocaInst *Alloca = new AllocaInst(Ty, DL.getAllocaAddrSpace(), "A",
&*EntryBB->getFirstInsertionPt());
if (Init)
new StoreInst(Init, Alloca, Alloca->getNextNode());
return Alloca;
}
std::pair<GlobalVariable *, bool>
RandomIRBuilder::findOrCreateGlobalVariable(Module *M, ArrayRef<Value *> Srcs,
fuzzerop::SourcePred Pred) {
auto MatchesPred = [&Srcs, &Pred](GlobalVariable *GV) {
// Can't directly compare GV's type, as it would be a pointer to the actual
// type.
return Pred.matches(Srcs, UndefValue::get(GV->getValueType()));
};
bool DidCreate = false;
SmallVector<GlobalVariable *, 4> GlobalVars;
for (GlobalVariable &GV : M->globals()) {
GlobalVars.push_back(&GV);
}
auto RS = makeSampler(Rand, make_filter_range(GlobalVars, MatchesPred));
RS.sample(nullptr, 1);
GlobalVariable *GV = RS.getSelection();
if (!GV) {
DidCreate = true;
using LinkageTypes = GlobalVariable::LinkageTypes;
auto TRS = makeSampler<Constant *>(Rand);
TRS.sample(Pred.generate(Srcs, KnownTypes));
Constant *Init = TRS.getSelection();
Type *Ty = Init->getType();
GV = new GlobalVariable(*M, Ty, false, LinkageTypes::ExternalLinkage, Init,
"G", nullptr,
GlobalValue::ThreadLocalMode::NotThreadLocal,
M->getDataLayout().getDefaultGlobalsAddressSpace());
}
return {GV, DidCreate};
}
Value *RandomIRBuilder::findOrCreateSource(BasicBlock &BB,
ArrayRef<Instruction *> Insts) {
return findOrCreateSource(BB, Insts, {}, anyType());
}
Value *RandomIRBuilder::findOrCreateSource(BasicBlock &BB,
ArrayRef<Instruction *> Insts,
ArrayRef<Value *> Srcs,
SourcePred Pred,
bool allowConstant) {
auto MatchesPred = [&Srcs, &Pred](Value *V) { return Pred.matches(Srcs, V); };
SmallVector<uint64_t, 8> SrcTys;
for (uint64_t i = 0; i < EndOfValueSource; i++)
SrcTys.push_back(i);
std::shuffle(SrcTys.begin(), SrcTys.end(), Rand);
for (uint64_t SrcTy : SrcTys) {
switch (SrcTy) {
case SrcFromInstInCurBlock: {
auto RS = makeSampler(Rand, make_filter_range(Insts, MatchesPred));
if (!RS.isEmpty()) {
return RS.getSelection();
}
break;
}
case FunctionArgument: {
Function *F = BB.getParent();
SmallVector<Argument *, 8> Args;
for (uint64_t i = 0; i < F->arg_size(); i++) {
Args.push_back(F->getArg(i));
}
auto RS = makeSampler(Rand, make_filter_range(Args, MatchesPred));
if (!RS.isEmpty()) {
return RS.getSelection();
}
break;
}
case InstInDominator: {
auto Dominators = getDominators(&BB);
std::shuffle(Dominators.begin(), Dominators.end(), Rand);
for (BasicBlock *Dom : Dominators) {
SmallVector<Instruction *, 16> Instructions;
for (Instruction &I : *Dom) {
Instructions.push_back(&I);
}
auto RS =
makeSampler(Rand, make_filter_range(Instructions, MatchesPred));
// Also consider choosing no source, meaning we want a new one.
if (!RS.isEmpty()) {
return RS.getSelection();
}
}
break;
}
case SrcFromGlobalVariable: {
Module *M = BB.getParent()->getParent();
auto [GV, DidCreate] = findOrCreateGlobalVariable(M, Srcs, Pred);
Type *Ty = GV->getValueType();
LoadInst *LoadGV = nullptr;
if (BB.getTerminator()) {
LoadGV = new LoadInst(Ty, GV, "LGV", &*BB.getFirstInsertionPt());
} else {
LoadGV = new LoadInst(Ty, GV, "LGV", &BB);
}
// Because we might be generating new values, we have to check if it
// matches again.
if (DidCreate) {
if (Pred.matches(Srcs, LoadGV)) {
return LoadGV;
}
LoadGV->eraseFromParent();
// If no one is using this GlobalVariable, delete it too.
if (GV->use_empty()) {
GV->eraseFromParent();
}
}
break;
}
case NewConstOrStack: {
return newSource(BB, Insts, Srcs, Pred, allowConstant);
}
default:
case EndOfValueSource: {
llvm_unreachable("EndOfValueSource executed");
}
}
}
llvm_unreachable("Can't find a source");
}
Value *RandomIRBuilder::newSource(BasicBlock &BB, ArrayRef<Instruction *> Insts,
ArrayRef<Value *> Srcs, SourcePred Pred,
bool allowConstant) {
// Generate some constants to choose from.
auto RS = makeSampler<Value *>(Rand);
RS.sample(Pred.generate(Srcs, KnownTypes));
// If we can find a pointer to load from, use it half the time.
Value *Ptr = findPointer(BB, Insts);
if (Ptr) {
// Create load from the chosen pointer
auto IP = BB.getFirstInsertionPt();
if (auto *I = dyn_cast<Instruction>(Ptr)) {
IP = ++I->getIterator();
assert(IP != BB.end() && "guaranteed by the findPointer");
}
// Pick the type independently.
Type *AccessTy = RS.getSelection()->getType();
auto *NewLoad = new LoadInst(AccessTy, Ptr, "L", &*IP);
// Only sample this load if it really matches the descriptor
if (Pred.matches(Srcs, NewLoad))
RS.sample(NewLoad, RS.totalWeight());
else
NewLoad->eraseFromParent();
}
Value *newSrc = RS.getSelection();
// Generate a stack alloca and store the constant to it if constant is not
// allowed, our hope is that later mutations can generate some values and
// store to this placeholder.
if (!allowConstant && isa<Constant>(newSrc)) {
Type *Ty = newSrc->getType();
Function *F = BB.getParent();
AllocaInst *Alloca = createStackMemory(F, Ty, newSrc);
if (BB.getTerminator()) {
newSrc = new LoadInst(Ty, Alloca, /*ArrLen,*/ "L", BB.getTerminator());
} else {
newSrc = new LoadInst(Ty, Alloca, /*ArrLen,*/ "L", &BB);
}
}
return newSrc;
}
static bool isCompatibleReplacement(const Instruction *I, const Use &Operand,
const Value *Replacement) {
unsigned int OperandNo = Operand.getOperandNo();
if (Operand->getType() != Replacement->getType())
return false;
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
case Instruction::ExtractElement:
case Instruction::ExtractValue:
// TODO: We could potentially validate these, but for now just leave indices
// alone.
if (OperandNo >= 1)
return false;
break;
case Instruction::InsertValue:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
if (OperandNo >= 2)
return false;
break;
// For Br/Switch, we only try to modify the 1st Operand (condition).
// Modify other operands, like switch case may accidently change case from
// ConstantInt to a register, which is illegal.
case Instruction::Switch:
case Instruction::Br:
if (OperandNo >= 1)
return false;
break;
case Instruction::Call:
case Instruction::Invoke:
case Instruction::CallBr: {
const Function *Callee = cast<CallBase>(I)->getCalledFunction();
// If it's an indirect call, give up.
if (!Callee)
return false;
// If callee is not an intrinsic, operand 0 is the function to be called.
// Since we cannot assume that the replacement is a function pointer,
// we give up.
if (!Callee->getIntrinsicID() && OperandNo == 0)
return false;
return !Callee->hasParamAttribute(OperandNo, Attribute::ImmArg);
}
default:
break;
}
return true;
}
Instruction *RandomIRBuilder::connectToSink(BasicBlock &BB,
ArrayRef<Instruction *> Insts,
Value *V) {
SmallVector<uint64_t, 8> SinkTys;
for (uint64_t i = 0; i < EndOfValueSink; i++)
SinkTys.push_back(i);
std::shuffle(SinkTys.begin(), SinkTys.end(), Rand);
auto findSinkAndConnect =
[this, V](ArrayRef<Instruction *> Instructions) -> Instruction * {
auto RS = makeSampler<Use *>(Rand);
for (auto &I : Instructions) {
for (Use &U : I->operands())
if (isCompatibleReplacement(I, U, V))
RS.sample(&U, 1);
}
if (!RS.isEmpty()) {
Use *Sink = RS.getSelection();
User *U = Sink->getUser();
unsigned OpNo = Sink->getOperandNo();
U->setOperand(OpNo, V);
return cast<Instruction>(U);
}
return nullptr;
};
Instruction *Sink = nullptr;
for (uint64_t SinkTy : SinkTys) {
switch (SinkTy) {
case SinkToInstInCurBlock:
Sink = findSinkAndConnect(Insts);
if (Sink)
return Sink;
break;
case PointersInDominator: {
auto Dominators = getDominators(&BB);
std::shuffle(Dominators.begin(), Dominators.end(), Rand);
for (BasicBlock *Dom : Dominators) {
for (Instruction &I : *Dom) {
if (isa<PointerType>(I.getType()))
return new StoreInst(V, &I, Insts.back());
}
}
break;
}
case InstInDominatee: {
auto Dominatees = getDominatees(&BB);
std::shuffle(Dominatees.begin(), Dominatees.end(), Rand);
for (BasicBlock *Dominee : Dominatees) {
std::vector<Instruction *> Instructions;
for (Instruction &I : *Dominee)
Instructions.push_back(&I);
Sink = findSinkAndConnect(Instructions);
if (Sink) {
return Sink;
}
}
break;
}
case NewStore:
/// TODO: allocate a new stack memory.
return newSink(BB, Insts, V);
case SinkToGlobalVariable: {
Module *M = BB.getParent()->getParent();
auto [GV, DidCreate] =
findOrCreateGlobalVariable(M, {}, fuzzerop::onlyType(V->getType()));
return new StoreInst(V, GV, Insts.back());
}
case EndOfValueSink:
default:
llvm_unreachable("EndOfValueSink executed");
}
}
llvm_unreachable("Can't find a sink");
}
Instruction *RandomIRBuilder::newSink(BasicBlock &BB,
ArrayRef<Instruction *> Insts, Value *V) {
Value *Ptr = findPointer(BB, Insts);
if (!Ptr) {
if (uniform(Rand, 0, 1)) {
Type *Ty = V->getType();
Ptr = createStackMemory(BB.getParent(), Ty, UndefValue::get(Ty));
} else {
Ptr = UndefValue::get(PointerType::get(V->getType(), 0));
}
}
return new StoreInst(V, Ptr, Insts.back());
}
Value *RandomIRBuilder::findPointer(BasicBlock &BB,
ArrayRef<Instruction *> Insts) {
auto IsMatchingPtr = [](Instruction *Inst) {
// Invoke instructions sometimes produce valid pointers but currently
// we can't insert loads or stores from them
if (Inst->isTerminator())
return false;
return Inst->getType()->isPointerTy();
};
if (auto RS = makeSampler(Rand, make_filter_range(Insts, IsMatchingPtr)))
return RS.getSelection();
return nullptr;
}
Type *RandomIRBuilder::randomType() {
uint64_t TyIdx = uniform<uint64_t>(Rand, 0, KnownTypes.size() - 1);
return KnownTypes[TyIdx];
}
Function *RandomIRBuilder::createFunctionDeclaration(Module &M,
uint64_t ArgNum) {
Type *RetType = randomType();
SmallVector<Type *, 2> Args;
for (uint64_t i = 0; i < ArgNum; i++) {
Args.push_back(randomType());
}
Function *F = Function::Create(FunctionType::get(RetType, Args,
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
return F;
}
Function *RandomIRBuilder::createFunctionDeclaration(Module &M) {
return createFunctionDeclaration(
M, uniform<uint64_t>(Rand, MinArgNum, MaxArgNum));
}
Function *RandomIRBuilder::createFunctionDefinition(Module &M,
uint64_t ArgNum) {
Function *F = this->createFunctionDeclaration(M, ArgNum);
// TODO: Some arguments and a return value would probably be more
// interesting.
LLVMContext &Context = M.getContext();
DataLayout DL(&M);
BasicBlock *BB = BasicBlock::Create(Context, "BB", F);
Type *RetTy = F->getReturnType();
if (RetTy != Type::getVoidTy(Context)) {
Instruction *RetAlloca =
new AllocaInst(RetTy, DL.getAllocaAddrSpace(), "RP", BB);
Instruction *RetLoad = new LoadInst(RetTy, RetAlloca, "", BB);
ReturnInst::Create(Context, RetLoad, BB);
} else {
ReturnInst::Create(Context, BB);
}
return F;
}
Function *RandomIRBuilder::createFunctionDefinition(Module &M) {
return createFunctionDefinition(
M, uniform<uint64_t>(Rand, MinArgNum, MaxArgNum));
}
|