1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
|
//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements XCOFF object file writer information.
//
//===----------------------------------------------------------------------===//
#include "llvm/BinaryFormat/XCOFF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCXCOFFObjectWriter.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <deque>
#include <map>
using namespace llvm;
// An XCOFF object file has a limited set of predefined sections. The most
// important ones for us (right now) are:
// .text --> contains program code and read-only data.
// .data --> contains initialized data, function descriptors, and the TOC.
// .bss --> contains uninitialized data.
// Each of these sections is composed of 'Control Sections'. A Control Section
// is more commonly referred to as a csect. A csect is an indivisible unit of
// code or data, and acts as a container for symbols. A csect is mapped
// into a section based on its storage-mapping class, with the exception of
// XMC_RW which gets mapped to either .data or .bss based on whether it's
// explicitly initialized or not.
//
// We don't represent the sections in the MC layer as there is nothing
// interesting about them at at that level: they carry information that is
// only relevant to the ObjectWriter, so we materialize them in this class.
namespace {
constexpr unsigned DefaultSectionAlign = 4;
constexpr int16_t MaxSectionIndex = INT16_MAX;
// Packs the csect's alignment and type into a byte.
uint8_t getEncodedType(const MCSectionXCOFF *);
struct XCOFFRelocation {
uint32_t SymbolTableIndex;
uint32_t FixupOffsetInCsect;
uint8_t SignAndSize;
uint8_t Type;
};
// Wrapper around an MCSymbolXCOFF.
struct Symbol {
const MCSymbolXCOFF *const MCSym;
uint32_t SymbolTableIndex;
XCOFF::VisibilityType getVisibilityType() const {
return MCSym->getVisibilityType();
}
XCOFF::StorageClass getStorageClass() const {
return MCSym->getStorageClass();
}
StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
};
// Wrapper for an MCSectionXCOFF.
// It can be a Csect or debug section or DWARF section and so on.
struct XCOFFSection {
const MCSectionXCOFF *const MCSec;
uint32_t SymbolTableIndex;
uint64_t Address;
uint64_t Size;
SmallVector<Symbol, 1> Syms;
SmallVector<XCOFFRelocation, 1> Relocations;
StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
XCOFF::VisibilityType getVisibilityType() const {
return MCSec->getVisibilityType();
}
XCOFFSection(const MCSectionXCOFF *MCSec)
: MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
};
// Type to be used for a container representing a set of csects with
// (approximately) the same storage mapping class. For example all the csects
// with a storage mapping class of `xmc_pr` will get placed into the same
// container.
using CsectGroup = std::deque<XCOFFSection>;
using CsectGroups = std::deque<CsectGroup *>;
// The basic section entry defination. This Section represents a section entry
// in XCOFF section header table.
struct SectionEntry {
char Name[XCOFF::NameSize];
// The physical/virtual address of the section. For an object file these
// values are equivalent, except for in the overflow section header, where
// the physical address specifies the number of relocation entries and the
// virtual address specifies the number of line number entries.
// TODO: Divide Address into PhysicalAddress and VirtualAddress when line
// number entries are supported.
uint64_t Address;
uint64_t Size;
uint64_t FileOffsetToData;
uint64_t FileOffsetToRelocations;
uint32_t RelocationCount;
int32_t Flags;
int16_t Index;
virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
const uint64_t RawPointer) {
FileOffsetToData = RawPointer;
uint64_t NewPointer = RawPointer + Size;
if (NewPointer > MaxRawDataSize)
report_fatal_error("Section raw data overflowed this object file.");
return NewPointer;
}
// XCOFF has special section numbers for symbols:
// -2 Specifies N_DEBUG, a special symbolic debugging symbol.
// -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
// relocatable.
// 0 Specifies N_UNDEF, an undefined external symbol.
// Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
// hasn't been initialized.
static constexpr int16_t UninitializedIndex =
XCOFF::ReservedSectionNum::N_DEBUG - 1;
SectionEntry(StringRef N, int32_t Flags)
: Name(), Address(0), Size(0), FileOffsetToData(0),
FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
Index(UninitializedIndex) {
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
virtual void reset() {
Address = 0;
Size = 0;
FileOffsetToData = 0;
FileOffsetToRelocations = 0;
RelocationCount = 0;
Index = UninitializedIndex;
}
virtual ~SectionEntry() = default;
};
// Represents the data related to a section excluding the csects that make up
// the raw data of the section. The csects are stored separately as not all
// sections contain csects, and some sections contain csects which are better
// stored separately, e.g. the .data section containing read-write, descriptor,
// TOCBase and TOC-entry csects.
struct CsectSectionEntry : public SectionEntry {
// Virtual sections do not need storage allocated in the object file.
const bool IsVirtual;
// This is a section containing csect groups.
CsectGroups Groups;
CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
CsectGroups Groups)
: SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
void reset() override {
SectionEntry::reset();
// Clear any csects we have stored.
for (auto *Group : Groups)
Group->clear();
}
virtual ~CsectSectionEntry() = default;
};
struct DwarfSectionEntry : public SectionEntry {
// For DWARF section entry.
std::unique_ptr<XCOFFSection> DwarfSect;
// For DWARF section, we must use real size in the section header. MemorySize
// is for the size the DWARF section occupies including paddings.
uint32_t MemorySize;
// TODO: Remove this override. Loadable sections (e.g., .text, .data) may need
// to be aligned. Other sections generally don't need any alignment, but if
// they're aligned, the RawPointer should be adjusted before writing the
// section. Then a dwarf-specific function wouldn't be needed.
uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
const uint64_t RawPointer) override {
FileOffsetToData = RawPointer;
uint64_t NewPointer = RawPointer + MemorySize;
assert(NewPointer <= MaxRawDataSize &&
"Section raw data overflowed this object file.");
return NewPointer;
}
DwarfSectionEntry(StringRef N, int32_t Flags,
std::unique_ptr<XCOFFSection> Sect)
: SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
MemorySize(0) {
assert(DwarfSect->MCSec->isDwarfSect() &&
"This should be a DWARF section!");
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
DwarfSectionEntry(DwarfSectionEntry &&s) = default;
virtual ~DwarfSectionEntry() = default;
};
struct ExceptionTableEntry {
const MCSymbol *Trap;
uint64_t TrapAddress = ~0ul;
unsigned Lang;
unsigned Reason;
ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
: Trap(Trap), Lang(Lang), Reason(Reason) {}
};
struct ExceptionInfo {
const MCSymbol *FunctionSymbol;
unsigned FunctionSize;
std::vector<ExceptionTableEntry> Entries;
};
struct ExceptionSectionEntry : public SectionEntry {
std::map<const StringRef, ExceptionInfo> ExceptionTable;
bool isDebugEnabled = false;
ExceptionSectionEntry(StringRef N, int32_t Flags)
: SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
assert(N.size() <= XCOFF::NameSize && "Section too long.");
memcpy(Name, N.data(), N.size());
}
virtual ~ExceptionSectionEntry() = default;
};
struct CInfoSymInfo {
// Name of the C_INFO symbol associated with the section
std::string Name;
std::string Metadata;
// Offset into the start of the metadata in the section
uint64_t Offset;
CInfoSymInfo(std::string Name, std::string Metadata)
: Name(Name), Metadata(Metadata) {}
// Metadata needs to be padded out to an even word size.
uint32_t paddingSize() const {
return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size();
};
// Total size of the entry, including the 4 byte length
uint32_t size() const {
return Metadata.size() + paddingSize() + sizeof(uint32_t);
};
};
struct CInfoSymSectionEntry : public SectionEntry {
std::unique_ptr<CInfoSymInfo> Entry;
CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {}
virtual ~CInfoSymSectionEntry() = default;
void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) {
Entry = std::move(NewEntry);
Entry->Offset = sizeof(uint32_t);
Size += Entry->size();
}
void reset() override {
SectionEntry::reset();
Entry.reset();
}
};
class XCOFFObjectWriter : public MCObjectWriter {
uint32_t SymbolTableEntryCount = 0;
uint64_t SymbolTableOffset = 0;
uint16_t SectionCount = 0;
uint32_t PaddingsBeforeDwarf = 0;
std::vector<std::pair<std::string, size_t>> FileNames;
bool HasVisibility = false;
support::endian::Writer W;
std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
StringTableBuilder Strings;
const uint64_t MaxRawDataSize =
TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;
// Maps the MCSection representation to its corresponding XCOFFSection
// wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
// from its containing MCSectionXCOFF.
DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;
// Maps the MCSymbol representation to its corrresponding symbol table index.
// Needed for relocation.
DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;
// CsectGroups. These store the csects which make up different parts of
// the sections. Should have one for each set of csects that get mapped into
// the same section and get handled in a 'similar' way.
CsectGroup UndefinedCsects;
CsectGroup ProgramCodeCsects;
CsectGroup ReadOnlyCsects;
CsectGroup DataCsects;
CsectGroup FuncDSCsects;
CsectGroup TOCCsects;
CsectGroup BSSCsects;
CsectGroup TDataCsects;
CsectGroup TBSSCsects;
// The Predefined sections.
CsectSectionEntry Text;
CsectSectionEntry Data;
CsectSectionEntry BSS;
CsectSectionEntry TData;
CsectSectionEntry TBSS;
// All the XCOFF sections, in the order they will appear in the section header
// table.
std::array<CsectSectionEntry *const, 5> Sections{
{&Text, &Data, &BSS, &TData, &TBSS}};
std::vector<DwarfSectionEntry> DwarfSections;
std::vector<SectionEntry> OverflowSections;
ExceptionSectionEntry ExceptionSection;
CInfoSymSectionEntry CInfoSymSection;
CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
void reset() override;
void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
const MCFixup &, MCValue, uint64_t &) override;
uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
bool nameShouldBeInStringTable(const StringRef &);
void writeSymbolName(const StringRef &);
void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
const XCOFFSection &CSectionRef,
int16_t SectionIndex,
uint64_t SymbolOffset);
void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
int16_t SectionIndex,
XCOFF::StorageClass StorageClass);
void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
int16_t SectionIndex);
void writeFileHeader();
void writeAuxFileHeader();
void writeSectionHeader(const SectionEntry *Sec);
void writeSectionHeaderTable();
void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
void writeSectionForControlSectionEntry(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const CsectSectionEntry &CsectEntry,
uint64_t &CurrentAddressLocation);
void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const DwarfSectionEntry &DwarfEntry,
uint64_t &CurrentAddressLocation);
void writeSectionForExceptionSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation);
void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm,
const MCAsmLayout &Layout,
CInfoSymSectionEntry &CInfoSymEntry,
uint64_t &CurrentAddressLocation);
void writeSymbolTable(const MCAsmLayout &Layout);
void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
uint64_t NumberOfRelocEnt = 0);
void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
uint8_t SymbolAlignmentAndType,
uint8_t StorageMappingClass);
void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
uint64_t LineNumberPointer,
uint32_t EndIndex);
void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
uint32_t EndIndex);
void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
int16_t SectionNumber, uint16_t SymbolType,
uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
void writeRelocations();
void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
// Called after all the csects and symbols have been processed by
// `executePostLayoutBinding`, this function handles building up the majority
// of the structures in the object file representation. Namely:
// *) Calculates physical/virtual addresses, raw-pointer offsets, and section
// sizes.
// *) Assigns symbol table indices.
// *) Builds up the section header table by adding any non-empty sections to
// `Sections`.
void assignAddressesAndIndices(const MCAsmLayout &);
// Called after relocations are recorded.
void finalizeSectionInfo();
void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);
void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
unsigned LanguageCode, unsigned ReasonCode,
unsigned FunctionSize, bool hasDebug) override;
bool hasExceptionSection() {
return !ExceptionSection.ExceptionTable.empty();
}
unsigned getExceptionSectionSize();
unsigned getExceptionOffset(const MCSymbol *Symbol);
void addCInfoSymEntry(StringRef Name, StringRef Metadata) override;
size_t auxiliaryHeaderSize() const {
// 64-bit object files have no auxiliary header.
return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
}
public:
XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS);
void writeWord(uint64_t Word) {
is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
}
};
XCOFFObjectWriter::XCOFFObjectWriter(
std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
: W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
Strings(StringTableBuilder::XCOFF),
Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
CsectGroups{&BSSCsects}),
TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
CsectGroups{&TDataCsects}),
TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
CsectGroups{&TBSSCsects}),
ExceptionSection(".except", XCOFF::STYP_EXCEPT),
CInfoSymSection(".info", XCOFF::STYP_INFO) {}
void XCOFFObjectWriter::reset() {
// Clear the mappings we created.
SymbolIndexMap.clear();
SectionMap.clear();
UndefinedCsects.clear();
// Reset any sections we have written to, and empty the section header table.
for (auto *Sec : Sections)
Sec->reset();
for (auto &DwarfSec : DwarfSections)
DwarfSec.reset();
for (auto &OverflowSec : OverflowSections)
OverflowSec.reset();
ExceptionSection.reset();
CInfoSymSection.reset();
// Reset states in XCOFFObjectWriter.
SymbolTableEntryCount = 0;
SymbolTableOffset = 0;
SectionCount = 0;
PaddingsBeforeDwarf = 0;
Strings.clear();
MCObjectWriter::reset();
}
CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
switch (MCSec->getMappingClass()) {
case XCOFF::XMC_PR:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain program code.");
return ProgramCodeCsects;
case XCOFF::XMC_RO:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain read only data.");
return ReadOnlyCsects;
case XCOFF::XMC_RW:
if (XCOFF::XTY_CM == MCSec->getCSectType())
return BSSCsects;
if (XCOFF::XTY_SD == MCSec->getCSectType())
return DataCsects;
report_fatal_error("Unhandled mapping of read-write csect to section.");
case XCOFF::XMC_DS:
return FuncDSCsects;
case XCOFF::XMC_BS:
assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with bss storage class must be "
"common type.");
return BSSCsects;
case XCOFF::XMC_TL:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with tdata storage class must be "
"an initialized csect.");
return TDataCsects;
case XCOFF::XMC_UL:
assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with tbss storage class must be "
"an uninitialized csect.");
return TBSSCsects;
case XCOFF::XMC_TC0:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain TOC-base.");
assert(TOCCsects.empty() &&
"We should have only one TOC-base, and it should be the first csect "
"in this CsectGroup.");
return TOCCsects;
case XCOFF::XMC_TC:
case XCOFF::XMC_TE:
case XCOFF::XMC_TD:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain TC entry.");
assert(!TOCCsects.empty() &&
"We should at least have a TOC-base in this CsectGroup.");
return TOCCsects;
default:
report_fatal_error("Unhandled mapping of csect to section.");
}
}
static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
if (XSym->isDefined())
return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
return XSym->getRepresentedCsect();
}
void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) {
for (const auto &S : Asm) {
const auto *MCSec = cast<const MCSectionXCOFF>(&S);
assert(!SectionMap.contains(MCSec) && "Cannot add a section twice.");
// If the name does not fit in the storage provided in the symbol table
// entry, add it to the string table.
if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
Strings.add(MCSec->getSymbolTableName());
if (MCSec->isCsect()) {
// A new control section. Its CsectSectionEntry should already be staticly
// generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
// the CsectSectionEntry.
assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
"An undefined csect should not get registered.");
CsectGroup &Group = getCsectGroup(MCSec);
Group.emplace_back(MCSec);
SectionMap[MCSec] = &Group.back();
} else if (MCSec->isDwarfSect()) {
// A new DwarfSectionEntry.
std::unique_ptr<XCOFFSection> DwarfSec =
std::make_unique<XCOFFSection>(MCSec);
SectionMap[MCSec] = DwarfSec.get();
DwarfSectionEntry SecEntry(MCSec->getName(),
*MCSec->getDwarfSubtypeFlags(),
std::move(DwarfSec));
DwarfSections.push_back(std::move(SecEntry));
} else
llvm_unreachable("unsupport section type!");
}
for (const MCSymbol &S : Asm.symbols()) {
// Nothing to do for temporary symbols.
if (S.isTemporary())
continue;
const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED)
HasVisibility = true;
if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
// Handle undefined symbol.
UndefinedCsects.emplace_back(ContainingCsect);
SectionMap[ContainingCsect] = &UndefinedCsects.back();
if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
Strings.add(ContainingCsect->getSymbolTableName());
continue;
}
// If the symbol is the csect itself, we don't need to put the symbol
// into csect's Syms.
if (XSym == ContainingCsect->getQualNameSymbol())
continue;
// Only put a label into the symbol table when it is an external label.
if (!XSym->isExternal())
continue;
assert(SectionMap.contains(ContainingCsect) &&
"Expected containing csect to exist in map");
XCOFFSection *Csect = SectionMap[ContainingCsect];
// Lookup the containing csect and add the symbol to it.
assert(Csect->MCSec->isCsect() && "only csect is supported now!");
Csect->Syms.emplace_back(XSym);
// If the name does not fit in the storage provided in the symbol table
// entry, add it to the string table.
if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
Strings.add(XSym->getSymbolTableName());
}
std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry;
if (CISI && nameShouldBeInStringTable(CISI->Name))
Strings.add(CISI->Name);
FileNames = Asm.getFileNames();
// Emit ".file" as the source file name when there is no file name.
if (FileNames.empty())
FileNames.emplace_back(".file", 0);
for (const std::pair<std::string, size_t> &F : FileNames) {
if (nameShouldBeInStringTable(F.first))
Strings.add(F.first);
}
Strings.finalize();
assignAddressesAndIndices(Layout);
}
void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCFragment *Fragment,
const MCFixup &Fixup, MCValue Target,
uint64_t &FixedValue) {
auto getIndex = [this](const MCSymbol *Sym,
const MCSectionXCOFF *ContainingCsect) {
// If we could not find the symbol directly in SymbolIndexMap, this symbol
// could either be a temporary symbol or an undefined symbol. In this case,
// we would need to have the relocation reference its csect instead.
return SymbolIndexMap.contains(Sym)
? SymbolIndexMap[Sym]
: SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
};
auto getVirtualAddress =
[this, &Layout](const MCSymbol *Sym,
const MCSectionXCOFF *ContainingSect) -> uint64_t {
// A DWARF section.
if (ContainingSect->isDwarfSect())
return Layout.getSymbolOffset(*Sym);
// A csect.
if (!Sym->isDefined())
return SectionMap[ContainingSect]->Address;
// A label.
assert(Sym->isDefined() && "not a valid object that has address!");
return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym);
};
const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
MCAsmBackend &Backend = Asm.getBackend();
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel;
uint8_t Type;
uint8_t SignAndSize;
std::tie(Type, SignAndSize) =
TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
assert(SectionMap.contains(SymASec) &&
"Expected containing csect to exist in map.");
assert((Fixup.getOffset() <=
MaxRawDataSize - Layout.getFragmentOffset(Fragment)) &&
"Fragment offset + fixup offset is overflowed.");
uint32_t FixupOffsetInCsect =
Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
const uint32_t Index = getIndex(SymA, SymASec);
if (Type == XCOFF::RelocationType::R_POS ||
Type == XCOFF::RelocationType::R_TLS ||
Type == XCOFF::RelocationType::R_TLS_LE)
// The FixedValue should be symbol's virtual address in this object file
// plus any constant value that we might get.
FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
else if (Type == XCOFF::RelocationType::R_TLSM)
// The FixedValue should always be zero since the region handle is only
// known at load time.
FixedValue = 0;
else if (Type == XCOFF::RelocationType::R_TOC ||
Type == XCOFF::RelocationType::R_TOCL) {
// For non toc-data external symbols, R_TOC type relocation will relocate to
// data symbols that have XCOFF::XTY_SD type csect. For toc-data external
// symbols, R_TOC type relocation will relocate to data symbols that have
// XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
// entry for them, so the FixedValue should always be 0.
if (SymASec->getCSectType() == XCOFF::XTY_ER) {
FixedValue = 0;
} else {
// The FixedValue should be the TOC entry offset from the TOC-base plus
// any constant offset value.
const int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
TOCCsects.front().Address +
Target.getConstant();
if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
report_fatal_error("TOCEntryOffset overflows in small code model mode");
FixedValue = TOCEntryOffset;
}
} else if (Type == XCOFF::RelocationType::R_RBR) {
MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
"Only XMC_PR csect may have the R_RBR relocation.");
// The address of the branch instruction should be the sum of section
// address, fragment offset and Fixup offset.
uint64_t BRInstrAddress =
SectionMap[ParentSec]->Address + FixupOffsetInCsect;
// The FixedValue should be the difference between symbol's virtual address
// and BR instr address plus any constant value.
FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress +
Target.getConstant();
} else if (Type == XCOFF::RelocationType::R_REF) {
// The FixedValue and FixupOffsetInCsect should always be 0 since it
// specifies a nonrelocating reference.
FixedValue = 0;
FixupOffsetInCsect = 0;
}
XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
assert(SectionMap.contains(RelocationSec) &&
"Expected containing csect to exist in map.");
SectionMap[RelocationSec]->Relocations.push_back(Reloc);
if (!Target.getSymB())
return;
const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
if (SymA == SymB)
report_fatal_error("relocation for opposite term is not yet supported");
const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
assert(SectionMap.contains(SymBSec) &&
"Expected containing csect to exist in map.");
if (SymASec == SymBSec)
report_fatal_error(
"relocation for paired relocatable term is not yet supported");
assert(Type == XCOFF::RelocationType::R_POS &&
"SymA must be R_POS here if it's not opposite term or paired "
"relocatable term.");
const uint32_t IndexB = getIndex(SymB, SymBSec);
// SymB must be R_NEG here, given the general form of Target(MCValue) is
// "SymbolA - SymbolB + imm64".
const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
SectionMap[RelocationSec]->Relocations.push_back(RelocB);
// We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
// now we just need to fold "- SymbolB" here.
FixedValue -= getVirtualAddress(SymB, SymBSec);
}
void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
const MCAsmLayout &Layout) {
uint64_t CurrentAddressLocation = 0;
for (const auto *Section : Sections)
writeSectionForControlSectionEntry(Asm, Layout, *Section,
CurrentAddressLocation);
for (const auto &DwarfSection : DwarfSections)
writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection,
CurrentAddressLocation);
writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection,
CurrentAddressLocation);
writeSectionForCInfoSymSectionEntry(Asm, Layout, CInfoSymSection,
CurrentAddressLocation);
}
uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
const MCAsmLayout &Layout) {
// We always emit a timestamp of 0 for reproducibility, so ensure incremental
// linking is not enabled, in case, like with Windows COFF, such a timestamp
// is incompatible with incremental linking of XCOFF.
if (Asm.isIncrementalLinkerCompatible())
report_fatal_error("Incremental linking not supported for XCOFF.");
finalizeSectionInfo();
uint64_t StartOffset = W.OS.tell();
writeFileHeader();
writeAuxFileHeader();
writeSectionHeaderTable();
writeSections(Asm, Layout);
writeRelocations();
writeSymbolTable(Layout);
// Write the string table.
Strings.write(W.OS);
return W.OS.tell() - StartOffset;
}
bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
return SymbolName.size() > XCOFF::NameSize || is64Bit();
}
void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
// Magic, Offset or SymbolName.
if (nameShouldBeInStringTable(SymbolName)) {
W.write<int32_t>(0);
W.write<uint32_t>(Strings.getOffset(SymbolName));
} else {
char Name[XCOFF::NameSize + 1];
std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
ArrayRef<char> NameRef(Name, XCOFF::NameSize);
W.write(NameRef);
}
}
void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
int16_t SectionNumber,
uint16_t SymbolType,
uint8_t StorageClass,
uint8_t NumberOfAuxEntries) {
if (is64Bit()) {
W.write<uint64_t>(Value);
W.write<uint32_t>(Strings.getOffset(SymbolName));
} else {
writeSymbolName(SymbolName);
W.write<uint32_t>(Value);
}
W.write<int16_t>(SectionNumber);
W.write<uint16_t>(SymbolType);
W.write<uint8_t>(StorageClass);
W.write<uint8_t>(NumberOfAuxEntries);
}
void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
uint8_t SymbolAlignmentAndType,
uint8_t StorageMappingClass) {
W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
W.write<uint32_t>(0); // ParameterHashIndex
W.write<uint16_t>(0); // TypeChkSectNum
W.write<uint8_t>(SymbolAlignmentAndType);
W.write<uint8_t>(StorageMappingClass);
if (is64Bit()) {
W.write<uint32_t>(Hi_32(SectionOrLength));
W.OS.write_zeros(1); // Reserved
W.write<uint8_t>(XCOFF::AUX_CSECT);
} else {
W.write<uint32_t>(0); // StabInfoIndex
W.write<uint16_t>(0); // StabSectNum
}
}
void XCOFFObjectWriter::writeSymbolAuxDwarfEntry(
uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) {
writeWord(LengthOfSectionPortion);
if (!is64Bit())
W.OS.write_zeros(4); // Reserved
writeWord(NumberOfRelocEnt);
if (is64Bit()) {
W.OS.write_zeros(1); // Reserved
W.write<uint8_t>(XCOFF::AUX_SECT);
} else {
W.OS.write_zeros(6); // Reserved
}
}
void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel(
const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
int16_t SectionIndex, uint64_t SymbolOffset) {
assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
"Symbol address overflowed.");
auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
if (Entry != ExceptionSection.ExceptionTable.end()) {
writeSymbolEntry(SymbolRef.getSymbolTableName(),
CSectionRef.Address + SymbolOffset, SectionIndex,
// In the old version of the 32-bit XCOFF interpretation,
// symbols may require bit 10 (0x0020) to be set if the
// symbol is a function, otherwise the bit should be 0.
is64Bit() ? SymbolRef.getVisibilityType()
: SymbolRef.getVisibilityType() | 0x0020,
SymbolRef.getStorageClass(),
(is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
if (is64Bit() && ExceptionSection.isDebugEnabled) {
// On 64 bit with debugging enabled, we have a csect, exception, and
// function auxilliary entries, so we must increment symbol index by 4.
writeSymbolAuxExceptionEntry(
ExceptionSection.FileOffsetToData +
getExceptionOffset(Entry->second.FunctionSymbol),
Entry->second.FunctionSize,
SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
}
// For exception section entries, csect and function auxilliary entries
// must exist. On 64-bit there is also an exception auxilliary entry.
writeSymbolAuxFunctionEntry(
ExceptionSection.FileOffsetToData +
getExceptionOffset(Entry->second.FunctionSymbol),
Entry->second.FunctionSize, 0,
(is64Bit() && ExceptionSection.isDebugEnabled)
? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
: SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
} else {
writeSymbolEntry(SymbolRef.getSymbolTableName(),
CSectionRef.Address + SymbolOffset, SectionIndex,
SymbolRef.getVisibilityType(),
SymbolRef.getStorageClass());
}
writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
CSectionRef.MCSec->getMappingClass());
}
void XCOFFObjectWriter::writeSymbolEntryForDwarfSection(
const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);
writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
}
void XCOFFObjectWriter::writeSymbolEntryForControlSection(
const XCOFFSection &CSectionRef, int16_t SectionIndex,
XCOFF::StorageClass StorageClass) {
writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
SectionIndex, CSectionRef.getVisibilityType(), StorageClass);
writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
CSectionRef.MCSec->getMappingClass());
}
void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
uint32_t FunctionSize,
uint64_t LineNumberPointer,
uint32_t EndIndex) {
if (is64Bit())
writeWord(LineNumberPointer);
else
W.write<uint32_t>(EntryOffset);
W.write<uint32_t>(FunctionSize);
if (!is64Bit())
writeWord(LineNumberPointer);
W.write<uint32_t>(EndIndex);
if (is64Bit()) {
W.OS.write_zeros(1);
W.write<uint8_t>(XCOFF::AUX_FCN);
} else {
W.OS.write_zeros(2);
}
}
void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
uint32_t FunctionSize,
uint32_t EndIndex) {
assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
W.write<uint64_t>(EntryOffset);
W.write<uint32_t>(FunctionSize);
W.write<uint32_t>(EndIndex);
W.OS.write_zeros(1); // Pad (unused)
W.write<uint8_t>(XCOFF::AUX_EXCEPT);
}
void XCOFFObjectWriter::writeFileHeader() {
W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32);
W.write<uint16_t>(SectionCount);
W.write<int32_t>(0); // TimeStamp
writeWord(SymbolTableOffset);
if (is64Bit()) {
W.write<uint16_t>(auxiliaryHeaderSize());
W.write<uint16_t>(0); // Flags
W.write<int32_t>(SymbolTableEntryCount);
} else {
W.write<int32_t>(SymbolTableEntryCount);
W.write<uint16_t>(auxiliaryHeaderSize());
W.write<uint16_t>(0); // Flags
}
}
void XCOFFObjectWriter::writeAuxFileHeader() {
if (!auxiliaryHeaderSize())
return;
W.write<uint16_t>(0); // Magic
W.write<uint16_t>(
XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
// n_type field in the symbol table entry is
// used in XCOFF32.
W.write<uint32_t>(Sections[0]->Size); // TextSize
W.write<uint32_t>(Sections[1]->Size); // InitDataSize
W.write<uint32_t>(Sections[2]->Size); // BssDataSize
W.write<uint32_t>(0); // EntryPointAddr
W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
}
void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) {
bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
// Nothing to write for this Section.
if (Sec->Index == SectionEntry::UninitializedIndex)
return;
// Write Name.
ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
W.write(NameRef);
// Write the Physical Address and Virtual Address.
// We use 0 for DWARF sections' Physical and Virtual Addresses.
writeWord(IsDwarf ? 0 : Sec->Address);
// Since line number is not supported, we set it to 0 for overflow sections.
writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);
writeWord(Sec->Size);
writeWord(Sec->FileOffsetToData);
writeWord(Sec->FileOffsetToRelocations);
writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.
if (is64Bit()) {
W.write<uint32_t>(Sec->RelocationCount);
W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
W.write<int32_t>(Sec->Flags);
W.OS.write_zeros(4);
} else {
// For the overflow section header, s_nreloc provides a reference to the
// primary section header and s_nlnno must have the same value.
// For common section headers, if either of s_nreloc or s_nlnno are set to
// 65535, the other one must also be set to 65535.
W.write<uint16_t>(Sec->RelocationCount);
W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
? Sec->RelocationCount
: 0); // NumberOfLineNumbers. Not supported yet.
W.write<int32_t>(Sec->Flags);
}
}
void XCOFFObjectWriter::writeSectionHeaderTable() {
for (const auto *CsectSec : Sections)
writeSectionHeader(CsectSec);
for (const auto &DwarfSec : DwarfSections)
writeSectionHeader(&DwarfSec);
for (const auto &OverflowSec : OverflowSections)
writeSectionHeader(&OverflowSec);
if (hasExceptionSection())
writeSectionHeader(&ExceptionSection);
if (CInfoSymSection.Entry)
writeSectionHeader(&CInfoSymSection);
}
void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc,
const XCOFFSection &Section) {
if (Section.MCSec->isCsect())
writeWord(Section.Address + Reloc.FixupOffsetInCsect);
else {
// DWARF sections' address is set to 0.
assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
writeWord(Reloc.FixupOffsetInCsect);
}
W.write<uint32_t>(Reloc.SymbolTableIndex);
W.write<uint8_t>(Reloc.SignAndSize);
W.write<uint8_t>(Reloc.Type);
}
void XCOFFObjectWriter::writeRelocations() {
for (const auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to write for this Section.
continue;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (const auto &Csect : *Group) {
for (const auto Reloc : Csect.Relocations)
writeRelocation(Reloc, Csect);
}
}
}
for (const auto &DwarfSection : DwarfSections)
for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
writeRelocation(Reloc, *DwarfSection.DwarfSect);
}
void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
// Write C_FILE symbols.
for (const std::pair<std::string, size_t> &F : FileNames) {
// The n_name of a C_FILE symbol is the source file's name when no auxiliary
// entries are present.
StringRef FileName = F.first;
// For C_FILE symbols, the Source Language ID overlays the high-order byte
// of the SymbolType field, and the CPU Version ID is defined as the
// low-order byte.
// AIX's system assembler determines the source language ID based on the
// source file's name suffix, and the behavior here is consistent with it.
uint8_t LangID;
if (FileName.ends_with(".c"))
LangID = XCOFF::TB_C;
else if (FileName.ends_with_insensitive(".f") ||
FileName.ends_with_insensitive(".f77") ||
FileName.ends_with_insensitive(".f90") ||
FileName.ends_with_insensitive(".f95") ||
FileName.ends_with_insensitive(".f03") ||
FileName.ends_with_insensitive(".f08"))
LangID = XCOFF::TB_Fortran;
else
LangID = XCOFF::TB_CPLUSPLUS;
uint8_t CpuID;
if (is64Bit())
CpuID = XCOFF::TCPU_PPC64;
else
CpuID = XCOFF::TCPU_COM;
writeSymbolEntry(FileName, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
/*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE,
/*NumberOfAuxEntries=*/0);
}
if (CInfoSymSection.Entry)
writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset,
CInfoSymSection.Index,
/*SymbolType=*/0, XCOFF::C_INFO,
/*NumberOfAuxEntries=*/0);
for (const auto &Csect : UndefinedCsects) {
writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
Csect.MCSec->getStorageClass());
}
for (const auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to write for this Section.
continue;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
const int16_t SectionIndex = Section->Index;
for (const auto &Csect : *Group) {
// Write out the control section first and then each symbol in it.
writeSymbolEntryForControlSection(Csect, SectionIndex,
Csect.MCSec->getStorageClass());
for (const auto &Sym : Csect.Syms)
writeSymbolEntryForCsectMemberLabel(
Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym)));
}
}
}
for (const auto &DwarfSection : DwarfSections)
writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
DwarfSection.Index);
}
void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec,
uint64_t RelCount) {
// Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
// may not contain an overflow section header.
if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
// Generate an overflow section header.
SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);
// This field specifies the file section number of the section header that
// overflowed.
SecEntry.RelocationCount = Sec->Index;
// This field specifies the number of relocation entries actually
// required.
SecEntry.Address = RelCount;
SecEntry.Index = ++SectionCount;
OverflowSections.push_back(std::move(SecEntry));
// The field in the primary section header is always 65535
// (XCOFF::RelocOverflow).
Sec->RelocationCount = XCOFF::RelocOverflow;
} else {
Sec->RelocationCount = RelCount;
}
}
void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec,
uint64_t &RawPointer) {
if (!Sec->RelocationCount)
return;
Sec->FileOffsetToRelocations = RawPointer;
uint64_t RelocationSizeInSec = 0;
if (!is64Bit() &&
Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
// Find its corresponding overflow section.
for (auto &OverflowSec : OverflowSections) {
if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
RelocationSizeInSec =
OverflowSec.Address * XCOFF::RelocationSerializationSize32;
// This field must have the same values as in the corresponding
// primary section header.
OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
}
}
assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
} else {
RelocationSizeInSec = Sec->RelocationCount *
(is64Bit() ? XCOFF::RelocationSerializationSize64
: XCOFF::RelocationSerializationSize32);
}
RawPointer += RelocationSizeInSec;
if (RawPointer > MaxRawDataSize)
report_fatal_error("Relocation data overflowed this object file.");
}
void XCOFFObjectWriter::finalizeSectionInfo() {
for (auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to record for this Section.
continue;
uint64_t RelCount = 0;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (auto &Csect : *Group)
RelCount += Csect.Relocations.size();
}
finalizeRelocationInfo(Section, RelCount);
}
for (auto &DwarfSection : DwarfSections)
finalizeRelocationInfo(&DwarfSection,
DwarfSection.DwarfSect->Relocations.size());
// Calculate the RawPointer value for all headers.
uint64_t RawPointer =
(is64Bit() ? (XCOFF::FileHeaderSize64 +
SectionCount * XCOFF::SectionHeaderSize64)
: (XCOFF::FileHeaderSize32 +
SectionCount * XCOFF::SectionHeaderSize32)) +
auxiliaryHeaderSize();
// Calculate the file offset to the section data.
for (auto *Sec : Sections) {
if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
continue;
RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer);
}
if (!DwarfSections.empty()) {
RawPointer += PaddingsBeforeDwarf;
for (auto &DwarfSection : DwarfSections) {
RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer);
}
}
if (hasExceptionSection())
RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer);
if (CInfoSymSection.Entry)
RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer);
for (auto *Sec : Sections) {
if (Sec->Index != SectionEntry::UninitializedIndex)
calcOffsetToRelocations(Sec, RawPointer);
}
for (auto &DwarfSec : DwarfSections)
calcOffsetToRelocations(&DwarfSec, RawPointer);
// TODO Error check that the number of symbol table entries fits in 32-bits
// signed ...
if (SymbolTableEntryCount)
SymbolTableOffset = RawPointer;
}
void XCOFFObjectWriter::addExceptionEntry(
const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode,
unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) {
// If a module had debug info, debugging is enabled and XCOFF emits the
// exception auxilliary entry.
if (hasDebug)
ExceptionSection.isDebugEnabled = true;
auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
if (Entry != ExceptionSection.ExceptionTable.end()) {
Entry->second.Entries.push_back(
ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
return;
}
ExceptionInfo NewEntry;
NewEntry.FunctionSymbol = Symbol;
NewEntry.FunctionSize = FunctionSize;
NewEntry.Entries.push_back(
ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
ExceptionSection.ExceptionTable.insert(
std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
}
unsigned XCOFFObjectWriter::getExceptionSectionSize() {
unsigned EntryNum = 0;
for (auto it = ExceptionSection.ExceptionTable.begin();
it != ExceptionSection.ExceptionTable.end(); ++it)
// The size() gets +1 to account for the initial entry containing the
// symbol table index.
EntryNum += it->second.Entries.size() + 1;
return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
: XCOFF::ExceptionSectionEntrySize32);
}
unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) {
unsigned EntryNum = 0;
for (auto it = ExceptionSection.ExceptionTable.begin();
it != ExceptionSection.ExceptionTable.end(); ++it) {
if (Symbol == it->second.FunctionSymbol)
break;
EntryNum += it->second.Entries.size() + 1;
}
return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
: XCOFF::ExceptionSectionEntrySize32);
}
void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) {
assert(!CInfoSymSection.Entry && "Multiple entries are not supported");
CInfoSymSection.addEntry(
std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str()));
}
void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
// The symbol table starts with all the C_FILE symbols.
uint32_t SymbolTableIndex = FileNames.size();
if (CInfoSymSection.Entry)
SymbolTableIndex++;
// Calculate indices for undefined symbols.
for (auto &Csect : UndefinedCsects) {
Csect.Size = 0;
Csect.Address = 0;
Csect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for each contained symbol.
SymbolTableIndex += 2;
}
// The address corrresponds to the address of sections and symbols in the
// object file. We place the shared address 0 immediately after the
// section header table.
uint64_t Address = 0;
// Section indices are 1-based in XCOFF.
int32_t SectionIndex = 1;
bool HasTDataSection = false;
for (auto *Section : Sections) {
const bool IsEmpty =
llvm::all_of(Section->Groups,
[](const CsectGroup *Group) { return Group->empty(); });
if (IsEmpty)
continue;
if (SectionIndex > MaxSectionIndex)
report_fatal_error("Section index overflow!");
Section->Index = SectionIndex++;
SectionCount++;
bool SectionAddressSet = false;
// Reset the starting address to 0 for TData section.
if (Section->Flags == XCOFF::STYP_TDATA) {
Address = 0;
HasTDataSection = true;
}
// Reset the starting address to 0 for TBSS section if the object file does
// not contain TData Section.
if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
Address = 0;
for (auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (auto &Csect : *Group) {
const MCSectionXCOFF *MCSec = Csect.MCSec;
Csect.Address = alignTo(Address, MCSec->getAlign());
Csect.Size = Layout.getSectionAddressSize(MCSec);
Address = Csect.Address + Csect.Size;
Csect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for the csect.
SymbolTableIndex += 2;
for (auto &Sym : Csect.Syms) {
bool hasExceptEntry = false;
auto Entry =
ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
if (Entry != ExceptionSection.ExceptionTable.end()) {
hasExceptEntry = true;
for (auto &TrapEntry : Entry->second.Entries) {
TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) +
TrapEntry.Trap->getOffset();
}
}
Sym.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for each contained
// symbol. For symbols with exception section entries, a function
// auxilliary entry is needed, and on 64-bit XCOFF with debugging
// enabled, an additional exception auxilliary entry is needed.
SymbolTableIndex += 2;
if (hasExceptionSection() && hasExceptEntry) {
if (is64Bit() && ExceptionSection.isDebugEnabled)
SymbolTableIndex += 2;
else
SymbolTableIndex += 1;
}
}
}
if (!SectionAddressSet) {
Section->Address = Group->front().Address;
SectionAddressSet = true;
}
}
// Make sure the address of the next section aligned to
// DefaultSectionAlign.
Address = alignTo(Address, DefaultSectionAlign);
Section->Size = Address - Section->Address;
}
// Start to generate DWARF sections. Sections other than DWARF section use
// DefaultSectionAlign as the default alignment, while DWARF sections have
// their own alignments. If these two alignments are not the same, we need
// some paddings here and record the paddings bytes for FileOffsetToData
// calculation.
if (!DwarfSections.empty())
PaddingsBeforeDwarf =
alignTo(Address,
(*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
Address;
DwarfSectionEntry *LastDwarfSection = nullptr;
for (auto &DwarfSection : DwarfSections) {
assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
// Section index.
DwarfSection.Index = SectionIndex++;
SectionCount++;
// Symbol index.
DwarfSect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for the csect.
SymbolTableIndex += 2;
// Section address. Make it align to section alignment.
// We use address 0 for DWARF sections' Physical and Virtual Addresses.
// This address is used to tell where is the section in the final object.
// See writeSectionForDwarfSectionEntry().
DwarfSection.Address = DwarfSect.Address =
alignTo(Address, MCSec->getAlign());
// Section size.
// For DWARF section, we must use the real size which may be not aligned.
DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec);
Address = DwarfSection.Address + DwarfSection.Size;
if (LastDwarfSection)
LastDwarfSection->MemorySize =
DwarfSection.Address - LastDwarfSection->Address;
LastDwarfSection = &DwarfSection;
}
if (LastDwarfSection) {
// Make the final DWARF section address align to the default section
// alignment for follow contents.
Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
DefaultSectionAlign);
LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
}
if (hasExceptionSection()) {
ExceptionSection.Index = SectionIndex++;
SectionCount++;
ExceptionSection.Address = 0;
ExceptionSection.Size = getExceptionSectionSize();
Address += ExceptionSection.Size;
Address = alignTo(Address, DefaultSectionAlign);
}
if (CInfoSymSection.Entry) {
CInfoSymSection.Index = SectionIndex++;
SectionCount++;
CInfoSymSection.Address = 0;
Address += CInfoSymSection.Size;
Address = alignTo(Address, DefaultSectionAlign);
}
SymbolTableEntryCount = SymbolTableIndex;
}
void XCOFFObjectWriter::writeSectionForControlSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) {
// Nothing to write for this Section.
if (CsectEntry.Index == SectionEntry::UninitializedIndex)
return;
// There could be a gap (without corresponding zero padding) between
// sections.
// There could be a gap (without corresponding zero padding) between
// sections.
assert(((CurrentAddressLocation <= CsectEntry.Address) ||
(CsectEntry.Flags == XCOFF::STYP_TDATA) ||
(CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
"CurrentAddressLocation should be less than or equal to section "
"address if the section is not TData or TBSS.");
CurrentAddressLocation = CsectEntry.Address;
// For virtual sections, nothing to write. But need to increase
// CurrentAddressLocation for later sections like DWARF section has a correct
// writing location.
if (CsectEntry.IsVirtual) {
CurrentAddressLocation += CsectEntry.Size;
return;
}
for (const auto &Group : CsectEntry.Groups) {
for (const auto &Csect : *Group) {
if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
W.OS.write_zeros(PaddingSize);
if (Csect.Size)
Asm.writeSectionData(W.OS, Csect.MCSec, Layout);
CurrentAddressLocation = Csect.Address + Csect.Size;
}
}
// The size of the tail padding in a section is the end virtual address of
// the current section minus the the end virtual address of the last csect
// in that section.
if (uint64_t PaddingSize =
CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
W.OS.write_zeros(PaddingSize);
CurrentAddressLocation += PaddingSize;
}
}
void XCOFFObjectWriter::writeSectionForDwarfSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) {
// There could be a gap (without corresponding zero padding) between
// sections. For example DWARF section alignment is bigger than
// DefaultSectionAlign.
assert(CurrentAddressLocation <= DwarfEntry.Address &&
"CurrentAddressLocation should be less than or equal to section "
"address.");
if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
W.OS.write_zeros(PaddingSize);
if (DwarfEntry.Size)
Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout);
CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
// DWARF section size is not aligned to DefaultSectionAlign.
// Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
if (TailPaddingSize)
W.OS.write_zeros(TailPaddingSize);
CurrentAddressLocation += TailPaddingSize;
}
void XCOFFObjectWriter::writeSectionForExceptionSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) {
for (auto it = ExceptionEntry.ExceptionTable.begin();
it != ExceptionEntry.ExceptionTable.end(); it++) {
// For every symbol that has exception entries, you must start the entries
// with an initial symbol table index entry
W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]);
if (is64Bit()) {
// 4-byte padding on 64-bit.
W.OS.write_zeros(4);
}
W.OS.write_zeros(2);
for (auto &TrapEntry : it->second.Entries) {
writeWord(TrapEntry.TrapAddress);
W.write<uint8_t>(TrapEntry.Lang);
W.write<uint8_t>(TrapEntry.Reason);
}
}
CurrentAddressLocation += getExceptionSectionSize();
}
void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
CInfoSymSectionEntry &CInfoSymEntry, uint64_t &CurrentAddressLocation) {
if (!CInfoSymSection.Entry)
return;
constexpr int WordSize = sizeof(uint32_t);
std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry;
const std::string &Metadata = CISI->Metadata;
// Emit the 4-byte length of the metadata.
W.write<uint32_t>(Metadata.size());
if (Metadata.size() == 0)
return;
// Write out the payload one word at a time.
size_t Index = 0;
while (Index + WordSize <= Metadata.size()) {
uint32_t NextWord =
llvm::support::endian::read32be(Metadata.data() + Index);
W.write<uint32_t>(NextWord);
Index += WordSize;
}
// If there is padding, we have at least one byte of payload left to emit.
if (CISI->paddingSize()) {
std::array<uint8_t, WordSize> LastWord = {0};
::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index);
W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data()));
}
CurrentAddressLocation += CISI->size();
}
// Takes the log base 2 of the alignment and shifts the result into the 5 most
// significant bits of a byte, then or's in the csect type into the least
// significant 3 bits.
uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
unsigned Log2Align = Log2(Sec->getAlign());
// Result is a number in the range [0, 31] which fits in the 5 least
// significant bits. Shift this value into the 5 most significant bits, and
// bitwise-or in the csect type.
uint8_t EncodedAlign = Log2Align << 3;
return EncodedAlign | Sec->getCSectType();
}
} // end anonymous namespace
std::unique_ptr<MCObjectWriter>
llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS) {
return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
}
|