1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
//===-- AArch64BranchTargets.cpp -- Harden code using v8.5-A BTI extension -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass inserts BTI instructions at the start of every function and basic
// block which could be indirectly called. The hardware will (when enabled)
// trap when an indirect branch or call instruction targets an instruction
// which is not a valid BTI instruction. This is intended to guard against
// control-flow hijacking attacks. Note that this does not do anything for RET
// instructions, as they can be more precisely protected by return address
// signing.
//
//===----------------------------------------------------------------------===//
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-branch-targets"
#define AARCH64_BRANCH_TARGETS_NAME "AArch64 Branch Targets"
namespace {
class AArch64BranchTargets : public MachineFunctionPass {
public:
static char ID;
AArch64BranchTargets() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return AARCH64_BRANCH_TARGETS_NAME; }
private:
void addBTI(MachineBasicBlock &MBB, bool CouldCall, bool CouldJump,
bool NeedsWinCFI);
};
} // end anonymous namespace
char AArch64BranchTargets::ID = 0;
INITIALIZE_PASS(AArch64BranchTargets, "aarch64-branch-targets",
AARCH64_BRANCH_TARGETS_NAME, false, false)
void AArch64BranchTargets::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
FunctionPass *llvm::createAArch64BranchTargetsPass() {
return new AArch64BranchTargets();
}
bool AArch64BranchTargets::runOnMachineFunction(MachineFunction &MF) {
if (!MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
return false;
LLVM_DEBUG(
dbgs() << "********** AArch64 Branch Targets **********\n"
<< "********** Function: " << MF.getName() << '\n');
// LLVM does not consider basic blocks which are the targets of jump tables
// to be address-taken (the address can't escape anywhere else), but they are
// used for indirect branches, so need BTI instructions.
SmallPtrSet<MachineBasicBlock *, 8> JumpTableTargets;
if (auto *JTI = MF.getJumpTableInfo())
for (auto &JTE : JTI->getJumpTables())
for (auto *MBB : JTE.MBBs)
JumpTableTargets.insert(MBB);
bool MadeChange = false;
bool HasWinCFI = MF.hasWinCFI();
for (MachineBasicBlock &MBB : MF) {
bool CouldCall = false, CouldJump = false;
// Even in cases where a function has internal linkage and is only called
// directly in its translation unit, it can still be called indirectly if
// the linker decides to add a thunk to it for whatever reason (say, for
// example, if it is finally placed far from its call site and a BL is not
// long-range enough). PLT entries and tail-calls use BR, but when they are
// are in guarded pages should all use x16 or x17 to hold the called
// address, so we don't need to set CouldJump here. BR instructions in
// non-guarded pages (which might be non-BTI-aware code) are allowed to
// branch to a "BTI c" using any register.
if (&MBB == &*MF.begin())
CouldCall = true;
// If the block itself is address-taken, it could be indirectly branched
// to, but not called.
if (MBB.hasAddressTaken() || JumpTableTargets.count(&MBB))
CouldJump = true;
if (CouldCall || CouldJump) {
addBTI(MBB, CouldCall, CouldJump, HasWinCFI);
MadeChange = true;
}
}
return MadeChange;
}
void AArch64BranchTargets::addBTI(MachineBasicBlock &MBB, bool CouldCall,
bool CouldJump, bool HasWinCFI) {
LLVM_DEBUG(dbgs() << "Adding BTI " << (CouldJump ? "j" : "")
<< (CouldCall ? "c" : "") << " to " << MBB.getName()
<< "\n");
const AArch64InstrInfo *TII = static_cast<const AArch64InstrInfo *>(
MBB.getParent()->getSubtarget().getInstrInfo());
unsigned HintNum = 32;
if (CouldCall)
HintNum |= 2;
if (CouldJump)
HintNum |= 4;
assert(HintNum != 32 && "No target kinds!");
auto MBBI = MBB.begin();
// Skip the meta instructions, those will be removed anyway.
for (; MBBI != MBB.end() &&
(MBBI->isMetaInstruction() || MBBI->getOpcode() == AArch64::EMITBKEY);
++MBBI)
;
// SCTLR_EL1.BT[01] is set to 0 by default which means
// PACI[AB]SP are implicitly BTI C so no BTI C instruction is needed there.
if (MBBI != MBB.end() && HintNum == 34 &&
(MBBI->getOpcode() == AArch64::PACIASP ||
MBBI->getOpcode() == AArch64::PACIBSP))
return;
if (HasWinCFI && MBBI->getFlag(MachineInstr::FrameSetup)) {
BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()),
TII->get(AArch64::SEH_Nop));
}
BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()),
TII->get(AArch64::HINT))
.addImm(HintNum);
}
|