1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "blake3_impl.h"
#if defined(IS_X86)
#if defined(_MSC_VER)
#include <intrin.h>
#elif defined(__GNUC__)
#include <immintrin.h>
#else
#error "Unimplemented!"
#endif
#endif
#define MAYBE_UNUSED(x) (void)((x))
#if defined(IS_X86)
static uint64_t xgetbv(void) {
#if defined(_MSC_VER)
return _xgetbv(0);
#else
uint32_t eax = 0, edx = 0;
__asm__ __volatile__("xgetbv\n" : "=a"(eax), "=d"(edx) : "c"(0));
return ((uint64_t)edx << 32) | eax;
#endif
}
static void cpuid(uint32_t out[4], uint32_t id) {
#if defined(_MSC_VER)
__cpuid((int *)out, id);
#elif defined(__i386__) || defined(_M_IX86)
__asm__ __volatile__("movl %%ebx, %1\n"
"cpuid\n"
"xchgl %1, %%ebx\n"
: "=a"(out[0]), "=r"(out[1]), "=c"(out[2]), "=d"(out[3])
: "a"(id));
#else
__asm__ __volatile__("cpuid\n"
: "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3])
: "a"(id));
#endif
}
static void cpuidex(uint32_t out[4], uint32_t id, uint32_t sid) {
#if defined(_MSC_VER)
__cpuidex((int *)out, id, sid);
#elif defined(__i386__) || defined(_M_IX86)
__asm__ __volatile__("movl %%ebx, %1\n"
"cpuid\n"
"xchgl %1, %%ebx\n"
: "=a"(out[0]), "=r"(out[1]), "=c"(out[2]), "=d"(out[3])
: "a"(id), "c"(sid));
#else
__asm__ __volatile__("cpuid\n"
: "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3])
: "a"(id), "c"(sid));
#endif
}
#endif
enum cpu_feature {
SSE2 = 1 << 0,
SSSE3 = 1 << 1,
SSE41 = 1 << 2,
AVX = 1 << 3,
AVX2 = 1 << 4,
AVX512F = 1 << 5,
AVX512VL = 1 << 6,
/* ... */
UNDEFINED = 1 << 30
};
#if !defined(BLAKE3_TESTING)
static /* Allow the variable to be controlled manually for testing */
#endif
enum cpu_feature g_cpu_features = UNDEFINED;
LLVM_ATTRIBUTE_USED
#if !defined(BLAKE3_TESTING)
static
#endif
enum cpu_feature
get_cpu_features(void) {
if (g_cpu_features != UNDEFINED) {
return g_cpu_features;
} else {
#if defined(IS_X86)
uint32_t regs[4] = {0};
uint32_t *eax = ®s[0], *ebx = ®s[1], *ecx = ®s[2], *edx = ®s[3];
(void)edx;
enum cpu_feature features = 0;
cpuid(regs, 0);
const int max_id = *eax;
cpuid(regs, 1);
#if defined(__amd64__) || defined(_M_X64)
features |= SSE2;
#else
if (*edx & (1UL << 26))
features |= SSE2;
#endif
if (*ecx & (1UL << 0))
features |= SSSE3;
if (*ecx & (1UL << 19))
features |= SSE41;
if (*ecx & (1UL << 27)) { // OSXSAVE
const uint64_t mask = xgetbv();
if ((mask & 6) == 6) { // SSE and AVX states
if (*ecx & (1UL << 28))
features |= AVX;
if (max_id >= 7) {
cpuidex(regs, 7, 0);
if (*ebx & (1UL << 5))
features |= AVX2;
if ((mask & 224) == 224) { // Opmask, ZMM_Hi256, Hi16_Zmm
if (*ebx & (1UL << 31))
features |= AVX512VL;
if (*ebx & (1UL << 16))
features |= AVX512F;
}
}
}
}
g_cpu_features = features;
return features;
#else
/* How to detect NEON? */
return 0;
#endif
}
}
void blake3_compress_in_place(uint32_t cv[8],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t counter,
uint8_t flags) {
#if defined(IS_X86)
const enum cpu_feature features = get_cpu_features();
MAYBE_UNUSED(features);
#if !defined(BLAKE3_NO_AVX512)
if (features & AVX512VL) {
blake3_compress_in_place_avx512(cv, block, block_len, counter, flags);
return;
}
#endif
#if !defined(BLAKE3_NO_SSE41)
if (features & SSE41) {
blake3_compress_in_place_sse41(cv, block, block_len, counter, flags);
return;
}
#endif
#if !defined(BLAKE3_NO_SSE2)
if (features & SSE2) {
blake3_compress_in_place_sse2(cv, block, block_len, counter, flags);
return;
}
#endif
#endif
blake3_compress_in_place_portable(cv, block, block_len, counter, flags);
}
void blake3_compress_xof(const uint32_t cv[8],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t counter, uint8_t flags,
uint8_t out[64]) {
#if defined(IS_X86)
const enum cpu_feature features = get_cpu_features();
MAYBE_UNUSED(features);
#if !defined(BLAKE3_NO_AVX512)
if (features & AVX512VL) {
blake3_compress_xof_avx512(cv, block, block_len, counter, flags, out);
return;
}
#endif
#if !defined(BLAKE3_NO_SSE41)
if (features & SSE41) {
blake3_compress_xof_sse41(cv, block, block_len, counter, flags, out);
return;
}
#endif
#if !defined(BLAKE3_NO_SSE2)
if (features & SSE2) {
blake3_compress_xof_sse2(cv, block, block_len, counter, flags, out);
return;
}
#endif
#endif
blake3_compress_xof_portable(cv, block, block_len, counter, flags, out);
}
void blake3_hash_many(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint32_t key[8], uint64_t counter,
bool increment_counter, uint8_t flags,
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
#if defined(IS_X86)
const enum cpu_feature features = get_cpu_features();
MAYBE_UNUSED(features);
#if !defined(BLAKE3_NO_AVX512)
if ((features & (AVX512F|AVX512VL)) == (AVX512F|AVX512VL)) {
blake3_hash_many_avx512(inputs, num_inputs, blocks, key, counter,
increment_counter, flags, flags_start, flags_end,
out);
return;
}
#endif
#if !defined(BLAKE3_NO_AVX2)
if (features & AVX2) {
blake3_hash_many_avx2(inputs, num_inputs, blocks, key, counter,
increment_counter, flags, flags_start, flags_end,
out);
return;
}
#endif
#if !defined(BLAKE3_NO_SSE41)
if (features & SSE41) {
blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter,
increment_counter, flags, flags_start, flags_end,
out);
return;
}
#endif
#if !defined(BLAKE3_NO_SSE2)
if (features & SSE2) {
blake3_hash_many_sse2(inputs, num_inputs, blocks, key, counter,
increment_counter, flags, flags_start, flags_end,
out);
return;
}
#endif
#endif
#if BLAKE3_USE_NEON == 1
blake3_hash_many_neon(inputs, num_inputs, blocks, key, counter,
increment_counter, flags, flags_start, flags_end, out);
return;
#endif
blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter,
increment_counter, flags, flags_start, flags_end,
out);
}
// The dynamically detected SIMD degree of the current platform.
size_t blake3_simd_degree(void) {
#if defined(IS_X86)
const enum cpu_feature features = get_cpu_features();
MAYBE_UNUSED(features);
#if !defined(BLAKE3_NO_AVX512)
if ((features & (AVX512F|AVX512VL)) == (AVX512F|AVX512VL)) {
return 16;
}
#endif
#if !defined(BLAKE3_NO_AVX2)
if (features & AVX2) {
return 8;
}
#endif
#if !defined(BLAKE3_NO_SSE41)
if (features & SSE41) {
return 4;
}
#endif
#if !defined(BLAKE3_NO_SSE2)
if (features & SSE2) {
return 4;
}
#endif
#endif
#if BLAKE3_USE_NEON == 1
return 4;
#endif
return 1;
}
|