1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
// A struct to define how the data stream should be patched. For Indexed
// profiling, only uint64_t data type is needed.
struct PatchItem {
uint64_t Pos; // Where to patch.
uint64_t *D; // Pointer to an array of source data.
int N; // Number of elements in \c D array.
};
namespace llvm {
// A wrapper class to abstract writer stream with support of bytes
// back patching.
class ProfOStream {
public:
ProfOStream(raw_fd_ostream &FD)
: IsFDOStream(true), OS(FD), LE(FD, support::little) {}
ProfOStream(raw_string_ostream &STR)
: IsFDOStream(false), OS(STR), LE(STR, support::little) {}
uint64_t tell() { return OS.tell(); }
void write(uint64_t V) { LE.write<uint64_t>(V); }
void writeByte(uint8_t V) { LE.write<uint8_t>(V); }
// \c patch can only be called when all data is written and flushed.
// For raw_string_ostream, the patch is done on the target string
// directly and it won't be reflected in the stream's internal buffer.
void patch(PatchItem *P, int NItems) {
using namespace support;
if (IsFDOStream) {
raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
const uint64_t LastPos = FDOStream.tell();
for (int K = 0; K < NItems; K++) {
FDOStream.seek(P[K].Pos);
for (int I = 0; I < P[K].N; I++)
write(P[K].D[I]);
}
// Reset the stream to the last position after patching so that users
// don't accidentally overwrite data. This makes it consistent with
// the string stream below which replaces the data directly.
FDOStream.seek(LastPos);
} else {
raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
std::string &Data = SOStream.str(); // with flush
for (int K = 0; K < NItems; K++) {
for (int I = 0; I < P[K].N; I++) {
uint64_t Bytes = endian::byte_swap<uint64_t, little>(P[K].D[I]);
Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t),
(const char *)&Bytes, sizeof(uint64_t));
}
}
}
}
// If \c OS is an instance of \c raw_fd_ostream, this field will be
// true. Otherwise, \c OS will be an raw_string_ostream.
bool IsFDOStream;
raw_ostream &OS;
support::endian::Writer LE;
};
class InstrProfRecordWriterTrait {
public:
using key_type = StringRef;
using key_type_ref = StringRef;
using data_type = const InstrProfWriter::ProfilingData *const;
using data_type_ref = const InstrProfWriter::ProfilingData *const;
using hash_value_type = uint64_t;
using offset_type = uint64_t;
support::endianness ValueProfDataEndianness = support::little;
InstrProfSummaryBuilder *SummaryBuilder;
InstrProfSummaryBuilder *CSSummaryBuilder;
InstrProfRecordWriterTrait() = default;
static hash_value_type ComputeHash(key_type_ref K) {
return IndexedInstrProf::ComputeHash(K);
}
static std::pair<offset_type, offset_type>
EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
using namespace support;
endian::Writer LE(Out, little);
offset_type N = K.size();
LE.write<offset_type>(N);
offset_type M = 0;
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
M += sizeof(uint64_t); // The function hash
M += sizeof(uint64_t); // The size of the Counts vector
M += ProfRecord.Counts.size() * sizeof(uint64_t);
// Value data
M += ValueProfData::getSize(ProfileData.second);
}
LE.write<offset_type>(M);
return std::make_pair(N, M);
}
void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
Out.write(K.data(), N);
}
void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
using namespace support;
endian::Writer LE(Out, little);
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
CSSummaryBuilder->addRecord(ProfRecord);
else
SummaryBuilder->addRecord(ProfRecord);
LE.write<uint64_t>(ProfileData.first); // Function hash
LE.write<uint64_t>(ProfRecord.Counts.size());
for (uint64_t I : ProfRecord.Counts)
LE.write<uint64_t>(I);
// Write value data
std::unique_ptr<ValueProfData> VDataPtr =
ValueProfData::serializeFrom(ProfileData.second);
uint32_t S = VDataPtr->getSize();
VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
Out.write((const char *)VDataPtr.get(), S);
}
}
};
} // end namespace llvm
InstrProfWriter::InstrProfWriter(bool Sparse,
uint64_t TemporalProfTraceReservoirSize,
uint64_t MaxTemporalProfTraceLength)
: Sparse(Sparse), MaxTemporalProfTraceLength(MaxTemporalProfTraceLength),
TemporalProfTraceReservoirSize(TemporalProfTraceReservoirSize),
InfoObj(new InstrProfRecordWriterTrait()) {}
InstrProfWriter::~InstrProfWriter() { delete InfoObj; }
// Internal interface for testing purpose only.
void InstrProfWriter::setValueProfDataEndianness(
support::endianness Endianness) {
InfoObj->ValueProfDataEndianness = Endianness;
}
void InstrProfWriter::setOutputSparse(bool Sparse) {
this->Sparse = Sparse;
}
void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto Name = I.Name;
auto Hash = I.Hash;
addRecord(Name, Hash, std::move(I), Weight, Warn);
}
void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
OverlapStats &Overlap,
OverlapStats &FuncLevelOverlap,
const OverlapFuncFilters &FuncFilter) {
auto Name = Other.Name;
auto Hash = Other.Hash;
Other.accumulateCounts(FuncLevelOverlap.Test);
if (!FunctionData.contains(Name)) {
Overlap.addOneUnique(FuncLevelOverlap.Test);
return;
}
if (FuncLevelOverlap.Test.CountSum < 1.0f) {
Overlap.Overlap.NumEntries += 1;
return;
}
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
if (NewFunc) {
Overlap.addOneMismatch(FuncLevelOverlap.Test);
return;
}
InstrProfRecord &Dest = Where->second;
uint64_t ValueCutoff = FuncFilter.ValueCutoff;
if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter))
ValueCutoff = 0;
Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
}
void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
InstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
InstrProfRecord &Dest = Where->second;
auto MapWarn = [&](instrprof_error E) {
Warn(make_error<InstrProfError>(E));
};
if (NewFunc) {
// We've never seen a function with this name and hash, add it.
Dest = std::move(I);
if (Weight > 1)
Dest.scale(Weight, 1, MapWarn);
} else {
// We're updating a function we've seen before.
Dest.merge(I, Weight, MapWarn);
}
Dest.sortValueData();
}
void InstrProfWriter::addMemProfRecord(
const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) {
auto Result = MemProfRecordData.insert({Id, Record});
// If we inserted a new record then we are done.
if (Result.second) {
return;
}
memprof::IndexedMemProfRecord &Existing = Result.first->second;
Existing.merge(Record);
}
bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id,
const memprof::Frame &Frame,
function_ref<void(Error)> Warn) {
auto Result = MemProfFrameData.insert({Id, Frame});
// If a mapping already exists for the current frame id and it does not
// match the new mapping provided then reset the existing contents and bail
// out. We don't support the merging of memprof data whose Frame -> Id
// mapping across profiles is inconsistent.
if (!Result.second && Result.first->second != Frame) {
Warn(make_error<InstrProfError>(instrprof_error::malformed,
"frame to id mapping mismatch"));
return false;
}
return true;
}
void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) {
llvm::append_range(BinaryIds, BIs);
}
void InstrProfWriter::addTemporalProfileTrace(TemporalProfTraceTy Trace) {
if (Trace.FunctionNameRefs.size() > MaxTemporalProfTraceLength)
Trace.FunctionNameRefs.resize(MaxTemporalProfTraceLength);
if (Trace.FunctionNameRefs.empty())
return;
if (TemporalProfTraceStreamSize < TemporalProfTraceReservoirSize) {
// Simply append the trace if we have not yet hit our reservoir size limit.
TemporalProfTraces.push_back(std::move(Trace));
} else {
// Otherwise, replace a random trace in the stream.
std::uniform_int_distribution<uint64_t> Distribution(
0, TemporalProfTraceStreamSize);
uint64_t RandomIndex = Distribution(RNG);
if (RandomIndex < TemporalProfTraces.size())
TemporalProfTraces[RandomIndex] = std::move(Trace);
}
++TemporalProfTraceStreamSize;
}
void InstrProfWriter::addTemporalProfileTraces(
SmallVectorImpl<TemporalProfTraceTy> &SrcTraces, uint64_t SrcStreamSize) {
// Assume that the source has the same reservoir size as the destination to
// avoid needing to record it in the indexed profile format.
bool IsDestSampled =
(TemporalProfTraceStreamSize > TemporalProfTraceReservoirSize);
bool IsSrcSampled = (SrcStreamSize > TemporalProfTraceReservoirSize);
if (!IsDestSampled && IsSrcSampled) {
// If one of the traces are sampled, ensure that it belongs to Dest.
std::swap(TemporalProfTraces, SrcTraces);
std::swap(TemporalProfTraceStreamSize, SrcStreamSize);
std::swap(IsDestSampled, IsSrcSampled);
}
if (!IsSrcSampled) {
// If the source stream is not sampled, we add each source trace normally.
for (auto &Trace : SrcTraces)
addTemporalProfileTrace(std::move(Trace));
return;
}
// Otherwise, we find the traces that would have been removed if we added
// the whole source stream.
SmallSetVector<uint64_t, 8> IndicesToReplace;
for (uint64_t I = 0; I < SrcStreamSize; I++) {
std::uniform_int_distribution<uint64_t> Distribution(
0, TemporalProfTraceStreamSize);
uint64_t RandomIndex = Distribution(RNG);
if (RandomIndex < TemporalProfTraces.size())
IndicesToReplace.insert(RandomIndex);
++TemporalProfTraceStreamSize;
}
// Then we insert a random sample of the source traces.
llvm::shuffle(SrcTraces.begin(), SrcTraces.end(), RNG);
for (const auto &[Index, Trace] : llvm::zip(IndicesToReplace, SrcTraces))
TemporalProfTraces[Index] = std::move(Trace);
}
void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
function_ref<void(Error)> Warn) {
for (auto &I : IPW.FunctionData)
for (auto &Func : I.getValue())
addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size());
for (auto &I : IPW.BinaryIds)
addBinaryIds(I);
addTemporalProfileTraces(IPW.TemporalProfTraces,
IPW.TemporalProfTraceStreamSize);
MemProfFrameData.reserve(IPW.MemProfFrameData.size());
for (auto &I : IPW.MemProfFrameData) {
// If we weren't able to add the frame mappings then it doesn't make sense
// to try to merge the records from this profile.
if (!addMemProfFrame(I.first, I.second, Warn))
return;
}
MemProfRecordData.reserve(IPW.MemProfRecordData.size());
for (auto &I : IPW.MemProfRecordData) {
addMemProfRecord(I.first, I.second);
}
}
bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
if (!Sparse)
return true;
for (const auto &Func : PD) {
const InstrProfRecord &IPR = Func.second;
if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
return true;
}
return false;
}
static void setSummary(IndexedInstrProf::Summary *TheSummary,
ProfileSummary &PS) {
using namespace IndexedInstrProf;
const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
TheSummary->NumSummaryFields = Summary::NumKinds;
TheSummary->NumCutoffEntries = Res.size();
TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
for (unsigned I = 0; I < Res.size(); I++)
TheSummary->setEntry(I, Res[I]);
}
Error InstrProfWriter::writeImpl(ProfOStream &OS) {
using namespace IndexedInstrProf;
using namespace support;
OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;
InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->SummaryBuilder = &ISB;
InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->CSSummaryBuilder = &CSISB;
// Populate the hash table generator.
SmallVector<std::pair<StringRef, const ProfilingData *>, 0> OrderedData;
for (const auto &I : FunctionData)
if (shouldEncodeData(I.getValue()))
OrderedData.emplace_back((I.getKey()), &I.getValue());
llvm::sort(OrderedData, less_first());
for (const auto &I : OrderedData)
Generator.insert(I.first, I.second);
// Write the header.
IndexedInstrProf::Header Header;
Header.Magic = IndexedInstrProf::Magic;
Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion;
if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
Header.Version |= VARIANT_MASK_IR_PROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
Header.Version |= VARIANT_MASK_CSIR_PROF;
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
Header.Version |= VARIANT_MASK_INSTR_ENTRY;
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
Header.Version |= VARIANT_MASK_BYTE_COVERAGE;
if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly))
Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf))
Header.Version |= VARIANT_MASK_MEMPROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
Header.Version |= VARIANT_MASK_TEMPORAL_PROF;
Header.Unused = 0;
Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
Header.HashOffset = 0;
Header.MemProfOffset = 0;
Header.BinaryIdOffset = 0;
Header.TemporalProfTracesOffset = 0;
int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);
// Only write out all the fields except 'HashOffset', 'MemProfOffset',
// 'BinaryIdOffset' and `TemporalProfTracesOffset`. We need to remember the
// offset of these fields to allow back patching later.
for (int I = 0; I < N - 4; I++)
OS.write(reinterpret_cast<uint64_t *>(&Header)[I]);
// Save the location of Header.HashOffset field in \c OS.
uint64_t HashTableStartFieldOffset = OS.tell();
// Reserve the space for HashOffset field.
OS.write(0);
// Save the location of MemProf profile data. This is stored in two parts as
// the schema and as a separate on-disk chained hashtable.
uint64_t MemProfSectionOffset = OS.tell();
// Reserve space for the MemProf table field to be patched later if this
// profile contains memory profile information.
OS.write(0);
// Save the location of binary ids section.
uint64_t BinaryIdSectionOffset = OS.tell();
// Reserve space for the BinaryIdOffset field to be patched later if this
// profile contains binary ids.
OS.write(0);
uint64_t TemporalProfTracesOffset = OS.tell();
OS.write(0);
// Reserve space to write profile summary data.
uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
// Remember the summary offset.
uint64_t SummaryOffset = OS.tell();
for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
OS.write(0);
uint64_t CSSummaryOffset = 0;
uint64_t CSSummarySize = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
CSSummaryOffset = OS.tell();
CSSummarySize = SummarySize / sizeof(uint64_t);
for (unsigned I = 0; I < CSSummarySize; I++)
OS.write(0);
}
// Write the hash table.
uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);
// Write the MemProf profile data if we have it. This includes a simple schema
// with the format described below followed by the hashtable:
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
// uint64_t FramePayloadOffset = Stream offset before emitting the frame table
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
// uint64_t Num schema entries
// uint64_t Schema entry 0
// uint64_t Schema entry 1
// ....
// uint64_t Schema entry N - 1
// OnDiskChainedHashTable MemProfRecordData
// OnDiskChainedHashTable MemProfFrameData
uint64_t MemProfSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) {
MemProfSectionStart = OS.tell();
OS.write(0ULL); // Reserve space for the memprof record table offset.
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
OS.write(0ULL); // Reserve space for the memprof frame table offset.
auto Schema = memprof::PortableMemInfoBlock::getSchema();
OS.write(static_cast<uint64_t>(Schema.size()));
for (const auto Id : Schema) {
OS.write(static_cast<uint64_t>(Id));
}
auto RecordWriter = std::make_unique<memprof::RecordWriterTrait>();
RecordWriter->Schema = &Schema;
OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait>
RecordTableGenerator;
for (auto &I : MemProfRecordData) {
// Insert the key (func hash) and value (memprof record).
RecordTableGenerator.insert(I.first, I.second);
}
uint64_t RecordTableOffset =
RecordTableGenerator.Emit(OS.OS, *RecordWriter);
uint64_t FramePayloadOffset = OS.tell();
auto FrameWriter = std::make_unique<memprof::FrameWriterTrait>();
OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait>
FrameTableGenerator;
for (auto &I : MemProfFrameData) {
// Insert the key (frame id) and value (frame contents).
FrameTableGenerator.insert(I.first, I.second);
}
uint64_t FrameTableOffset = FrameTableGenerator.Emit(OS.OS, *FrameWriter);
PatchItem PatchItems[] = {
{MemProfSectionStart, &RecordTableOffset, 1},
{MemProfSectionStart + sizeof(uint64_t), &FramePayloadOffset, 1},
{MemProfSectionStart + 2 * sizeof(uint64_t), &FrameTableOffset, 1},
};
OS.patch(PatchItems, 3);
}
// BinaryIdSection has two parts:
// 1. uint64_t BinaryIdsSectionSize
// 2. list of binary ids that consist of:
// a. uint64_t BinaryIdLength
// b. uint8_t BinaryIdData
// c. uint8_t Padding (if necessary)
uint64_t BinaryIdSectionStart = OS.tell();
// Calculate size of binary section.
uint64_t BinaryIdsSectionSize = 0;
// Remove duplicate binary ids.
llvm::sort(BinaryIds);
BinaryIds.erase(std::unique(BinaryIds.begin(), BinaryIds.end()),
BinaryIds.end());
for (auto BI : BinaryIds) {
// Increment by binary id length data type size.
BinaryIdsSectionSize += sizeof(uint64_t);
// Increment by binary id data length, aligned to 8 bytes.
BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t));
}
// Write binary ids section size.
OS.write(BinaryIdsSectionSize);
for (auto BI : BinaryIds) {
uint64_t BILen = BI.size();
// Write binary id length.
OS.write(BILen);
// Write binary id data.
for (unsigned K = 0; K < BILen; K++)
OS.writeByte(BI[K]);
// Write padding if necessary.
uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen;
for (unsigned K = 0; K < PaddingSize; K++)
OS.writeByte(0);
}
uint64_t TemporalProfTracesSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile)) {
TemporalProfTracesSectionStart = OS.tell();
OS.write(TemporalProfTraces.size());
OS.write(TemporalProfTraceStreamSize);
for (auto &Trace : TemporalProfTraces) {
OS.write(Trace.Weight);
OS.write(Trace.FunctionNameRefs.size());
for (auto &NameRef : Trace.FunctionNameRefs)
OS.write(NameRef);
}
}
// Allocate space for data to be serialized out.
std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
IndexedInstrProf::allocSummary(SummarySize);
// Compute the Summary and copy the data to the data
// structure to be serialized out (to disk or buffer).
std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
setSummary(TheSummary.get(), *PS);
InfoObj->SummaryBuilder = nullptr;
// For Context Sensitive summary.
std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
setSummary(TheCSSummary.get(), *CSPS);
}
InfoObj->CSSummaryBuilder = nullptr;
// Now do the final patch:
PatchItem PatchItems[] = {
// Patch the Header.HashOffset field.
{HashTableStartFieldOffset, &HashTableStart, 1},
// Patch the Header.MemProfOffset (=0 for profiles without MemProf
// data).
{MemProfSectionOffset, &MemProfSectionStart, 1},
// Patch the Header.BinaryIdSectionOffset.
{BinaryIdSectionOffset, &BinaryIdSectionStart, 1},
// Patch the Header.TemporalProfTracesOffset (=0 for profiles without
// traces).
{TemporalProfTracesOffset, &TemporalProfTracesSectionStart, 1},
// Patch the summary data.
{SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
(int)(SummarySize / sizeof(uint64_t))},
{CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
(int)CSSummarySize}};
OS.patch(PatchItems, std::size(PatchItems));
for (const auto &I : FunctionData)
for (const auto &F : I.getValue())
if (Error E = validateRecord(F.second))
return E;
return Error::success();
}
Error InstrProfWriter::write(raw_fd_ostream &OS) {
// Write the hash table.
ProfOStream POS(OS);
return writeImpl(POS);
}
Error InstrProfWriter::write(raw_string_ostream &OS) {
ProfOStream POS(OS);
return writeImpl(POS);
}
std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
std::string Data;
raw_string_ostream OS(Data);
// Write the hash table.
if (Error E = write(OS))
return nullptr;
// Return this in an aligned memory buffer.
return MemoryBuffer::getMemBufferCopy(Data);
}
static const char *ValueProfKindStr[] = {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
#include "llvm/ProfileData/InstrProfData.inc"
};
Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) {
for (uint32_t VK = 0; VK <= IPVK_Last; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
for (uint32_t S = 0; S < NS; S++) {
uint32_t ND = Func.getNumValueDataForSite(VK, S);
std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
DenseSet<uint64_t> SeenValues;
for (uint32_t I = 0; I < ND; I++)
if ((VK != IPVK_IndirectCallTarget) && !SeenValues.insert(VD[I].Value).second)
return make_error<InstrProfError>(instrprof_error::invalid_prof);
}
}
return Error::success();
}
void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
const InstrProfRecord &Func,
InstrProfSymtab &Symtab,
raw_fd_ostream &OS) {
OS << Name << "\n";
OS << "# Func Hash:\n" << Hash << "\n";
OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
OS << "# Counter Values:\n";
for (uint64_t Count : Func.Counts)
OS << Count << "\n";
uint32_t NumValueKinds = Func.getNumValueKinds();
if (!NumValueKinds) {
OS << "\n";
return;
}
OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
OS << "# NumValueSites:\n" << NS << "\n";
for (uint32_t S = 0; S < NS; S++) {
uint32_t ND = Func.getNumValueDataForSite(VK, S);
OS << ND << "\n";
std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
for (uint32_t I = 0; I < ND; I++) {
if (VK == IPVK_IndirectCallTarget)
OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":"
<< VD[I].Count << "\n";
else
OS << VD[I].Value << ":" << VD[I].Count << "\n";
}
}
}
OS << "\n";
}
Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
// Check CS first since it implies an IR level profile.
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
OS << "# CSIR level Instrumentation Flag\n:csir\n";
else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
OS << "# IR level Instrumentation Flag\n:ir\n";
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
OS << "# Always instrument the function entry block\n:entry_first\n";
InstrProfSymtab Symtab;
using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
using RecordType = std::pair<StringRef, FuncPair>;
SmallVector<RecordType, 4> OrderedFuncData;
for (const auto &I : FunctionData) {
if (shouldEncodeData(I.getValue())) {
if (Error E = Symtab.addFuncName(I.getKey()))
return E;
for (const auto &Func : I.getValue())
OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
}
}
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
writeTextTemporalProfTraceData(OS, Symtab);
llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
return std::tie(A.first, A.second.first) <
std::tie(B.first, B.second.first);
});
for (const auto &record : OrderedFuncData) {
const StringRef &Name = record.first;
const FuncPair &Func = record.second;
writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
}
for (const auto &record : OrderedFuncData) {
const FuncPair &Func = record.second;
if (Error E = validateRecord(Func.second))
return E;
}
return Error::success();
}
void InstrProfWriter::writeTextTemporalProfTraceData(raw_fd_ostream &OS,
InstrProfSymtab &Symtab) {
OS << ":temporal_prof_traces\n";
OS << "# Num Temporal Profile Traces:\n" << TemporalProfTraces.size() << "\n";
OS << "# Temporal Profile Trace Stream Size:\n"
<< TemporalProfTraceStreamSize << "\n";
for (auto &Trace : TemporalProfTraces) {
OS << "# Weight:\n" << Trace.Weight << "\n";
for (auto &NameRef : Trace.FunctionNameRefs)
OS << Symtab.getFuncName(NameRef) << ",";
OS << "\n";
}
OS << "\n";
}
|