1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
|
//===- RawMemProfReader.cpp - Instrumented memory profiling reader --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading MemProf profiling data.
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <cstdint>
#include <memory>
#include <type_traits>
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
#include "llvm/DebugInfo/Symbolize/SymbolizableObjectFile.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/BuildID.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/MemProfData.inc"
#include "llvm/ProfileData/RawMemProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#define DEBUG_TYPE "memprof"
namespace llvm {
namespace memprof {
namespace {
template <class T = uint64_t> inline T alignedRead(const char *Ptr) {
static_assert(std::is_pod<T>::value, "Not a pod type.");
assert(reinterpret_cast<size_t>(Ptr) % sizeof(T) == 0 && "Unaligned Read");
return *reinterpret_cast<const T *>(Ptr);
}
Error checkBuffer(const MemoryBuffer &Buffer) {
if (!RawMemProfReader::hasFormat(Buffer))
return make_error<InstrProfError>(instrprof_error::bad_magic);
if (Buffer.getBufferSize() == 0)
return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
if (Buffer.getBufferSize() < sizeof(Header)) {
return make_error<InstrProfError>(instrprof_error::truncated);
}
// The size of the buffer can be > header total size since we allow repeated
// serialization of memprof profiles to the same file.
uint64_t TotalSize = 0;
const char *Next = Buffer.getBufferStart();
while (Next < Buffer.getBufferEnd()) {
auto *H = reinterpret_cast<const Header *>(Next);
if (H->Version != MEMPROF_RAW_VERSION) {
return make_error<InstrProfError>(instrprof_error::unsupported_version);
}
TotalSize += H->TotalSize;
Next += H->TotalSize;
}
if (Buffer.getBufferSize() != TotalSize) {
return make_error<InstrProfError>(instrprof_error::malformed);
}
return Error::success();
}
llvm::SmallVector<SegmentEntry> readSegmentEntries(const char *Ptr) {
using namespace support;
const uint64_t NumItemsToRead =
endian::readNext<uint64_t, little, unaligned>(Ptr);
llvm::SmallVector<SegmentEntry> Items;
for (uint64_t I = 0; I < NumItemsToRead; I++) {
Items.push_back(*reinterpret_cast<const SegmentEntry *>(
Ptr + I * sizeof(SegmentEntry)));
}
return Items;
}
llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>>
readMemInfoBlocks(const char *Ptr) {
using namespace support;
const uint64_t NumItemsToRead =
endian::readNext<uint64_t, little, unaligned>(Ptr);
llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>> Items;
for (uint64_t I = 0; I < NumItemsToRead; I++) {
const uint64_t Id = endian::readNext<uint64_t, little, unaligned>(Ptr);
const MemInfoBlock MIB = *reinterpret_cast<const MemInfoBlock *>(Ptr);
Items.push_back({Id, MIB});
// Only increment by size of MIB since readNext implicitly increments.
Ptr += sizeof(MemInfoBlock);
}
return Items;
}
CallStackMap readStackInfo(const char *Ptr) {
using namespace support;
const uint64_t NumItemsToRead =
endian::readNext<uint64_t, little, unaligned>(Ptr);
CallStackMap Items;
for (uint64_t I = 0; I < NumItemsToRead; I++) {
const uint64_t StackId = endian::readNext<uint64_t, little, unaligned>(Ptr);
const uint64_t NumPCs = endian::readNext<uint64_t, little, unaligned>(Ptr);
SmallVector<uint64_t> CallStack;
for (uint64_t J = 0; J < NumPCs; J++) {
CallStack.push_back(endian::readNext<uint64_t, little, unaligned>(Ptr));
}
Items[StackId] = CallStack;
}
return Items;
}
// Merges the contents of stack information in \p From to \p To. Returns true if
// any stack ids observed previously map to a different set of program counter
// addresses.
bool mergeStackMap(const CallStackMap &From, CallStackMap &To) {
for (const auto &IdStack : From) {
auto I = To.find(IdStack.first);
if (I == To.end()) {
To[IdStack.first] = IdStack.second;
} else {
// Check that the PCs are the same (in order).
if (IdStack.second != I->second)
return true;
}
}
return false;
}
Error report(Error E, const StringRef Context) {
return joinErrors(createStringError(inconvertibleErrorCode(), Context),
std::move(E));
}
bool isRuntimePath(const StringRef Path) {
const StringRef Filename = llvm::sys::path::filename(Path);
// This list should be updated in case new files with additional interceptors
// are added to the memprof runtime.
return Filename.equals("memprof_malloc_linux.cpp") ||
Filename.equals("memprof_interceptors.cpp") ||
Filename.equals("memprof_new_delete.cpp");
}
std::string getBuildIdString(const SegmentEntry &Entry) {
// If the build id is unset print a helpful string instead of all zeros.
if (Entry.BuildIdSize == 0)
return "<None>";
std::string Str;
raw_string_ostream OS(Str);
for (size_t I = 0; I < Entry.BuildIdSize; I++) {
OS << format_hex_no_prefix(Entry.BuildId[I], 2);
}
return OS.str();
}
} // namespace
Expected<std::unique_ptr<RawMemProfReader>>
RawMemProfReader::create(const Twine &Path, const StringRef ProfiledBinary,
bool KeepName) {
auto BufferOr = MemoryBuffer::getFileOrSTDIN(Path);
if (std::error_code EC = BufferOr.getError())
return report(errorCodeToError(EC), Path.getSingleStringRef());
std::unique_ptr<MemoryBuffer> Buffer(BufferOr.get().release());
return create(std::move(Buffer), ProfiledBinary, KeepName);
}
Expected<std::unique_ptr<RawMemProfReader>>
RawMemProfReader::create(std::unique_ptr<MemoryBuffer> Buffer,
const StringRef ProfiledBinary, bool KeepName) {
if (Error E = checkBuffer(*Buffer))
return report(std::move(E), Buffer->getBufferIdentifier());
if (ProfiledBinary.empty()) {
// Peek the build ids to print a helpful error message.
const std::vector<std::string> BuildIds = peekBuildIds(Buffer.get());
std::string ErrorMessage(
R"(Path to profiled binary is empty, expected binary with one of the following build ids:
)");
for (const auto &Id : BuildIds) {
ErrorMessage += "\n BuildId: ";
ErrorMessage += Id;
}
return report(
make_error<StringError>(ErrorMessage, inconvertibleErrorCode()),
/*Context=*/"");
}
auto BinaryOr = llvm::object::createBinary(ProfiledBinary);
if (!BinaryOr) {
return report(BinaryOr.takeError(), ProfiledBinary);
}
// Use new here since constructor is private.
std::unique_ptr<RawMemProfReader> Reader(
new RawMemProfReader(std::move(BinaryOr.get()), KeepName));
if (Error E = Reader->initialize(std::move(Buffer))) {
return std::move(E);
}
return std::move(Reader);
}
bool RawMemProfReader::hasFormat(const StringRef Path) {
auto BufferOr = MemoryBuffer::getFileOrSTDIN(Path);
if (!BufferOr)
return false;
std::unique_ptr<MemoryBuffer> Buffer(BufferOr.get().release());
return hasFormat(*Buffer);
}
bool RawMemProfReader::hasFormat(const MemoryBuffer &Buffer) {
if (Buffer.getBufferSize() < sizeof(uint64_t))
return false;
// Aligned read to sanity check that the buffer was allocated with at least 8b
// alignment.
const uint64_t Magic = alignedRead(Buffer.getBufferStart());
return Magic == MEMPROF_RAW_MAGIC_64;
}
void RawMemProfReader::printYAML(raw_ostream &OS) {
uint64_t NumAllocFunctions = 0, NumMibInfo = 0;
for (const auto &KV : FunctionProfileData) {
const size_t NumAllocSites = KV.second.AllocSites.size();
if (NumAllocSites > 0) {
NumAllocFunctions++;
NumMibInfo += NumAllocSites;
}
}
OS << "MemprofProfile:\n";
OS << " Summary:\n";
OS << " Version: " << MEMPROF_RAW_VERSION << "\n";
OS << " NumSegments: " << SegmentInfo.size() << "\n";
OS << " NumMibInfo: " << NumMibInfo << "\n";
OS << " NumAllocFunctions: " << NumAllocFunctions << "\n";
OS << " NumStackOffsets: " << StackMap.size() << "\n";
// Print out the segment information.
OS << " Segments:\n";
for (const auto &Entry : SegmentInfo) {
OS << " -\n";
OS << " BuildId: " << getBuildIdString(Entry) << "\n";
OS << " Start: 0x" << llvm::utohexstr(Entry.Start) << "\n";
OS << " End: 0x" << llvm::utohexstr(Entry.End) << "\n";
OS << " Offset: 0x" << llvm::utohexstr(Entry.Offset) << "\n";
}
// Print out the merged contents of the profiles.
OS << " Records:\n";
for (const auto &Entry : *this) {
OS << " -\n";
OS << " FunctionGUID: " << Entry.first << "\n";
Entry.second.print(OS);
}
}
Error RawMemProfReader::initialize(std::unique_ptr<MemoryBuffer> DataBuffer) {
const StringRef FileName = Binary.getBinary()->getFileName();
auto *ElfObject = dyn_cast<object::ELFObjectFileBase>(Binary.getBinary());
if (!ElfObject) {
return report(make_error<StringError>(Twine("Not an ELF file: "),
inconvertibleErrorCode()),
FileName);
}
// Check whether the profiled binary was built with position independent code
// (PIC). Perform sanity checks for assumptions we rely on to simplify
// symbolization.
auto* Elf64LEObject = llvm::cast<llvm::object::ELF64LEObjectFile>(ElfObject);
const llvm::object::ELF64LEFile& ElfFile = Elf64LEObject->getELFFile();
auto PHdrsOr = ElfFile.program_headers();
if (!PHdrsOr)
return report(
make_error<StringError>(Twine("Could not read program headers: "),
inconvertibleErrorCode()),
FileName);
int NumExecutableSegments = 0;
for (const auto &Phdr : *PHdrsOr) {
if (Phdr.p_type == ELF::PT_LOAD) {
if (Phdr.p_flags & ELF::PF_X) {
// We assume only one text segment in the main binary for simplicity and
// reduce the overhead of checking multiple ranges during symbolization.
if (++NumExecutableSegments > 1) {
return report(
make_error<StringError>(
"Expect only one executable load segment in the binary",
inconvertibleErrorCode()),
FileName);
}
// Segment will always be loaded at a page boundary, expect it to be
// aligned already. Assume 4K pagesize for the machine from which the
// profile has been collected. This should be fine for now, in case we
// want to support other pagesizes it can be recorded in the raw profile
// during collection.
PreferredTextSegmentAddress = Phdr.p_vaddr;
assert(Phdr.p_vaddr == (Phdr.p_vaddr & ~(0x1000 - 1U)) &&
"Expect p_vaddr to always be page aligned");
assert(Phdr.p_offset == 0 && "Expect p_offset = 0 for symbolization.");
}
}
}
auto Triple = ElfObject->makeTriple();
if (!Triple.isX86())
return report(make_error<StringError>(Twine("Unsupported target: ") +
Triple.getArchName(),
inconvertibleErrorCode()),
FileName);
auto *Object = cast<object::ObjectFile>(Binary.getBinary());
std::unique_ptr<DIContext> Context = DWARFContext::create(
*Object, DWARFContext::ProcessDebugRelocations::Process);
auto SOFOr = symbolize::SymbolizableObjectFile::create(
Object, std::move(Context), /*UntagAddresses=*/false);
if (!SOFOr)
return report(SOFOr.takeError(), FileName);
Symbolizer = std::move(SOFOr.get());
// Process the raw profile.
if (Error E = readRawProfile(std::move(DataBuffer)))
return E;
if (Error E = setupForSymbolization())
return E;
if (Error E = symbolizeAndFilterStackFrames())
return E;
return mapRawProfileToRecords();
}
Error RawMemProfReader::setupForSymbolization() {
auto *Object = cast<object::ObjectFile>(Binary.getBinary());
object::BuildIDRef BinaryId = object::getBuildID(Object);
if (BinaryId.empty())
return make_error<StringError>(Twine("No build id found in binary ") +
Binary.getBinary()->getFileName(),
inconvertibleErrorCode());
int NumMatched = 0;
for (const auto &Entry : SegmentInfo) {
llvm::ArrayRef<uint8_t> SegmentId(Entry.BuildId, Entry.BuildIdSize);
if (BinaryId == SegmentId) {
// We assume only one text segment in the main binary for simplicity and
// reduce the overhead of checking multiple ranges during symbolization.
if (++NumMatched > 1) {
return make_error<StringError>(
"We expect only one executable segment in the profiled binary",
inconvertibleErrorCode());
}
ProfiledTextSegmentStart = Entry.Start;
ProfiledTextSegmentEnd = Entry.End;
}
}
assert(NumMatched != 0 && "No matching executable segments in segment info.");
assert((PreferredTextSegmentAddress == 0 ||
(PreferredTextSegmentAddress == ProfiledTextSegmentStart)) &&
"Expect text segment address to be 0 or equal to profiled text "
"segment start.");
return Error::success();
}
Error RawMemProfReader::mapRawProfileToRecords() {
// Hold a mapping from function to each callsite location we encounter within
// it that is part of some dynamic allocation context. The location is stored
// as a pointer to a symbolized list of inline frames.
using LocationPtr = const llvm::SmallVector<FrameId> *;
llvm::MapVector<GlobalValue::GUID, llvm::SetVector<LocationPtr>>
PerFunctionCallSites;
// Convert the raw profile callstack data into memprof records. While doing so
// keep track of related contexts so that we can fill these in later.
for (const auto &Entry : CallstackProfileData) {
const uint64_t StackId = Entry.first;
auto It = StackMap.find(StackId);
if (It == StackMap.end())
return make_error<InstrProfError>(
instrprof_error::malformed,
"memprof callstack record does not contain id: " + Twine(StackId));
// Construct the symbolized callstack.
llvm::SmallVector<FrameId> Callstack;
Callstack.reserve(It->getSecond().size());
llvm::ArrayRef<uint64_t> Addresses = It->getSecond();
for (size_t I = 0; I < Addresses.size(); I++) {
const uint64_t Address = Addresses[I];
assert(SymbolizedFrame.count(Address) > 0 &&
"Address not found in SymbolizedFrame map");
const SmallVector<FrameId> &Frames = SymbolizedFrame[Address];
assert(!idToFrame(Frames.back()).IsInlineFrame &&
"The last frame should not be inlined");
// Record the callsites for each function. Skip the first frame of the
// first address since it is the allocation site itself that is recorded
// as an alloc site.
for (size_t J = 0; J < Frames.size(); J++) {
if (I == 0 && J == 0)
continue;
// We attach the entire bottom-up frame here for the callsite even
// though we only need the frames up to and including the frame for
// Frames[J].Function. This will enable better deduplication for
// compression in the future.
const GlobalValue::GUID Guid = idToFrame(Frames[J]).Function;
PerFunctionCallSites[Guid].insert(&Frames);
}
// Add all the frames to the current allocation callstack.
Callstack.append(Frames.begin(), Frames.end());
}
// We attach the memprof record to each function bottom-up including the
// first non-inline frame.
for (size_t I = 0; /*Break out using the condition below*/; I++) {
const Frame &F = idToFrame(Callstack[I]);
auto Result =
FunctionProfileData.insert({F.Function, IndexedMemProfRecord()});
IndexedMemProfRecord &Record = Result.first->second;
Record.AllocSites.emplace_back(Callstack, Entry.second);
if (!F.IsInlineFrame)
break;
}
}
// Fill in the related callsites per function.
for (const auto &[Id, Locs] : PerFunctionCallSites) {
// Some functions may have only callsite data and no allocation data. Here
// we insert a new entry for callsite data if we need to.
auto Result = FunctionProfileData.insert({Id, IndexedMemProfRecord()});
IndexedMemProfRecord &Record = Result.first->second;
for (LocationPtr Loc : Locs) {
Record.CallSites.push_back(*Loc);
}
}
return Error::success();
}
Error RawMemProfReader::symbolizeAndFilterStackFrames() {
// The specifier to use when symbolization is requested.
const DILineInfoSpecifier Specifier(
DILineInfoSpecifier::FileLineInfoKind::RawValue,
DILineInfoSpecifier::FunctionNameKind::LinkageName);
// For entries where all PCs in the callstack are discarded, we erase the
// entry from the stack map.
llvm::SmallVector<uint64_t> EntriesToErase;
// We keep track of all prior discarded entries so that we can avoid invoking
// the symbolizer for such entries.
llvm::DenseSet<uint64_t> AllVAddrsToDiscard;
for (auto &Entry : StackMap) {
for (const uint64_t VAddr : Entry.getSecond()) {
// Check if we have already symbolized and cached the result or if we
// don't want to attempt symbolization since we know this address is bad.
// In this case the address is also removed from the current callstack.
if (SymbolizedFrame.count(VAddr) > 0 ||
AllVAddrsToDiscard.contains(VAddr))
continue;
Expected<DIInliningInfo> DIOr = Symbolizer->symbolizeInlinedCode(
getModuleOffset(VAddr), Specifier, /*UseSymbolTable=*/false);
if (!DIOr)
return DIOr.takeError();
DIInliningInfo DI = DIOr.get();
// Drop frames which we can't symbolize or if they belong to the runtime.
if (DI.getFrame(0).FunctionName == DILineInfo::BadString ||
isRuntimePath(DI.getFrame(0).FileName)) {
AllVAddrsToDiscard.insert(VAddr);
continue;
}
for (size_t I = 0, NumFrames = DI.getNumberOfFrames(); I < NumFrames;
I++) {
const auto &DIFrame = DI.getFrame(I);
const uint64_t Guid =
IndexedMemProfRecord::getGUID(DIFrame.FunctionName);
const Frame F(Guid, DIFrame.Line - DIFrame.StartLine, DIFrame.Column,
// Only the last entry is not an inlined location.
I != NumFrames - 1);
// Here we retain a mapping from the GUID to symbol name instead of
// adding it to the frame object directly to reduce memory overhead.
// This is because there can be many unique frames, particularly for
// callsite frames.
if (KeepSymbolName)
GuidToSymbolName.insert({Guid, DIFrame.FunctionName});
const FrameId Hash = F.hash();
IdToFrame.insert({Hash, F});
SymbolizedFrame[VAddr].push_back(Hash);
}
}
auto &CallStack = Entry.getSecond();
llvm::erase_if(CallStack, [&AllVAddrsToDiscard](const uint64_t A) {
return AllVAddrsToDiscard.contains(A);
});
if (CallStack.empty())
EntriesToErase.push_back(Entry.getFirst());
}
// Drop the entries where the callstack is empty.
for (const uint64_t Id : EntriesToErase) {
StackMap.erase(Id);
CallstackProfileData.erase(Id);
}
if (StackMap.empty())
return make_error<InstrProfError>(
instrprof_error::malformed,
"no entries in callstack map after symbolization");
return Error::success();
}
std::vector<std::string>
RawMemProfReader::peekBuildIds(MemoryBuffer *DataBuffer) {
const char *Next = DataBuffer->getBufferStart();
// Use a set + vector since a profile file may contain multiple raw profile
// dumps, each with segment information. We want them unique and in order they
// were stored in the profile; the profiled binary should be the first entry.
// The runtime uses dl_iterate_phdr and the "... first object visited by
// callback is the main program."
// https://man7.org/linux/man-pages/man3/dl_iterate_phdr.3.html
std::vector<std::string> BuildIds;
llvm::SmallSet<std::string, 10> BuildIdsSet;
while (Next < DataBuffer->getBufferEnd()) {
auto *Header = reinterpret_cast<const memprof::Header *>(Next);
const llvm::SmallVector<SegmentEntry> Entries =
readSegmentEntries(Next + Header->SegmentOffset);
for (const auto &Entry : Entries) {
const std::string Id = getBuildIdString(Entry);
if (BuildIdsSet.contains(Id))
continue;
BuildIds.push_back(Id);
BuildIdsSet.insert(Id);
}
Next += Header->TotalSize;
}
return BuildIds;
}
Error RawMemProfReader::readRawProfile(
std::unique_ptr<MemoryBuffer> DataBuffer) {
const char *Next = DataBuffer->getBufferStart();
while (Next < DataBuffer->getBufferEnd()) {
auto *Header = reinterpret_cast<const memprof::Header *>(Next);
// Read in the segment information, check whether its the same across all
// profiles in this binary file.
const llvm::SmallVector<SegmentEntry> Entries =
readSegmentEntries(Next + Header->SegmentOffset);
if (!SegmentInfo.empty() && SegmentInfo != Entries) {
// We do not expect segment information to change when deserializing from
// the same binary profile file. This can happen if dynamic libraries are
// loaded/unloaded between profile dumping.
return make_error<InstrProfError>(
instrprof_error::malformed,
"memprof raw profile has different segment information");
}
SegmentInfo.assign(Entries.begin(), Entries.end());
// Read in the MemInfoBlocks. Merge them based on stack id - we assume that
// raw profiles in the same binary file are from the same process so the
// stackdepot ids are the same.
for (const auto &Value : readMemInfoBlocks(Next + Header->MIBOffset)) {
if (CallstackProfileData.count(Value.first)) {
CallstackProfileData[Value.first].Merge(Value.second);
} else {
CallstackProfileData[Value.first] = Value.second;
}
}
// Read in the callstack for each ids. For multiple raw profiles in the same
// file, we expect that the callstack is the same for a unique id.
const CallStackMap CSM = readStackInfo(Next + Header->StackOffset);
if (StackMap.empty()) {
StackMap = CSM;
} else {
if (mergeStackMap(CSM, StackMap))
return make_error<InstrProfError>(
instrprof_error::malformed,
"memprof raw profile got different call stack for same id");
}
Next += Header->TotalSize;
}
return Error::success();
}
object::SectionedAddress
RawMemProfReader::getModuleOffset(const uint64_t VirtualAddress) {
if (VirtualAddress > ProfiledTextSegmentStart &&
VirtualAddress <= ProfiledTextSegmentEnd) {
// For PIE binaries, the preferred address is zero and we adjust the virtual
// address by start of the profiled segment assuming that the offset of the
// segment in the binary is zero. For non-PIE binaries the preferred and
// profiled segment addresses should be equal and this is a no-op.
const uint64_t AdjustedAddress =
VirtualAddress + PreferredTextSegmentAddress - ProfiledTextSegmentStart;
return object::SectionedAddress{AdjustedAddress};
}
// Addresses which do not originate from the profiled text segment in the
// binary are not adjusted. These will fail symbolization and be filtered out
// during processing.
return object::SectionedAddress{VirtualAddress};
}
Error RawMemProfReader::readNextRecord(GuidMemProfRecordPair &GuidRecord) {
if (FunctionProfileData.empty())
return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
if (Iter == FunctionProfileData.end())
return make_error<InstrProfError>(instrprof_error::eof);
auto IdToFrameCallback = [this](const FrameId Id) {
Frame F = this->idToFrame(Id);
if (!this->KeepSymbolName)
return F;
auto Iter = this->GuidToSymbolName.find(F.Function);
assert(Iter != this->GuidToSymbolName.end());
F.SymbolName = Iter->getSecond();
return F;
};
const IndexedMemProfRecord &IndexedRecord = Iter->second;
GuidRecord = {Iter->first, MemProfRecord(IndexedRecord, IdToFrameCallback)};
Iter++;
return Error::success();
}
} // namespace memprof
} // namespace llvm
|