1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
|
//===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a class for representing known zeros and ones used by
// computeKnownBits.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
static KnownBits computeForAddCarry(
const KnownBits &LHS, const KnownBits &RHS,
bool CarryZero, bool CarryOne) {
assert(!(CarryZero && CarryOne) &&
"Carry can't be zero and one at the same time");
APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero;
APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne;
// Compute known bits of the carry.
APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
// Compute set of known bits (where all three relevant bits are known).
APInt LHSKnownUnion = LHS.Zero | LHS.One;
APInt RHSKnownUnion = RHS.Zero | RHS.One;
APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne;
APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion;
assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
"known bits of sum differ");
// Compute known bits of the result.
KnownBits KnownOut;
KnownOut.Zero = ~std::move(PossibleSumZero) & Known;
KnownOut.One = std::move(PossibleSumOne) & Known;
return KnownOut;
}
KnownBits KnownBits::computeForAddCarry(
const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) {
assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit");
return ::computeForAddCarry(
LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue());
}
KnownBits KnownBits::computeForAddSub(bool Add, bool NSW,
const KnownBits &LHS, KnownBits RHS) {
KnownBits KnownOut;
if (Add) {
// Sum = LHS + RHS + 0
KnownOut = ::computeForAddCarry(
LHS, RHS, /*CarryZero*/true, /*CarryOne*/false);
} else {
// Sum = LHS + ~RHS + 1
std::swap(RHS.Zero, RHS.One);
KnownOut = ::computeForAddCarry(
LHS, RHS, /*CarryZero*/false, /*CarryOne*/true);
}
// Are we still trying to solve for the sign bit?
if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) {
if (NSW) {
// Adding two non-negative numbers, or subtracting a negative number from
// a non-negative one, can't wrap into negative.
if (LHS.isNonNegative() && RHS.isNonNegative())
KnownOut.makeNonNegative();
// Adding two negative numbers, or subtracting a non-negative number from
// a negative one, can't wrap into non-negative.
else if (LHS.isNegative() && RHS.isNegative())
KnownOut.makeNegative();
}
}
return KnownOut;
}
KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const {
unsigned BitWidth = getBitWidth();
assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth &&
"Illegal sext-in-register");
if (SrcBitWidth == BitWidth)
return *this;
unsigned ExtBits = BitWidth - SrcBitWidth;
KnownBits Result;
Result.One = One << ExtBits;
Result.Zero = Zero << ExtBits;
Result.One.ashrInPlace(ExtBits);
Result.Zero.ashrInPlace(ExtBits);
return Result;
}
KnownBits KnownBits::makeGE(const APInt &Val) const {
// Count the number of leading bit positions where our underlying value is
// known to be less than or equal to Val.
unsigned N = (Zero | Val).countl_one();
// For each of those bit positions, if Val has a 1 in that bit then our
// underlying value must also have a 1.
APInt MaskedVal(Val);
MaskedVal.clearLowBits(getBitWidth() - N);
return KnownBits(Zero, One | MaskedVal);
}
KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) {
// If we can prove that LHS >= RHS then use LHS as the result. Likewise for
// RHS. Ideally our caller would already have spotted these cases and
// optimized away the umax operation, but we handle them here for
// completeness.
if (LHS.getMinValue().uge(RHS.getMaxValue()))
return LHS;
if (RHS.getMinValue().uge(LHS.getMaxValue()))
return RHS;
// If the result of the umax is LHS then it must be greater than or equal to
// the minimum possible value of RHS. Likewise for RHS. Any known bits that
// are common to these two values are also known in the result.
KnownBits L = LHS.makeGE(RHS.getMinValue());
KnownBits R = RHS.makeGE(LHS.getMinValue());
return L.intersectWith(R);
}
KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) {
// Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0]
auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); };
return Flip(umax(Flip(LHS), Flip(RHS)));
}
KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) {
// Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF]
auto Flip = [](const KnownBits &Val) {
unsigned SignBitPosition = Val.getBitWidth() - 1;
APInt Zero = Val.Zero;
APInt One = Val.One;
Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]);
One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]);
return KnownBits(Zero, One);
};
return Flip(umax(Flip(LHS), Flip(RHS)));
}
KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) {
// Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0]
auto Flip = [](const KnownBits &Val) {
unsigned SignBitPosition = Val.getBitWidth() - 1;
APInt Zero = Val.One;
APInt One = Val.Zero;
Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]);
One.setBitVal(SignBitPosition, Val.One[SignBitPosition]);
return KnownBits(Zero, One);
};
return Flip(umax(Flip(LHS), Flip(RHS)));
}
static unsigned getMaxShiftAmount(const APInt &MaxValue, unsigned BitWidth) {
if (isPowerOf2_32(BitWidth))
return MaxValue.extractBitsAsZExtValue(Log2_32(BitWidth), 0);
// This is only an approximate upper bound.
return MaxValue.getLimitedValue(BitWidth - 1);
}
KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW,
bool NSW, bool ShAmtNonZero) {
unsigned BitWidth = LHS.getBitWidth();
auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) {
KnownBits Known;
bool ShiftedOutZero, ShiftedOutOne;
Known.Zero = LHS.Zero.ushl_ov(ShiftAmt, ShiftedOutZero);
Known.Zero.setLowBits(ShiftAmt);
Known.One = LHS.One.ushl_ov(ShiftAmt, ShiftedOutOne);
// All cases returning poison have been handled by MaxShiftAmount already.
if (NSW) {
if (NUW && ShiftAmt != 0)
// NUW means we can assume anything shifted out was a zero.
ShiftedOutZero = true;
if (ShiftedOutZero)
Known.makeNonNegative();
else if (ShiftedOutOne)
Known.makeNegative();
}
return Known;
};
// Fast path for a common case when LHS is completely unknown.
KnownBits Known(BitWidth);
unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth);
if (MinShiftAmount == 0 && ShAmtNonZero)
MinShiftAmount = 1;
if (LHS.isUnknown()) {
Known.Zero.setLowBits(MinShiftAmount);
if (NUW && NSW && MinShiftAmount != 0)
Known.makeNonNegative();
return Known;
}
// Determine maximum shift amount, taking NUW/NSW flags into account.
APInt MaxValue = RHS.getMaxValue();
unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth);
if (NUW && NSW)
MaxShiftAmount = std::min(MaxShiftAmount, LHS.countMaxLeadingZeros() - 1);
if (NUW)
MaxShiftAmount = std::min(MaxShiftAmount, LHS.countMaxLeadingZeros());
if (NSW)
MaxShiftAmount = std::min(
MaxShiftAmount,
std::max(LHS.countMaxLeadingZeros(), LHS.countMaxLeadingOnes()) - 1);
// Fast path for common case where the shift amount is unknown.
if (MinShiftAmount == 0 && MaxShiftAmount == BitWidth - 1 &&
isPowerOf2_32(BitWidth)) {
Known.Zero.setLowBits(LHS.countMinTrailingZeros());
if (LHS.isAllOnes())
Known.One.setSignBit();
if (NSW) {
if (LHS.isNonNegative())
Known.makeNonNegative();
if (LHS.isNegative())
Known.makeNegative();
}
return Known;
}
// Find the common bits from all possible shifts.
unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue();
unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue();
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
++ShiftAmt) {
// Skip if the shift amount is impossible.
if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
continue;
Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt));
if (Known.isUnknown())
break;
}
// All shift amounts may result in poison.
if (Known.hasConflict())
Known.setAllZero();
return Known;
}
KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS,
bool ShAmtNonZero) {
unsigned BitWidth = LHS.getBitWidth();
auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) {
KnownBits Known = LHS;
Known.Zero.lshrInPlace(ShiftAmt);
Known.One.lshrInPlace(ShiftAmt);
// High bits are known zero.
Known.Zero.setHighBits(ShiftAmt);
return Known;
};
// Fast path for a common case when LHS is completely unknown.
KnownBits Known(BitWidth);
unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth);
if (MinShiftAmount == 0 && ShAmtNonZero)
MinShiftAmount = 1;
if (LHS.isUnknown()) {
Known.Zero.setHighBits(MinShiftAmount);
return Known;
}
// Find the common bits from all possible shifts.
APInt MaxValue = RHS.getMaxValue();
unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth);
unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue();
unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue();
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
++ShiftAmt) {
// Skip if the shift amount is impossible.
if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
continue;
Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt));
if (Known.isUnknown())
break;
}
// All shift amounts may result in poison.
if (Known.hasConflict())
Known.setAllZero();
return Known;
}
KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS,
bool ShAmtNonZero) {
unsigned BitWidth = LHS.getBitWidth();
auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) {
KnownBits Known = LHS;
Known.Zero.ashrInPlace(ShiftAmt);
Known.One.ashrInPlace(ShiftAmt);
return Known;
};
// Fast path for a common case when LHS is completely unknown.
KnownBits Known(BitWidth);
unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth);
if (MinShiftAmount == 0 && ShAmtNonZero)
MinShiftAmount = 1;
if (LHS.isUnknown()) {
if (MinShiftAmount == BitWidth) {
// Always poison. Return zero because we don't like returning conflict.
Known.setAllZero();
return Known;
}
return Known;
}
// Find the common bits from all possible shifts.
APInt MaxValue = RHS.getMaxValue();
unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth);
unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue();
unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue();
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
++ShiftAmt) {
// Skip if the shift amount is impossible.
if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
continue;
Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt));
if (Known.isUnknown())
break;
}
// All shift amounts may result in poison.
if (Known.hasConflict())
Known.setAllZero();
return Known;
}
std::optional<bool> KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) {
if (LHS.isConstant() && RHS.isConstant())
return std::optional<bool>(LHS.getConstant() == RHS.getConstant());
if (LHS.One.intersects(RHS.Zero) || RHS.One.intersects(LHS.Zero))
return std::optional<bool>(false);
return std::nullopt;
}
std::optional<bool> KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) {
if (std::optional<bool> KnownEQ = eq(LHS, RHS))
return std::optional<bool>(!*KnownEQ);
return std::nullopt;
}
std::optional<bool> KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) {
// LHS >u RHS -> false if umax(LHS) <= umax(RHS)
if (LHS.getMaxValue().ule(RHS.getMinValue()))
return std::optional<bool>(false);
// LHS >u RHS -> true if umin(LHS) > umax(RHS)
if (LHS.getMinValue().ugt(RHS.getMaxValue()))
return std::optional<bool>(true);
return std::nullopt;
}
std::optional<bool> KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) {
if (std::optional<bool> IsUGT = ugt(RHS, LHS))
return std::optional<bool>(!*IsUGT);
return std::nullopt;
}
std::optional<bool> KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) {
return ugt(RHS, LHS);
}
std::optional<bool> KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) {
return uge(RHS, LHS);
}
std::optional<bool> KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) {
// LHS >s RHS -> false if smax(LHS) <= smax(RHS)
if (LHS.getSignedMaxValue().sle(RHS.getSignedMinValue()))
return std::optional<bool>(false);
// LHS >s RHS -> true if smin(LHS) > smax(RHS)
if (LHS.getSignedMinValue().sgt(RHS.getSignedMaxValue()))
return std::optional<bool>(true);
return std::nullopt;
}
std::optional<bool> KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) {
if (std::optional<bool> KnownSGT = sgt(RHS, LHS))
return std::optional<bool>(!*KnownSGT);
return std::nullopt;
}
std::optional<bool> KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) {
return sgt(RHS, LHS);
}
std::optional<bool> KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) {
return sge(RHS, LHS);
}
KnownBits KnownBits::abs(bool IntMinIsPoison) const {
// If the source's MSB is zero then we know the rest of the bits already.
if (isNonNegative())
return *this;
// Absolute value preserves trailing zero count.
KnownBits KnownAbs(getBitWidth());
// If the input is negative, then abs(x) == -x.
if (isNegative()) {
KnownBits Tmp = *this;
// Special case for IntMinIsPoison. We know the sign bit is set and we know
// all the rest of the bits except one to be zero. Since we have
// IntMinIsPoison, that final bit MUST be a one, as otherwise the input is
// INT_MIN.
if (IntMinIsPoison && (Zero.popcount() + 2) == getBitWidth())
Tmp.One.setBit(countMinTrailingZeros());
KnownAbs = computeForAddSub(
/*Add*/ false, IntMinIsPoison,
KnownBits::makeConstant(APInt(getBitWidth(), 0)), Tmp);
// One more special case for IntMinIsPoison. If we don't know any ones other
// than the signbit, we know for certain that all the unknowns can't be
// zero. So if we know high zero bits, but have unknown low bits, we know
// for certain those high-zero bits will end up as one. This is because,
// the low bits can't be all zeros, so the +1 in (~x + 1) cannot carry up
// to the high bits. If we know a known INT_MIN input skip this. The result
// is poison anyways.
if (IntMinIsPoison && Tmp.countMinPopulation() == 1 &&
Tmp.countMaxPopulation() != 1) {
Tmp.One.clearSignBit();
Tmp.Zero.setSignBit();
KnownAbs.One.setBits(getBitWidth() - Tmp.countMinLeadingZeros(),
getBitWidth() - 1);
}
} else {
unsigned MaxTZ = countMaxTrailingZeros();
unsigned MinTZ = countMinTrailingZeros();
KnownAbs.Zero.setLowBits(MinTZ);
// If we know the lowest set 1, then preserve it.
if (MaxTZ == MinTZ && MaxTZ < getBitWidth())
KnownAbs.One.setBit(MaxTZ);
// We only know that the absolute values's MSB will be zero if INT_MIN is
// poison, or there is a set bit that isn't the sign bit (otherwise it could
// be INT_MIN).
if (IntMinIsPoison || (!One.isZero() && !One.isMinSignedValue())) {
KnownAbs.One.clearSignBit();
KnownAbs.Zero.setSignBit();
}
}
assert(!KnownAbs.hasConflict() && "Bad Output");
return KnownAbs;
}
static KnownBits computeForSatAddSub(bool Add, bool Signed,
const KnownBits &LHS,
const KnownBits &RHS) {
assert(!LHS.hasConflict() && !RHS.hasConflict() && "Bad inputs");
// We don't see NSW even for sadd/ssub as we want to check if the result has
// signed overflow.
KnownBits Res = KnownBits::computeForAddSub(Add, /*NSW*/ false, LHS, RHS);
unsigned BitWidth = Res.getBitWidth();
auto SignBitKnown = [&](const KnownBits &K) {
return K.Zero[BitWidth - 1] || K.One[BitWidth - 1];
};
std::optional<bool> Overflow;
if (Signed) {
// If we can actually detect overflow do so. Otherwise leave Overflow as
// nullopt (we assume it may have happened).
if (SignBitKnown(LHS) && SignBitKnown(RHS) && SignBitKnown(Res)) {
if (Add) {
// sadd.sat
Overflow = (LHS.isNonNegative() == RHS.isNonNegative() &&
Res.isNonNegative() != LHS.isNonNegative());
} else {
// ssub.sat
Overflow = (LHS.isNonNegative() != RHS.isNonNegative() &&
Res.isNonNegative() != LHS.isNonNegative());
}
}
} else if (Add) {
// uadd.sat
bool Of;
(void)LHS.getMaxValue().uadd_ov(RHS.getMaxValue(), Of);
if (!Of) {
Overflow = false;
} else {
(void)LHS.getMinValue().uadd_ov(RHS.getMinValue(), Of);
if (Of)
Overflow = true;
}
} else {
// usub.sat
bool Of;
(void)LHS.getMinValue().usub_ov(RHS.getMaxValue(), Of);
if (!Of) {
Overflow = false;
} else {
(void)LHS.getMaxValue().usub_ov(RHS.getMinValue(), Of);
if (Of)
Overflow = true;
}
}
if (Signed) {
if (Add) {
if (LHS.isNonNegative() && RHS.isNonNegative()) {
// Pos + Pos -> Pos
Res.One.clearSignBit();
Res.Zero.setSignBit();
}
if (LHS.isNegative() && RHS.isNegative()) {
// Neg + Neg -> Neg
Res.One.setSignBit();
Res.Zero.clearSignBit();
}
} else {
if (LHS.isNegative() && RHS.isNonNegative()) {
// Neg - Pos -> Neg
Res.One.setSignBit();
Res.Zero.clearSignBit();
} else if (LHS.isNonNegative() && RHS.isNegative()) {
// Pos - Neg -> Pos
Res.One.clearSignBit();
Res.Zero.setSignBit();
}
}
} else {
// Add: Leading ones of either operand are preserved.
// Sub: Leading zeros of LHS and leading ones of RHS are preserved
// as leading zeros in the result.
unsigned LeadingKnown;
if (Add)
LeadingKnown =
std::max(LHS.countMinLeadingOnes(), RHS.countMinLeadingOnes());
else
LeadingKnown =
std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingOnes());
// We select between the operation result and all-ones/zero
// respectively, so we can preserve known ones/zeros.
APInt Mask = APInt::getHighBitsSet(BitWidth, LeadingKnown);
if (Add) {
Res.One |= Mask;
Res.Zero &= ~Mask;
} else {
Res.Zero |= Mask;
Res.One &= ~Mask;
}
}
if (Overflow) {
// We know whether or not we overflowed.
if (!(*Overflow)) {
// No overflow.
assert(!Res.hasConflict() && "Bad Output");
return Res;
}
// We overflowed
APInt C;
if (Signed) {
// sadd.sat / ssub.sat
assert(SignBitKnown(LHS) &&
"We somehow know overflow without knowing input sign");
C = LHS.isNegative() ? APInt::getSignedMinValue(BitWidth)
: APInt::getSignedMaxValue(BitWidth);
} else if (Add) {
// uadd.sat
C = APInt::getMaxValue(BitWidth);
} else {
// uadd.sat
C = APInt::getMinValue(BitWidth);
}
Res.One = C;
Res.Zero = ~C;
assert(!Res.hasConflict() && "Bad Output");
return Res;
}
// We don't know if we overflowed.
if (Signed) {
// sadd.sat/ssub.sat
// We can keep our information about the sign bits.
Res.Zero.clearLowBits(BitWidth - 1);
Res.One.clearLowBits(BitWidth - 1);
} else if (Add) {
// uadd.sat
// We need to clear all the known zeros as we can only use the leading ones.
Res.Zero.clearAllBits();
} else {
// usub.sat
// We need to clear all the known ones as we can only use the leading zero.
Res.One.clearAllBits();
}
assert(!Res.hasConflict() && "Bad Output");
return Res;
}
KnownBits KnownBits::sadd_sat(const KnownBits &LHS, const KnownBits &RHS) {
return computeForSatAddSub(/*Add*/ true, /*Signed*/ true, LHS, RHS);
}
KnownBits KnownBits::ssub_sat(const KnownBits &LHS, const KnownBits &RHS) {
return computeForSatAddSub(/*Add*/ false, /*Signed*/ true, LHS, RHS);
}
KnownBits KnownBits::uadd_sat(const KnownBits &LHS, const KnownBits &RHS) {
return computeForSatAddSub(/*Add*/ true, /*Signed*/ false, LHS, RHS);
}
KnownBits KnownBits::usub_sat(const KnownBits &LHS, const KnownBits &RHS) {
return computeForSatAddSub(/*Add*/ false, /*Signed*/ false, LHS, RHS);
}
KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
bool NoUndefSelfMultiply) {
unsigned BitWidth = LHS.getBitWidth();
assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
!RHS.hasConflict() && "Operand mismatch");
assert((!NoUndefSelfMultiply || LHS == RHS) &&
"Self multiplication knownbits mismatch");
// Compute the high known-0 bits by multiplying the unsigned max of each side.
// Conservatively, M active bits * N active bits results in M + N bits in the
// result. But if we know a value is a power-of-2 for example, then this
// computes one more leading zero.
// TODO: This could be generalized to number of sign bits (negative numbers).
APInt UMaxLHS = LHS.getMaxValue();
APInt UMaxRHS = RHS.getMaxValue();
// For leading zeros in the result to be valid, the unsigned max product must
// fit in the bitwidth (it must not overflow).
bool HasOverflow;
APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow);
unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countl_zero();
// The result of the bottom bits of an integer multiply can be
// inferred by looking at the bottom bits of both operands and
// multiplying them together.
// We can infer at least the minimum number of known trailing bits
// of both operands. Depending on number of trailing zeros, we can
// infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
// a and b are divisible by m and n respectively.
// We then calculate how many of those bits are inferrable and set
// the output. For example, the i8 mul:
// a = XXXX1100 (12)
// b = XXXX1110 (14)
// We know the bottom 3 bits are zero since the first can be divided by
// 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
// Applying the multiplication to the trimmed arguments gets:
// XX11 (3)
// X111 (7)
// -------
// XX11
// XX11
// XX11
// XX11
// -------
// XXXXX01
// Which allows us to infer the 2 LSBs. Since we're multiplying the result
// by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
// The proof for this can be described as:
// Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
// (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
// umin(countTrailingZeros(C2), C6) +
// umin(C5 - umin(countTrailingZeros(C1), C5),
// C6 - umin(countTrailingZeros(C2), C6)))) - 1)
// %aa = shl i8 %a, C5
// %bb = shl i8 %b, C6
// %aaa = or i8 %aa, C1
// %bbb = or i8 %bb, C2
// %mul = mul i8 %aaa, %bbb
// %mask = and i8 %mul, C7
// =>
// %mask = i8 ((C1*C2)&C7)
// Where C5, C6 describe the known bits of %a, %b
// C1, C2 describe the known bottom bits of %a, %b.
// C7 describes the mask of the known bits of the result.
const APInt &Bottom0 = LHS.One;
const APInt &Bottom1 = RHS.One;
// How many times we'd be able to divide each argument by 2 (shr by 1).
// This gives us the number of trailing zeros on the multiplication result.
unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countr_one();
unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countr_one();
unsigned TrailZero0 = LHS.countMinTrailingZeros();
unsigned TrailZero1 = RHS.countMinTrailingZeros();
unsigned TrailZ = TrailZero0 + TrailZero1;
// Figure out the fewest known-bits operand.
unsigned SmallestOperand =
std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1);
unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
APInt BottomKnown =
Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1);
KnownBits Res(BitWidth);
Res.Zero.setHighBits(LeadZ);
Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
Res.One = BottomKnown.getLoBits(ResultBitsKnown);
// If we're self-multiplying then bit[1] is guaranteed to be zero.
if (NoUndefSelfMultiply && BitWidth > 1) {
assert(Res.One[1] == 0 &&
"Self-multiplication failed Quadratic Reciprocity!");
Res.Zero.setBit(1);
}
return Res;
}
KnownBits KnownBits::mulhs(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
!RHS.hasConflict() && "Operand mismatch");
KnownBits WideLHS = LHS.sext(2 * BitWidth);
KnownBits WideRHS = RHS.sext(2 * BitWidth);
return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth);
}
KnownBits KnownBits::mulhu(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
!RHS.hasConflict() && "Operand mismatch");
KnownBits WideLHS = LHS.zext(2 * BitWidth);
KnownBits WideRHS = RHS.zext(2 * BitWidth);
return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth);
}
static KnownBits divComputeLowBit(KnownBits Known, const KnownBits &LHS,
const KnownBits &RHS, bool Exact) {
if (!Exact)
return Known;
// If LHS is Odd, the result is Odd no matter what.
// Odd / Odd -> Odd
// Odd / Even -> Impossible (because its exact division)
if (LHS.One[0])
Known.One.setBit(0);
int MinTZ =
(int)LHS.countMinTrailingZeros() - (int)RHS.countMaxTrailingZeros();
int MaxTZ =
(int)LHS.countMaxTrailingZeros() - (int)RHS.countMinTrailingZeros();
if (MinTZ >= 0) {
// Result has at least MinTZ trailing zeros.
Known.Zero.setLowBits(MinTZ);
if (MinTZ == MaxTZ) {
// Result has exactly MinTZ trailing zeros.
Known.One.setBit(MinTZ);
}
} else if (MaxTZ < 0) {
// Poison Result
Known.setAllZero();
}
// In the KnownBits exhaustive tests, we have poison inputs for exact values
// a LOT. If we have a conflict, just return all zeros.
if (Known.hasConflict())
Known.setAllZero();
return Known;
}
KnownBits KnownBits::sdiv(const KnownBits &LHS, const KnownBits &RHS,
bool Exact) {
// Equivalent of `udiv`. We must have caught this before it was folded.
if (LHS.isNonNegative() && RHS.isNonNegative())
return udiv(LHS, RHS, Exact);
unsigned BitWidth = LHS.getBitWidth();
assert(!LHS.hasConflict() && !RHS.hasConflict() && "Bad inputs");
KnownBits Known(BitWidth);
if (LHS.isZero() || RHS.isZero()) {
// Result is either known Zero or UB. Return Zero either way.
// Checking this earlier saves us a lot of special cases later on.
Known.setAllZero();
return Known;
}
std::optional<APInt> Res;
if (LHS.isNegative() && RHS.isNegative()) {
// Result non-negative.
APInt Denom = RHS.getSignedMaxValue();
APInt Num = LHS.getSignedMinValue();
// INT_MIN/-1 would be a poison result (impossible). Estimate the division
// as signed max (we will only set sign bit in the result).
Res = (Num.isMinSignedValue() && Denom.isAllOnes())
? APInt::getSignedMaxValue(BitWidth)
: Num.sdiv(Denom);
} else if (LHS.isNegative() && RHS.isNonNegative()) {
// Result is negative if Exact OR -LHS u>= RHS.
if (Exact || (-LHS.getSignedMaxValue()).uge(RHS.getSignedMaxValue())) {
APInt Denom = RHS.getSignedMinValue();
APInt Num = LHS.getSignedMinValue();
Res = Denom.isZero() ? Num : Num.sdiv(Denom);
}
} else if (LHS.isStrictlyPositive() && RHS.isNegative()) {
// Result is negative if Exact OR LHS u>= -RHS.
if (Exact || LHS.getSignedMinValue().uge(-RHS.getSignedMinValue())) {
APInt Denom = RHS.getSignedMaxValue();
APInt Num = LHS.getSignedMaxValue();
Res = Num.sdiv(Denom);
}
}
if (Res) {
if (Res->isNonNegative()) {
unsigned LeadZ = Res->countLeadingZeros();
Known.Zero.setHighBits(LeadZ);
} else {
unsigned LeadO = Res->countLeadingOnes();
Known.One.setHighBits(LeadO);
}
}
Known = divComputeLowBit(Known, LHS, RHS, Exact);
assert(!Known.hasConflict() && "Bad Output");
return Known;
}
KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS,
bool Exact) {
unsigned BitWidth = LHS.getBitWidth();
assert(!LHS.hasConflict() && !RHS.hasConflict());
KnownBits Known(BitWidth);
if (LHS.isZero() || RHS.isZero()) {
// Result is either known Zero or UB. Return Zero either way.
// Checking this earlier saves us a lot of special cases later on.
Known.setAllZero();
return Known;
}
// We can figure out the minimum number of upper zero bits by doing
// MaxNumerator / MinDenominator. If the Numerator gets smaller or Denominator
// gets larger, the number of upper zero bits increases.
APInt MinDenom = RHS.getMinValue();
APInt MaxNum = LHS.getMaxValue();
APInt MaxRes = MinDenom.isZero() ? MaxNum : MaxNum.udiv(MinDenom);
unsigned LeadZ = MaxRes.countLeadingZeros();
Known.Zero.setHighBits(LeadZ);
Known = divComputeLowBit(Known, LHS, RHS, Exact);
assert(!Known.hasConflict() && "Bad Output");
return Known;
}
KnownBits KnownBits::remGetLowBits(const KnownBits &LHS, const KnownBits &RHS) {
unsigned BitWidth = LHS.getBitWidth();
if (!RHS.isZero() && RHS.Zero[0]) {
// rem X, Y where Y[0:N] is zero will preserve X[0:N] in the result.
unsigned RHSZeros = RHS.countMinTrailingZeros();
APInt Mask = APInt::getLowBitsSet(BitWidth, RHSZeros);
APInt OnesMask = LHS.One & Mask;
APInt ZerosMask = LHS.Zero & Mask;
return KnownBits(ZerosMask, OnesMask);
}
return KnownBits(BitWidth);
}
KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) {
assert(!LHS.hasConflict() && !RHS.hasConflict());
KnownBits Known = remGetLowBits(LHS, RHS);
if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) {
// NB: Low bits set in `remGetLowBits`.
APInt HighBits = ~(RHS.getConstant() - 1);
Known.Zero |= HighBits;
return Known;
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
uint32_t Leaders =
std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingZeros());
Known.Zero.setHighBits(Leaders);
return Known;
}
KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) {
assert(!LHS.hasConflict() && !RHS.hasConflict());
KnownBits Known = remGetLowBits(LHS, RHS);
if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) {
// NB: Low bits are set in `remGetLowBits`.
APInt LowBits = RHS.getConstant() - 1;
// If the first operand is non-negative or has all low bits zero, then
// the upper bits are all zero.
if (LHS.isNonNegative() || LowBits.isSubsetOf(LHS.Zero))
Known.Zero |= ~LowBits;
// If the first operand is negative and not all low bits are zero, then
// the upper bits are all one.
if (LHS.isNegative() && LowBits.intersects(LHS.One))
Known.One |= ~LowBits;
return Known;
}
// The sign bit is the LHS's sign bit, except when the result of the
// remainder is zero. The magnitude of the result should be less than or
// equal to the magnitude of the LHS. Therefore any leading zeros that exist
// in the left hand side must also exist in the result.
Known.Zero.setHighBits(LHS.countMinLeadingZeros());
return Known;
}
KnownBits &KnownBits::operator&=(const KnownBits &RHS) {
// Result bit is 0 if either operand bit is 0.
Zero |= RHS.Zero;
// Result bit is 1 if both operand bits are 1.
One &= RHS.One;
return *this;
}
KnownBits &KnownBits::operator|=(const KnownBits &RHS) {
// Result bit is 0 if both operand bits are 0.
Zero &= RHS.Zero;
// Result bit is 1 if either operand bit is 1.
One |= RHS.One;
return *this;
}
KnownBits &KnownBits::operator^=(const KnownBits &RHS) {
// Result bit is 0 if both operand bits are 0 or both are 1.
APInt Z = (Zero & RHS.Zero) | (One & RHS.One);
// Result bit is 1 if one operand bit is 0 and the other is 1.
One = (Zero & RHS.One) | (One & RHS.Zero);
Zero = std::move(Z);
return *this;
}
KnownBits KnownBits::blsi() const {
unsigned BitWidth = getBitWidth();
KnownBits Known(Zero, APInt(BitWidth, 0));
unsigned Max = countMaxTrailingZeros();
Known.Zero.setBitsFrom(std::min(Max + 1, BitWidth));
unsigned Min = countMinTrailingZeros();
if (Max == Min && Max < BitWidth)
Known.One.setBit(Max);
return Known;
}
KnownBits KnownBits::blsmsk() const {
unsigned BitWidth = getBitWidth();
KnownBits Known(BitWidth);
unsigned Max = countMaxTrailingZeros();
Known.Zero.setBitsFrom(std::min(Max + 1, BitWidth));
unsigned Min = countMinTrailingZeros();
Known.One.setLowBits(std::min(Min + 1, BitWidth));
return Known;
}
void KnownBits::print(raw_ostream &OS) const {
unsigned BitWidth = getBitWidth();
for (unsigned I = 0; I < BitWidth; ++I) {
unsigned N = BitWidth - I - 1;
if (Zero[N] && One[N])
OS << "!";
else if (Zero[N])
OS << "0";
else if (One[N])
OS << "1";
else
OS << "?";
}
}
void KnownBits::dump() const {
print(dbgs());
dbgs() << "\n";
}
|