1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
//===- BalancedPartitioning.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements BalancedPartitioning, a recursive balanced graph
// partitioning algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/BalancedPartitioning.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ThreadPool.h"
using namespace llvm;
#define DEBUG_TYPE "balanced-partitioning"
void BPFunctionNode::dump(raw_ostream &OS) const {
OS << formatv("{{ID={0} Utilities={{{1:$[,]}} Bucket={2}}", Id,
make_range(UtilityNodes.begin(), UtilityNodes.end()), Bucket);
}
template <typename Func>
void BalancedPartitioning::BPThreadPool::async(Func &&F) {
#if LLVM_ENABLE_THREADS
// This new thread could spawn more threads, so mark it as active
++NumActiveThreads;
TheThreadPool.async([=]() {
// Run the task
F();
// This thread will no longer spawn new threads, so mark it as inactive
if (--NumActiveThreads == 0) {
// There are no more active threads, so mark as finished and notify
{
std::unique_lock<std::mutex> lock(mtx);
assert(!IsFinishedSpawning);
IsFinishedSpawning = true;
}
cv.notify_one();
}
});
#else
llvm_unreachable("threads are disabled");
#endif
}
void BalancedPartitioning::BPThreadPool::wait() {
#if LLVM_ENABLE_THREADS
// TODO: We could remove the mutex and condition variable and use
// std::atomic::wait() instead, but that isn't available until C++20
{
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]() { return IsFinishedSpawning; });
assert(IsFinishedSpawning && NumActiveThreads == 0);
}
// Now we can call ThreadPool::wait() since all tasks have been submitted
TheThreadPool.wait();
#else
llvm_unreachable("threads are disabled");
#endif
}
BalancedPartitioning::BalancedPartitioning(
const BalancedPartitioningConfig &Config)
: Config(Config) {
// Pre-computing log2 values
Log2Cache[0] = 0.0;
for (unsigned I = 1; I < LOG_CACHE_SIZE; I++)
Log2Cache[I] = std::log2(I);
}
void BalancedPartitioning::run(std::vector<BPFunctionNode> &Nodes) const {
LLVM_DEBUG(
dbgs() << format(
"Partitioning %d nodes using depth %d and %d iterations per split\n",
Nodes.size(), Config.SplitDepth, Config.IterationsPerSplit));
std::optional<BPThreadPool> TP;
#if LLVM_ENABLE_THREADS
ThreadPool TheThreadPool;
if (Config.TaskSplitDepth > 1)
TP.emplace(TheThreadPool);
#endif
// Record the input order
for (unsigned I = 0; I < Nodes.size(); I++)
Nodes[I].InputOrderIndex = I;
auto NodesRange = llvm::make_range(Nodes.begin(), Nodes.end());
auto BisectTask = [=, &TP]() {
bisect(NodesRange, /*RecDepth=*/0, /*RootBucket=*/1, /*Offset=*/0, TP);
};
if (TP) {
TP->async(std::move(BisectTask));
TP->wait();
} else {
BisectTask();
}
llvm::stable_sort(NodesRange, [](const auto &L, const auto &R) {
return L.Bucket < R.Bucket;
});
LLVM_DEBUG(dbgs() << "Balanced partitioning completed\n");
}
void BalancedPartitioning::bisect(const FunctionNodeRange Nodes,
unsigned RecDepth, unsigned RootBucket,
unsigned Offset,
std::optional<BPThreadPool> &TP) const {
unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
if (NumNodes <= 1 || RecDepth >= Config.SplitDepth) {
// We've reach the lowest level of the recursion tree. Fall back to the
// original order and assign to buckets.
llvm::stable_sort(Nodes, [](const auto &L, const auto &R) {
return L.InputOrderIndex < R.InputOrderIndex;
});
for (auto &N : Nodes)
N.Bucket = Offset++;
return;
}
LLVM_DEBUG(dbgs() << format("Bisect with %d nodes and root bucket %d\n",
NumNodes, RootBucket));
std::mt19937 RNG(RootBucket);
unsigned LeftBucket = 2 * RootBucket;
unsigned RightBucket = 2 * RootBucket + 1;
// Split into two and assign to the left and right buckets
split(Nodes, LeftBucket);
runIterations(Nodes, RecDepth, LeftBucket, RightBucket, RNG);
// Split nodes wrt the resulting buckets
auto NodesMid =
llvm::partition(Nodes, [&](auto &N) { return N.Bucket == LeftBucket; });
unsigned MidOffset = Offset + std::distance(Nodes.begin(), NodesMid);
auto LeftNodes = llvm::make_range(Nodes.begin(), NodesMid);
auto RightNodes = llvm::make_range(NodesMid, Nodes.end());
auto LeftRecTask = [=, &TP]() {
bisect(LeftNodes, RecDepth + 1, LeftBucket, Offset, TP);
};
auto RightRecTask = [=, &TP]() {
bisect(RightNodes, RecDepth + 1, RightBucket, MidOffset, TP);
};
if (TP && RecDepth < Config.TaskSplitDepth && NumNodes >= 4) {
TP->async(std::move(LeftRecTask));
TP->async(std::move(RightRecTask));
} else {
LeftRecTask();
RightRecTask();
}
}
void BalancedPartitioning::runIterations(const FunctionNodeRange Nodes,
unsigned RecDepth, unsigned LeftBucket,
unsigned RightBucket,
std::mt19937 &RNG) const {
unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
DenseMap<BPFunctionNode::UtilityNodeT, unsigned> UtilityNodeDegree;
for (auto &N : Nodes)
for (auto &UN : N.UtilityNodes)
++UtilityNodeDegree[UN];
// Remove utility nodes if they have just one edge or are connected to all
// functions
for (auto &N : Nodes)
llvm::erase_if(N.UtilityNodes, [&](auto &UN) {
return UtilityNodeDegree[UN] <= 1 || UtilityNodeDegree[UN] >= NumNodes;
});
// Renumber utility nodes so they can be used to index into Signatures
DenseMap<BPFunctionNode::UtilityNodeT, unsigned> UtilityNodeIndex;
for (auto &N : Nodes)
for (auto &UN : N.UtilityNodes)
if (!UtilityNodeIndex.count(UN))
UtilityNodeIndex[UN] = UtilityNodeIndex.size();
for (auto &N : Nodes)
for (auto &UN : N.UtilityNodes)
UN = UtilityNodeIndex[UN];
// Initialize signatures
SignaturesT Signatures(/*Size=*/UtilityNodeIndex.size());
for (auto &N : Nodes) {
for (auto &UN : N.UtilityNodes) {
assert(UN < Signatures.size());
if (N.Bucket == LeftBucket) {
Signatures[UN].LeftCount++;
} else {
Signatures[UN].RightCount++;
}
}
}
for (unsigned I = 0; I < Config.IterationsPerSplit; I++) {
unsigned NumMovedNodes =
runIteration(Nodes, LeftBucket, RightBucket, Signatures, RNG);
if (NumMovedNodes == 0)
break;
}
}
unsigned BalancedPartitioning::runIteration(const FunctionNodeRange Nodes,
unsigned LeftBucket,
unsigned RightBucket,
SignaturesT &Signatures,
std::mt19937 &RNG) const {
// Init signature cost caches
for (auto &Signature : Signatures) {
if (Signature.CachedGainIsValid)
continue;
unsigned L = Signature.LeftCount;
unsigned R = Signature.RightCount;
assert((L > 0 || R > 0) && "incorrect signature");
float Cost = logCost(L, R);
Signature.CachedGainLR = 0.f;
Signature.CachedGainRL = 0.f;
if (L > 0)
Signature.CachedGainLR = Cost - logCost(L - 1, R + 1);
if (R > 0)
Signature.CachedGainRL = Cost - logCost(L + 1, R - 1);
Signature.CachedGainIsValid = true;
}
// Compute move gains
typedef std::pair<float, BPFunctionNode *> GainPair;
std::vector<GainPair> Gains;
for (auto &N : Nodes) {
bool FromLeftToRight = (N.Bucket == LeftBucket);
float Gain = moveGain(N, FromLeftToRight, Signatures);
Gains.push_back(std::make_pair(Gain, &N));
}
// Collect left and right gains
auto LeftEnd = llvm::partition(
Gains, [&](const auto &GP) { return GP.second->Bucket == LeftBucket; });
auto LeftRange = llvm::make_range(Gains.begin(), LeftEnd);
auto RightRange = llvm::make_range(LeftEnd, Gains.end());
// Sort gains in descending order
auto LargerGain = [](const auto &L, const auto &R) {
return L.first > R.first;
};
llvm::stable_sort(LeftRange, LargerGain);
llvm::stable_sort(RightRange, LargerGain);
unsigned NumMovedDataVertices = 0;
for (auto [LeftPair, RightPair] : llvm::zip(LeftRange, RightRange)) {
auto &[LeftGain, LeftNode] = LeftPair;
auto &[RightGain, RightNode] = RightPair;
// Stop when the gain is no longer beneficial
if (LeftGain + RightGain <= 0.f)
break;
// Try to exchange the nodes between buckets
if (moveFunctionNode(*LeftNode, LeftBucket, RightBucket, Signatures, RNG))
++NumMovedDataVertices;
if (moveFunctionNode(*RightNode, LeftBucket, RightBucket, Signatures, RNG))
++NumMovedDataVertices;
}
return NumMovedDataVertices;
}
bool BalancedPartitioning::moveFunctionNode(BPFunctionNode &N,
unsigned LeftBucket,
unsigned RightBucket,
SignaturesT &Signatures,
std::mt19937 &RNG) const {
// Sometimes we skip the move. This helps to escape local optima
if (std::uniform_real_distribution<float>(0.f, 1.f)(RNG) <=
Config.SkipProbability)
return false;
bool FromLeftToRight = (N.Bucket == LeftBucket);
// Update the current bucket
N.Bucket = (FromLeftToRight ? RightBucket : LeftBucket);
// Update signatures and invalidate gain cache
if (FromLeftToRight) {
for (auto &UN : N.UtilityNodes) {
auto &Signature = Signatures[UN];
Signature.LeftCount--;
Signature.RightCount++;
Signature.CachedGainIsValid = false;
}
} else {
for (auto &UN : N.UtilityNodes) {
auto &Signature = Signatures[UN];
Signature.LeftCount++;
Signature.RightCount--;
Signature.CachedGainIsValid = false;
}
}
return true;
}
void BalancedPartitioning::split(const FunctionNodeRange Nodes,
unsigned StartBucket) const {
unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
auto NodesMid = Nodes.begin() + (NumNodes + 1) / 2;
std::nth_element(Nodes.begin(), NodesMid, Nodes.end(), [](auto &L, auto &R) {
return L.InputOrderIndex < R.InputOrderIndex;
});
for (auto &N : llvm::make_range(Nodes.begin(), NodesMid))
N.Bucket = StartBucket;
for (auto &N : llvm::make_range(NodesMid, Nodes.end()))
N.Bucket = StartBucket + 1;
}
float BalancedPartitioning::moveGain(const BPFunctionNode &N,
bool FromLeftToRight,
const SignaturesT &Signatures) {
float Gain = 0.f;
for (auto &UN : N.UtilityNodes)
Gain += (FromLeftToRight ? Signatures[UN].CachedGainLR
: Signatures[UN].CachedGainRL);
return Gain;
}
float BalancedPartitioning::logCost(unsigned X, unsigned Y) const {
return -(X * log2Cached(X + 1) + Y * log2Cached(Y + 1));
}
float BalancedPartitioning::log2Cached(unsigned i) const {
return (i < LOG_CACHE_SIZE) ? Log2Cache[i] : std::log2(i);
}
|