File: xxhash.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (407 lines) | stat: -rw-r--r-- 15,309 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*
*  xxHash - Fast Hash algorithm
*  Copyright (C) 2012-2021, Yann Collet
*
*  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions are
*  met:
*
*  * Redistributions of source code must retain the above copyright
*  notice, this list of conditions and the following disclaimer.
*  * Redistributions in binary form must reproduce the above
*  copyright notice, this list of conditions and the following disclaimer
*  in the documentation and/or other materials provided with the
*  distribution.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*  You can contact the author at :
*  - xxHash homepage: http://www.xxhash.com
*  - xxHash source repository : https://github.com/Cyan4973/xxHash
*/

// xxhash64 is based on commit d2df04efcbef7d7f6886d345861e5dfda4edacc1. Removed
// everything but a simple interface for computing xxh64.

// xxh3_64bits is based on commit d5891596637d21366b9b1dcf2c0007a3edb26a9e (July
// 2023).

#include "llvm/Support/xxhash.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"

#include <stdlib.h>

using namespace llvm;
using namespace support;

static uint64_t rotl64(uint64_t X, size_t R) {
  return (X << R) | (X >> (64 - R));
}

constexpr uint32_t PRIME32_1 = 0x9E3779B1;
constexpr uint32_t PRIME32_2 = 0x85EBCA77;
constexpr uint32_t PRIME32_3 = 0xC2B2AE3D;

static const uint64_t PRIME64_1 = 11400714785074694791ULL;
static const uint64_t PRIME64_2 = 14029467366897019727ULL;
static const uint64_t PRIME64_3 = 1609587929392839161ULL;
static const uint64_t PRIME64_4 = 9650029242287828579ULL;
static const uint64_t PRIME64_5 = 2870177450012600261ULL;

static uint64_t round(uint64_t Acc, uint64_t Input) {
  Acc += Input * PRIME64_2;
  Acc = rotl64(Acc, 31);
  Acc *= PRIME64_1;
  return Acc;
}

static uint64_t mergeRound(uint64_t Acc, uint64_t Val) {
  Val = round(0, Val);
  Acc ^= Val;
  Acc = Acc * PRIME64_1 + PRIME64_4;
  return Acc;
}

static uint64_t XXH64_avalanche(uint64_t hash) {
  hash ^= hash >> 33;
  hash *= PRIME64_2;
  hash ^= hash >> 29;
  hash *= PRIME64_3;
  hash ^= hash >> 32;
  return hash;
}

uint64_t llvm::xxHash64(StringRef Data) {
  size_t Len = Data.size();
  uint64_t Seed = 0;
  const unsigned char *P = Data.bytes_begin();
  const unsigned char *const BEnd = Data.bytes_end();
  uint64_t H64;

  if (Len >= 32) {
    const unsigned char *const Limit = BEnd - 32;
    uint64_t V1 = Seed + PRIME64_1 + PRIME64_2;
    uint64_t V2 = Seed + PRIME64_2;
    uint64_t V3 = Seed + 0;
    uint64_t V4 = Seed - PRIME64_1;

    do {
      V1 = round(V1, endian::read64le(P));
      P += 8;
      V2 = round(V2, endian::read64le(P));
      P += 8;
      V3 = round(V3, endian::read64le(P));
      P += 8;
      V4 = round(V4, endian::read64le(P));
      P += 8;
    } while (P <= Limit);

    H64 = rotl64(V1, 1) + rotl64(V2, 7) + rotl64(V3, 12) + rotl64(V4, 18);
    H64 = mergeRound(H64, V1);
    H64 = mergeRound(H64, V2);
    H64 = mergeRound(H64, V3);
    H64 = mergeRound(H64, V4);

  } else {
    H64 = Seed + PRIME64_5;
  }

  H64 += (uint64_t)Len;

  while (reinterpret_cast<uintptr_t>(P) + 8 <=
         reinterpret_cast<uintptr_t>(BEnd)) {
    uint64_t const K1 = round(0, endian::read64le(P));
    H64 ^= K1;
    H64 = rotl64(H64, 27) * PRIME64_1 + PRIME64_4;
    P += 8;
  }

  if (reinterpret_cast<uintptr_t>(P) + 4 <= reinterpret_cast<uintptr_t>(BEnd)) {
    H64 ^= (uint64_t)(endian::read32le(P)) * PRIME64_1;
    H64 = rotl64(H64, 23) * PRIME64_2 + PRIME64_3;
    P += 4;
  }

  while (P < BEnd) {
    H64 ^= (*P) * PRIME64_5;
    H64 = rotl64(H64, 11) * PRIME64_1;
    P++;
  }

  return XXH64_avalanche(H64);
}

uint64_t llvm::xxHash64(ArrayRef<uint8_t> Data) {
  return xxHash64({(const char *)Data.data(), Data.size()});
}

constexpr size_t XXH3_SECRETSIZE_MIN = 136;
constexpr size_t XXH_SECRET_DEFAULT_SIZE = 192;

/* Pseudorandom data taken directly from FARSH */
// clang-format off
constexpr uint8_t kSecret[XXH_SECRET_DEFAULT_SIZE] = {
    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
    0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
    0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
    0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
    0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
    0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
    0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
    0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
    0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
    0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
    0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
// clang-format on

constexpr uint64_t PRIME_MX1 = 0x165667919E3779F9;
constexpr uint64_t PRIME_MX2 = 0x9FB21C651E98DF25;

// Calculates a 64-bit to 128-bit multiply, then XOR folds it.
static uint64_t XXH3_mul128_fold64(uint64_t lhs, uint64_t rhs) {
#if defined(__SIZEOF_INT128__) ||                                              \
    (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
  __uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
  return uint64_t(product) ^ uint64_t(product >> 64);

#else
  /* First calculate all of the cross products. */
  const uint64_t lo_lo = (lhs & 0xFFFFFFFF) * (rhs & 0xFFFFFFFF);
  const uint64_t hi_lo = (lhs >> 32) * (rhs & 0xFFFFFFFF);
  const uint64_t lo_hi = (lhs & 0xFFFFFFFF) * (rhs >> 32);
  const uint64_t hi_hi = (lhs >> 32) * (rhs >> 32);

  /* Now add the products together. These will never overflow. */
  const uint64_t cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
  const uint64_t upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
  const uint64_t lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);

  return upper ^ lower;
#endif
}

constexpr size_t XXH_STRIPE_LEN = 64;
constexpr size_t XXH_SECRET_CONSUME_RATE = 8;
constexpr size_t XXH_ACC_NB = XXH_STRIPE_LEN / sizeof(uint64_t);

static uint64_t XXH3_avalanche(uint64_t hash) {
  hash ^= hash >> 37;
  hash *= PRIME_MX1;
  hash ^= hash >> 32;
  return hash;
}

static uint64_t XXH3_len_1to3_64b(const uint8_t *input, size_t len,
                                  const uint8_t *secret, uint64_t seed) {
  const uint8_t c1 = input[0];
  const uint8_t c2 = input[len >> 1];
  const uint8_t c3 = input[len - 1];
  uint32_t combined = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) |
                      ((uint32_t)c3 << 0) | ((uint32_t)len << 8);
  uint64_t bitflip =
      (uint64_t)(endian::read32le(secret) ^ endian::read32le(secret + 4)) +
      seed;
  return XXH64_avalanche(uint64_t(combined) ^ bitflip);
}

static uint64_t XXH3_len_4to8_64b(const uint8_t *input, size_t len,
                                  const uint8_t *secret, uint64_t seed) {
  seed ^= (uint64_t)byteswap(uint32_t(seed)) << 32;
  const uint32_t input1 = endian::read32le(input);
  const uint32_t input2 = endian::read32le(input + len - 4);
  uint64_t acc =
      (endian::read64le(secret + 8) ^ endian::read64le(secret + 16)) - seed;
  const uint64_t input64 = (uint64_t)input2 | ((uint64_t)input1 << 32);
  acc ^= input64;
  // XXH3_rrmxmx(acc, len)
  acc ^= rotl64(acc, 49) ^ rotl64(acc, 24);
  acc *= PRIME_MX2;
  acc ^= (acc >> 35) + (uint64_t)len;
  acc *= PRIME_MX2;
  return acc ^ (acc >> 28);
}

static uint64_t XXH3_len_9to16_64b(const uint8_t *input, size_t len,
                                   const uint8_t *secret, uint64_t const seed) {
  uint64_t input_lo =
      (endian::read64le(secret + 24) ^ endian::read64le(secret + 32)) + seed;
  uint64_t input_hi =
      (endian::read64le(secret + 40) ^ endian::read64le(secret + 48)) - seed;
  input_lo ^= endian::read64le(input);
  input_hi ^= endian::read64le(input + len - 8);
  uint64_t acc = uint64_t(len) + byteswap(input_lo) + input_hi +
                 XXH3_mul128_fold64(input_lo, input_hi);
  return XXH3_avalanche(acc);
}

LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t XXH3_len_0to16_64b(const uint8_t *input, size_t len,
                                   const uint8_t *secret, uint64_t const seed) {
  if (LLVM_LIKELY(len > 8))
    return XXH3_len_9to16_64b(input, len, secret, seed);
  if (LLVM_LIKELY(len >= 4))
    return XXH3_len_4to8_64b(input, len, secret, seed);
  if (len != 0)
    return XXH3_len_1to3_64b(input, len, secret, seed);
  return XXH64_avalanche(seed ^ endian::read64le(secret + 56) ^
                         endian::read64le(secret + 64));
}

static uint64_t XXH3_mix16B(const uint8_t *input, uint8_t const *secret,
                            uint64_t seed) {
  uint64_t lhs = seed;
  uint64_t rhs = 0U - seed;
  lhs += endian::read64le(secret);
  rhs += endian::read64le(secret + 8);
  lhs ^= endian::read64le(input);
  rhs ^= endian::read64le(input + 8);
  return XXH3_mul128_fold64(lhs, rhs);
}

/* For mid range keys, XXH3 uses a Mum-hash variant. */
LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t XXH3_len_17to128_64b(const uint8_t *input, size_t len,
                                     const uint8_t *secret,
                                     uint64_t const seed) {
  uint64_t acc = len * PRIME64_1, acc_end;
  acc += XXH3_mix16B(input + 0, secret + 0, seed);
  acc_end = XXH3_mix16B(input + len - 16, secret + 16, seed);
  if (len > 32) {
    acc += XXH3_mix16B(input + 16, secret + 32, seed);
    acc_end += XXH3_mix16B(input + len - 32, secret + 48, seed);
    if (len > 64) {
      acc += XXH3_mix16B(input + 32, secret + 64, seed);
      acc_end += XXH3_mix16B(input + len - 48, secret + 80, seed);
      if (len > 96) {
        acc += XXH3_mix16B(input + 48, secret + 96, seed);
        acc_end += XXH3_mix16B(input + len - 64, secret + 112, seed);
      }
    }
  }
  return XXH3_avalanche(acc + acc_end);
}

constexpr size_t XXH3_MIDSIZE_MAX = 240;

LLVM_ATTRIBUTE_NOINLINE
static uint64_t XXH3_len_129to240_64b(const uint8_t *input, size_t len,
                                      const uint8_t *secret, uint64_t seed) {
  constexpr size_t XXH3_MIDSIZE_STARTOFFSET = 3;
  constexpr size_t XXH3_MIDSIZE_LASTOFFSET = 17;
  uint64_t acc = (uint64_t)len * PRIME64_1;
  const unsigned nbRounds = len / 16;
  for (unsigned i = 0; i < 8; ++i)
    acc += XXH3_mix16B(input + 16 * i, secret + 16 * i, seed);
  acc = XXH3_avalanche(acc);

  for (unsigned i = 8; i < nbRounds; ++i) {
    acc += XXH3_mix16B(input + 16 * i,
                       secret + 16 * (i - 8) + XXH3_MIDSIZE_STARTOFFSET, seed);
  }
  /* last bytes */
  acc +=
      XXH3_mix16B(input + len - 16,
                  secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
  return XXH3_avalanche(acc);
}

LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate_512_scalar(uint64_t *acc, const uint8_t *input,
                                       const uint8_t *secret) {
  for (size_t i = 0; i < XXH_ACC_NB; ++i) {
    uint64_t data_val = endian::read64le(input + 8 * i);
    uint64_t data_key = data_val ^ endian::read64le(secret + 8 * i);
    acc[i ^ 1] += data_val;
    acc[i] += uint32_t(data_key) * (data_key >> 32);
  }
}

LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate_scalar(uint64_t *acc, const uint8_t *input,
                                   const uint8_t *secret, size_t nbStripes) {
  for (size_t n = 0; n < nbStripes; ++n)
    XXH3_accumulate_512_scalar(acc, input + n * XXH_STRIPE_LEN,
                               secret + n * XXH_SECRET_CONSUME_RATE);
}

static void XXH3_scrambleAcc(uint64_t *acc, const uint8_t *secret) {
  for (size_t i = 0; i < XXH_ACC_NB; ++i) {
    acc[i] ^= acc[i] >> 47;
    acc[i] ^= endian::read64le(secret + 8 * i);
    acc[i] *= PRIME32_1;
  }
}

static uint64_t XXH3_mix2Accs(const uint64_t *acc, const uint8_t *secret) {
  return XXH3_mul128_fold64(acc[0] ^ endian::read64le(secret),
                            acc[1] ^ endian::read64le(secret + 8));
}

static uint64_t XXH3_mergeAccs(const uint64_t *acc, const uint8_t *key,
                               uint64_t start) {
  uint64_t result64 = start;
  for (size_t i = 0; i < 4; ++i)
    result64 += XXH3_mix2Accs(acc + 2 * i, key + 16 * i);
  return XXH3_avalanche(result64);
}

LLVM_ATTRIBUTE_NOINLINE
static uint64_t XXH3_hashLong_64b(const uint8_t *input, size_t len,
                                  const uint8_t *secret, size_t secretSize) {
  const size_t nbStripesPerBlock =
      (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
  const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
  const size_t nb_blocks = (len - 1) / block_len;
  alignas(16) uint64_t acc[XXH_ACC_NB] = {
      PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
      PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1,
  };
  for (size_t n = 0; n < nb_blocks; ++n) {
    XXH3_accumulate_scalar(acc, input + n * block_len, secret,
                           nbStripesPerBlock);
    XXH3_scrambleAcc(acc, secret + secretSize - XXH_STRIPE_LEN);
  }

  /* last partial block */
  const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
  assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE);
  XXH3_accumulate_scalar(acc, input + nb_blocks * block_len, secret, nbStripes);

  /* last stripe */
  constexpr size_t XXH_SECRET_LASTACC_START = 7;
  XXH3_accumulate_512_scalar(acc, input + len - XXH_STRIPE_LEN,
                             secret + secretSize - XXH_STRIPE_LEN -
                                 XXH_SECRET_LASTACC_START);

  /* converge into final hash */
  constexpr size_t XXH_SECRET_MERGEACCS_START = 11;
  return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
                        (uint64_t)len * PRIME64_1);
}

uint64_t llvm::xxh3_64bits(ArrayRef<uint8_t> data) {
  auto *in = data.data();
  size_t len = data.size();
  if (len <= 16)
    return XXH3_len_0to16_64b(in, len, kSecret, 0);
  if (len <= 128)
    return XXH3_len_17to128_64b(in, len, kSecret, 0);
  if (len <= XXH3_MIDSIZE_MAX)
    return XXH3_len_129to240_64b(in, len, kSecret, 0);
  return XXH3_hashLong_64b(in, len, kSecret, sizeof(kSecret));
}