1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
//===- llvm/Support/SuffixTree.cpp - Implement Suffix Tree ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Suffix Tree class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/SuffixTree.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/SuffixTreeNode.h"
using namespace llvm;
/// \returns the number of elements in the substring associated with \p N.
static size_t numElementsInSubstring(const SuffixTreeNode *N) {
assert(N && "Got a null node?");
if (auto *Internal = dyn_cast<SuffixTreeInternalNode>(N))
if (Internal->isRoot())
return 0;
return N->getEndIdx() - N->getStartIdx() + 1;
}
SuffixTree::SuffixTree(const ArrayRef<unsigned> &Str) : Str(Str) {
Root = insertRoot();
Active.Node = Root;
// Keep track of the number of suffixes we have to add of the current
// prefix.
unsigned SuffixesToAdd = 0;
// Construct the suffix tree iteratively on each prefix of the string.
// PfxEndIdx is the end index of the current prefix.
// End is one past the last element in the string.
for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
SuffixesToAdd++;
LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
}
// Set the suffix indices of each leaf.
assert(Root && "Root node can't be nullptr!");
setSuffixIndices();
}
SuffixTreeNode *SuffixTree::insertLeaf(SuffixTreeInternalNode &Parent,
unsigned StartIdx, unsigned Edge) {
assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
auto *N = new (LeafNodeAllocator.Allocate())
SuffixTreeLeafNode(StartIdx, &LeafEndIdx);
Parent.Children[Edge] = N;
return N;
}
SuffixTreeInternalNode *
SuffixTree::insertInternalNode(SuffixTreeInternalNode *Parent,
unsigned StartIdx, unsigned EndIdx,
unsigned Edge) {
assert(StartIdx <= EndIdx && "String can't start after it ends!");
assert(!(!Parent && StartIdx != SuffixTreeNode::EmptyIdx) &&
"Non-root internal nodes must have parents!");
auto *N = new (InternalNodeAllocator.Allocate())
SuffixTreeInternalNode(StartIdx, EndIdx, Root);
if (Parent)
Parent->Children[Edge] = N;
return N;
}
SuffixTreeInternalNode *SuffixTree::insertRoot() {
return insertInternalNode(/*Parent = */ nullptr, SuffixTreeNode::EmptyIdx,
SuffixTreeNode::EmptyIdx, /*Edge = */ 0);
}
void SuffixTree::setSuffixIndices() {
// List of nodes we need to visit along with the current length of the
// string.
SmallVector<std::pair<SuffixTreeNode *, unsigned>> ToVisit;
// Current node being visited.
SuffixTreeNode *CurrNode = Root;
// Sum of the lengths of the nodes down the path to the current one.
unsigned CurrNodeLen = 0;
ToVisit.push_back({CurrNode, CurrNodeLen});
while (!ToVisit.empty()) {
std::tie(CurrNode, CurrNodeLen) = ToVisit.back();
ToVisit.pop_back();
// Length of the current node from the root down to here.
CurrNode->setConcatLen(CurrNodeLen);
if (auto *InternalNode = dyn_cast<SuffixTreeInternalNode>(CurrNode))
for (auto &ChildPair : InternalNode->Children) {
assert(ChildPair.second && "Node had a null child!");
ToVisit.push_back(
{ChildPair.second,
CurrNodeLen + numElementsInSubstring(ChildPair.second)});
}
// No children, so we are at the end of the string.
if (auto *LeafNode = dyn_cast<SuffixTreeLeafNode>(CurrNode))
LeafNode->setSuffixIdx(Str.size() - CurrNodeLen);
}
}
unsigned SuffixTree::extend(unsigned EndIdx, unsigned SuffixesToAdd) {
SuffixTreeInternalNode *NeedsLink = nullptr;
while (SuffixesToAdd > 0) {
// Are we waiting to add anything other than just the last character?
if (Active.Len == 0) {
// If not, then say the active index is the end index.
Active.Idx = EndIdx;
}
assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
// The first character in the current substring we're looking at.
unsigned FirstChar = Str[Active.Idx];
// Have we inserted anything starting with FirstChar at the current node?
if (Active.Node->Children.count(FirstChar) == 0) {
// If not, then we can just insert a leaf and move to the next step.
insertLeaf(*Active.Node, EndIdx, FirstChar);
// The active node is an internal node, and we visited it, so it must
// need a link if it doesn't have one.
if (NeedsLink) {
NeedsLink->setLink(Active.Node);
NeedsLink = nullptr;
}
} else {
// There's a match with FirstChar, so look for the point in the tree to
// insert a new node.
SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
unsigned SubstringLen = numElementsInSubstring(NextNode);
// Is the current suffix we're trying to insert longer than the size of
// the child we want to move to?
if (Active.Len >= SubstringLen) {
// If yes, then consume the characters we've seen and move to the next
// node.
assert(isa<SuffixTreeInternalNode>(NextNode) &&
"Expected an internal node?");
Active.Idx += SubstringLen;
Active.Len -= SubstringLen;
Active.Node = cast<SuffixTreeInternalNode>(NextNode);
continue;
}
// Otherwise, the suffix we're trying to insert must be contained in the
// next node we want to move to.
unsigned LastChar = Str[EndIdx];
// Is the string we're trying to insert a substring of the next node?
if (Str[NextNode->getStartIdx() + Active.Len] == LastChar) {
// If yes, then we're done for this step. Remember our insertion point
// and move to the next end index. At this point, we have an implicit
// suffix tree.
if (NeedsLink && !Active.Node->isRoot()) {
NeedsLink->setLink(Active.Node);
NeedsLink = nullptr;
}
Active.Len++;
break;
}
// The string we're trying to insert isn't a substring of the next node,
// but matches up to a point. Split the node.
//
// For example, say we ended our search at a node n and we're trying to
// insert ABD. Then we'll create a new node s for AB, reduce n to just
// representing C, and insert a new leaf node l to represent d. This
// allows us to ensure that if n was a leaf, it remains a leaf.
//
// | ABC ---split---> | AB
// n s
// C / \ D
// n l
// The node s from the diagram
SuffixTreeInternalNode *SplitNode = insertInternalNode(
Active.Node, NextNode->getStartIdx(),
NextNode->getStartIdx() + Active.Len - 1, FirstChar);
// Insert the new node representing the new substring into the tree as
// a child of the split node. This is the node l from the diagram.
insertLeaf(*SplitNode, EndIdx, LastChar);
// Make the old node a child of the split node and update its start
// index. This is the node n from the diagram.
NextNode->incrementStartIdx(Active.Len);
SplitNode->Children[Str[NextNode->getStartIdx()]] = NextNode;
// SplitNode is an internal node, update the suffix link.
if (NeedsLink)
NeedsLink->setLink(SplitNode);
NeedsLink = SplitNode;
}
// We've added something new to the tree, so there's one less suffix to
// add.
SuffixesToAdd--;
if (Active.Node->isRoot()) {
if (Active.Len > 0) {
Active.Len--;
Active.Idx = EndIdx - SuffixesToAdd + 1;
}
} else {
// Start the next phase at the next smallest suffix.
Active.Node = Active.Node->getLink();
}
}
return SuffixesToAdd;
}
void SuffixTree::RepeatedSubstringIterator::advance() {
// Clear the current state. If we're at the end of the range, then this
// is the state we want to be in.
RS = RepeatedSubstring();
N = nullptr;
// Each leaf node represents a repeat of a string.
SmallVector<unsigned> RepeatedSubstringStarts;
// Continue visiting nodes until we find one which repeats more than once.
while (!InternalNodesToVisit.empty()) {
RepeatedSubstringStarts.clear();
auto *Curr = InternalNodesToVisit.back();
InternalNodesToVisit.pop_back();
// Keep track of the length of the string associated with the node. If
// it's too short, we'll quit.
unsigned Length = Curr->getConcatLen();
// Iterate over each child, saving internal nodes for visiting, and
// leaf nodes in LeafChildren. Internal nodes represent individual
// strings, which may repeat.
for (auto &ChildPair : Curr->Children) {
// Save all of this node's children for processing.
if (auto *InternalChild =
dyn_cast<SuffixTreeInternalNode>(ChildPair.second)) {
InternalNodesToVisit.push_back(InternalChild);
continue;
}
if (Length < MinLength)
continue;
// Have an occurrence of a potentially repeated string. Save it.
auto *Leaf = cast<SuffixTreeLeafNode>(ChildPair.second);
RepeatedSubstringStarts.push_back(Leaf->getSuffixIdx());
}
// The root never represents a repeated substring. If we're looking at
// that, then skip it.
if (Curr->isRoot())
continue;
// Do we have any repeated substrings?
if (RepeatedSubstringStarts.size() < 2)
continue;
// Yes. Update the state to reflect this, and then bail out.
N = Curr;
RS.Length = Length;
for (unsigned StartIdx : RepeatedSubstringStarts)
RS.StartIndices.push_back(StartIdx);
break;
}
// At this point, either NewRS is an empty RepeatedSubstring, or it was
// set in the above loop. Similarly, N is either nullptr, or the node
// associated with NewRS.
}
|