1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
/*
* xxHash - Fast Hash algorithm
* Copyright (C) 2012-2021, Yann Collet
*
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at :
* - xxHash homepage: http://www.xxhash.com
* - xxHash source repository : https://github.com/Cyan4973/xxHash
*/
// xxhash64 is based on commit d2df04efcbef7d7f6886d345861e5dfda4edacc1. Removed
// everything but a simple interface for computing xxh64.
// xxh3_64bits is based on commit d5891596637d21366b9b1dcf2c0007a3edb26a9e (July
// 2023).
#include "llvm/Support/xxhash.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include <stdlib.h>
using namespace llvm;
using namespace support;
static uint64_t rotl64(uint64_t X, size_t R) {
return (X << R) | (X >> (64 - R));
}
constexpr uint32_t PRIME32_1 = 0x9E3779B1;
constexpr uint32_t PRIME32_2 = 0x85EBCA77;
constexpr uint32_t PRIME32_3 = 0xC2B2AE3D;
static const uint64_t PRIME64_1 = 11400714785074694791ULL;
static const uint64_t PRIME64_2 = 14029467366897019727ULL;
static const uint64_t PRIME64_3 = 1609587929392839161ULL;
static const uint64_t PRIME64_4 = 9650029242287828579ULL;
static const uint64_t PRIME64_5 = 2870177450012600261ULL;
static uint64_t round(uint64_t Acc, uint64_t Input) {
Acc += Input * PRIME64_2;
Acc = rotl64(Acc, 31);
Acc *= PRIME64_1;
return Acc;
}
static uint64_t mergeRound(uint64_t Acc, uint64_t Val) {
Val = round(0, Val);
Acc ^= Val;
Acc = Acc * PRIME64_1 + PRIME64_4;
return Acc;
}
static uint64_t XXH64_avalanche(uint64_t hash) {
hash ^= hash >> 33;
hash *= PRIME64_2;
hash ^= hash >> 29;
hash *= PRIME64_3;
hash ^= hash >> 32;
return hash;
}
uint64_t llvm::xxHash64(StringRef Data) {
size_t Len = Data.size();
uint64_t Seed = 0;
const unsigned char *P = Data.bytes_begin();
const unsigned char *const BEnd = Data.bytes_end();
uint64_t H64;
if (Len >= 32) {
const unsigned char *const Limit = BEnd - 32;
uint64_t V1 = Seed + PRIME64_1 + PRIME64_2;
uint64_t V2 = Seed + PRIME64_2;
uint64_t V3 = Seed + 0;
uint64_t V4 = Seed - PRIME64_1;
do {
V1 = round(V1, endian::read64le(P));
P += 8;
V2 = round(V2, endian::read64le(P));
P += 8;
V3 = round(V3, endian::read64le(P));
P += 8;
V4 = round(V4, endian::read64le(P));
P += 8;
} while (P <= Limit);
H64 = rotl64(V1, 1) + rotl64(V2, 7) + rotl64(V3, 12) + rotl64(V4, 18);
H64 = mergeRound(H64, V1);
H64 = mergeRound(H64, V2);
H64 = mergeRound(H64, V3);
H64 = mergeRound(H64, V4);
} else {
H64 = Seed + PRIME64_5;
}
H64 += (uint64_t)Len;
while (reinterpret_cast<uintptr_t>(P) + 8 <=
reinterpret_cast<uintptr_t>(BEnd)) {
uint64_t const K1 = round(0, endian::read64le(P));
H64 ^= K1;
H64 = rotl64(H64, 27) * PRIME64_1 + PRIME64_4;
P += 8;
}
if (reinterpret_cast<uintptr_t>(P) + 4 <= reinterpret_cast<uintptr_t>(BEnd)) {
H64 ^= (uint64_t)(endian::read32le(P)) * PRIME64_1;
H64 = rotl64(H64, 23) * PRIME64_2 + PRIME64_3;
P += 4;
}
while (P < BEnd) {
H64 ^= (*P) * PRIME64_5;
H64 = rotl64(H64, 11) * PRIME64_1;
P++;
}
return XXH64_avalanche(H64);
}
uint64_t llvm::xxHash64(ArrayRef<uint8_t> Data) {
return xxHash64({(const char *)Data.data(), Data.size()});
}
constexpr size_t XXH3_SECRETSIZE_MIN = 136;
constexpr size_t XXH_SECRET_DEFAULT_SIZE = 192;
/* Pseudorandom data taken directly from FARSH */
// clang-format off
constexpr uint8_t kSecret[XXH_SECRET_DEFAULT_SIZE] = {
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
// clang-format on
constexpr uint64_t PRIME_MX1 = 0x165667919E3779F9;
constexpr uint64_t PRIME_MX2 = 0x9FB21C651E98DF25;
// Calculates a 64-bit to 128-bit multiply, then XOR folds it.
static uint64_t XXH3_mul128_fold64(uint64_t lhs, uint64_t rhs) {
#if defined(__SIZEOF_INT128__) || \
(defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
return uint64_t(product) ^ uint64_t(product >> 64);
#else
/* First calculate all of the cross products. */
const uint64_t lo_lo = (lhs & 0xFFFFFFFF) * (rhs & 0xFFFFFFFF);
const uint64_t hi_lo = (lhs >> 32) * (rhs & 0xFFFFFFFF);
const uint64_t lo_hi = (lhs & 0xFFFFFFFF) * (rhs >> 32);
const uint64_t hi_hi = (lhs >> 32) * (rhs >> 32);
/* Now add the products together. These will never overflow. */
const uint64_t cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
const uint64_t upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
const uint64_t lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
return upper ^ lower;
#endif
}
constexpr size_t XXH_STRIPE_LEN = 64;
constexpr size_t XXH_SECRET_CONSUME_RATE = 8;
constexpr size_t XXH_ACC_NB = XXH_STRIPE_LEN / sizeof(uint64_t);
static uint64_t XXH3_avalanche(uint64_t hash) {
hash ^= hash >> 37;
hash *= PRIME_MX1;
hash ^= hash >> 32;
return hash;
}
static uint64_t XXH3_len_1to3_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
const uint8_t c1 = input[0];
const uint8_t c2 = input[len >> 1];
const uint8_t c3 = input[len - 1];
uint32_t combined = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) |
((uint32_t)c3 << 0) | ((uint32_t)len << 8);
uint64_t bitflip =
(uint64_t)(endian::read32le(secret) ^ endian::read32le(secret + 4)) +
seed;
return XXH64_avalanche(uint64_t(combined) ^ bitflip);
}
static uint64_t XXH3_len_4to8_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
seed ^= (uint64_t)byteswap(uint32_t(seed)) << 32;
const uint32_t input1 = endian::read32le(input);
const uint32_t input2 = endian::read32le(input + len - 4);
uint64_t acc =
(endian::read64le(secret + 8) ^ endian::read64le(secret + 16)) - seed;
const uint64_t input64 = (uint64_t)input2 | ((uint64_t)input1 << 32);
acc ^= input64;
// XXH3_rrmxmx(acc, len)
acc ^= rotl64(acc, 49) ^ rotl64(acc, 24);
acc *= PRIME_MX2;
acc ^= (acc >> 35) + (uint64_t)len;
acc *= PRIME_MX2;
return acc ^ (acc >> 28);
}
static uint64_t XXH3_len_9to16_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t const seed) {
uint64_t input_lo =
(endian::read64le(secret + 24) ^ endian::read64le(secret + 32)) + seed;
uint64_t input_hi =
(endian::read64le(secret + 40) ^ endian::read64le(secret + 48)) - seed;
input_lo ^= endian::read64le(input);
input_hi ^= endian::read64le(input + len - 8);
uint64_t acc = uint64_t(len) + byteswap(input_lo) + input_hi +
XXH3_mul128_fold64(input_lo, input_hi);
return XXH3_avalanche(acc);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t XXH3_len_0to16_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t const seed) {
if (LLVM_LIKELY(len > 8))
return XXH3_len_9to16_64b(input, len, secret, seed);
if (LLVM_LIKELY(len >= 4))
return XXH3_len_4to8_64b(input, len, secret, seed);
if (len != 0)
return XXH3_len_1to3_64b(input, len, secret, seed);
return XXH64_avalanche(seed ^ endian::read64le(secret + 56) ^
endian::read64le(secret + 64));
}
static uint64_t XXH3_mix16B(const uint8_t *input, uint8_t const *secret,
uint64_t seed) {
uint64_t lhs = seed;
uint64_t rhs = 0U - seed;
lhs += endian::read64le(secret);
rhs += endian::read64le(secret + 8);
lhs ^= endian::read64le(input);
rhs ^= endian::read64le(input + 8);
return XXH3_mul128_fold64(lhs, rhs);
}
/* For mid range keys, XXH3 uses a Mum-hash variant. */
LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t XXH3_len_17to128_64b(const uint8_t *input, size_t len,
const uint8_t *secret,
uint64_t const seed) {
uint64_t acc = len * PRIME64_1, acc_end;
acc += XXH3_mix16B(input + 0, secret + 0, seed);
acc_end = XXH3_mix16B(input + len - 16, secret + 16, seed);
if (len > 32) {
acc += XXH3_mix16B(input + 16, secret + 32, seed);
acc_end += XXH3_mix16B(input + len - 32, secret + 48, seed);
if (len > 64) {
acc += XXH3_mix16B(input + 32, secret + 64, seed);
acc_end += XXH3_mix16B(input + len - 48, secret + 80, seed);
if (len > 96) {
acc += XXH3_mix16B(input + 48, secret + 96, seed);
acc_end += XXH3_mix16B(input + len - 64, secret + 112, seed);
}
}
}
return XXH3_avalanche(acc + acc_end);
}
constexpr size_t XXH3_MIDSIZE_MAX = 240;
LLVM_ATTRIBUTE_NOINLINE
static uint64_t XXH3_len_129to240_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
constexpr size_t XXH3_MIDSIZE_STARTOFFSET = 3;
constexpr size_t XXH3_MIDSIZE_LASTOFFSET = 17;
uint64_t acc = (uint64_t)len * PRIME64_1;
const unsigned nbRounds = len / 16;
for (unsigned i = 0; i < 8; ++i)
acc += XXH3_mix16B(input + 16 * i, secret + 16 * i, seed);
acc = XXH3_avalanche(acc);
for (unsigned i = 8; i < nbRounds; ++i) {
acc += XXH3_mix16B(input + 16 * i,
secret + 16 * (i - 8) + XXH3_MIDSIZE_STARTOFFSET, seed);
}
/* last bytes */
acc +=
XXH3_mix16B(input + len - 16,
secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
return XXH3_avalanche(acc);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate_512_scalar(uint64_t *acc, const uint8_t *input,
const uint8_t *secret) {
for (size_t i = 0; i < XXH_ACC_NB; ++i) {
uint64_t data_val = endian::read64le(input + 8 * i);
uint64_t data_key = data_val ^ endian::read64le(secret + 8 * i);
acc[i ^ 1] += data_val;
acc[i] += uint32_t(data_key) * (data_key >> 32);
}
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate_scalar(uint64_t *acc, const uint8_t *input,
const uint8_t *secret, size_t nbStripes) {
for (size_t n = 0; n < nbStripes; ++n)
XXH3_accumulate_512_scalar(acc, input + n * XXH_STRIPE_LEN,
secret + n * XXH_SECRET_CONSUME_RATE);
}
static void XXH3_scrambleAcc(uint64_t *acc, const uint8_t *secret) {
for (size_t i = 0; i < XXH_ACC_NB; ++i) {
acc[i] ^= acc[i] >> 47;
acc[i] ^= endian::read64le(secret + 8 * i);
acc[i] *= PRIME32_1;
}
}
static uint64_t XXH3_mix2Accs(const uint64_t *acc, const uint8_t *secret) {
return XXH3_mul128_fold64(acc[0] ^ endian::read64le(secret),
acc[1] ^ endian::read64le(secret + 8));
}
static uint64_t XXH3_mergeAccs(const uint64_t *acc, const uint8_t *key,
uint64_t start) {
uint64_t result64 = start;
for (size_t i = 0; i < 4; ++i)
result64 += XXH3_mix2Accs(acc + 2 * i, key + 16 * i);
return XXH3_avalanche(result64);
}
LLVM_ATTRIBUTE_NOINLINE
static uint64_t XXH3_hashLong_64b(const uint8_t *input, size_t len,
const uint8_t *secret, size_t secretSize) {
const size_t nbStripesPerBlock =
(secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
const size_t nb_blocks = (len - 1) / block_len;
alignas(16) uint64_t acc[XXH_ACC_NB] = {
PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1,
};
for (size_t n = 0; n < nb_blocks; ++n) {
XXH3_accumulate_scalar(acc, input + n * block_len, secret,
nbStripesPerBlock);
XXH3_scrambleAcc(acc, secret + secretSize - XXH_STRIPE_LEN);
}
/* last partial block */
const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE);
XXH3_accumulate_scalar(acc, input + nb_blocks * block_len, secret, nbStripes);
/* last stripe */
constexpr size_t XXH_SECRET_LASTACC_START = 7;
XXH3_accumulate_512_scalar(acc, input + len - XXH_STRIPE_LEN,
secret + secretSize - XXH_STRIPE_LEN -
XXH_SECRET_LASTACC_START);
/* converge into final hash */
constexpr size_t XXH_SECRET_MERGEACCS_START = 11;
return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
(uint64_t)len * PRIME64_1);
}
uint64_t llvm::xxh3_64bits(ArrayRef<uint8_t> data) {
auto *in = data.data();
size_t len = data.size();
if (len <= 16)
return XXH3_len_0to16_64b(in, len, kSecret, 0);
if (len <= 128)
return XXH3_len_17to128_64b(in, len, kSecret, 0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_64b(in, len, kSecret, 0);
return XXH3_hashLong_64b(in, len, kSecret, sizeof(kSecret));
}
|