1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
//===- AArch64MIPeepholeOpt.cpp - AArch64 MI peephole optimization pass ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs below peephole optimizations on MIR level.
//
// 1. MOVi32imm + ANDWrr ==> ANDWri + ANDWri
// MOVi64imm + ANDXrr ==> ANDXri + ANDXri
//
// 2. MOVi32imm + ADDWrr ==> ADDWRi + ADDWRi
// MOVi64imm + ADDXrr ==> ANDXri + ANDXri
//
// 3. MOVi32imm + SUBWrr ==> SUBWRi + SUBWRi
// MOVi64imm + SUBXrr ==> SUBXri + SUBXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. In this case, we could try to split the constant operand of mov
// instruction into two immediates which can be directly encoded into
// *Wri/*Xri instructions. It makes two AND/ADD/SUB instructions instead of
// multiple `mov` + `and/add/sub` instructions.
//
// 4. Remove redundant ORRWrs which is generated by zero-extend.
//
// %3:gpr32 = ORRWrs $wzr, %2, 0
// %4:gpr64 = SUBREG_TO_REG 0, %3, %subreg.sub_32
//
// If AArch64's 32-bit form of instruction defines the source operand of
// ORRWrs, we can remove the ORRWrs because the upper 32 bits of the source
// operand are set to zero.
//
// 5. %reg = INSERT_SUBREG %reg(tied-def 0), %subreg, subidx
// ==> %reg:subidx = SUBREG_TO_REG 0, %subreg, subidx
//
// 6. %intermediate:gpr32 = COPY %src:fpr128
// %dst:fpr128 = INSvi32gpr %dst_vec:fpr128, dst_index, %intermediate:gpr32
// ==> %dst:fpr128 = INSvi32lane %dst_vec:fpr128, dst_index, %src:fpr128, 0
//
// In cases where a source FPR is copied to a GPR in order to be copied
// to a destination FPR, we can directly copy the values between the FPRs,
// eliminating the use of the Integer unit. When we match a pattern of
// INSvi[X]gpr that is preceded by a chain of COPY instructions from a FPR
// source, we use the INSvi[X]lane to replace the COPY & INSvi[X]gpr
// instructions.
//
// 7. If MI sets zero for high 64-bits implicitly, remove `mov 0` for high
// 64-bits. For example,
//
// %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr
// %2:fpr64 = MOVID 0
// %4:fpr128 = IMPLICIT_DEF
// %3:fpr128 = INSERT_SUBREG %4:fpr128(tied-def 0), killed %2:fpr64, %subreg.dsub
// %6:fpr128 = IMPLICIT_DEF
// %5:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), killed %1:fpr64, %subreg.dsub
// %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, killed %3:fpr128, 0
// ==>
// %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr
// %6:fpr128 = IMPLICIT_DEF
// %7:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), killed %1:fpr64, %subreg.dsub
//
//===----------------------------------------------------------------------===//
#include "AArch64ExpandImm.h"
#include "AArch64InstrInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-mi-peephole-opt"
namespace {
struct AArch64MIPeepholeOpt : public MachineFunctionPass {
static char ID;
AArch64MIPeepholeOpt() : MachineFunctionPass(ID) {
initializeAArch64MIPeepholeOptPass(*PassRegistry::getPassRegistry());
}
const AArch64InstrInfo *TII;
const AArch64RegisterInfo *TRI;
MachineLoopInfo *MLI;
MachineRegisterInfo *MRI;
using OpcodePair = std::pair<unsigned, unsigned>;
template <typename T>
using SplitAndOpcFunc =
std::function<std::optional<OpcodePair>(T, unsigned, T &, T &)>;
using BuildMIFunc =
std::function<void(MachineInstr &, OpcodePair, unsigned, unsigned,
Register, Register, Register)>;
/// For instructions where an immediate operand could be split into two
/// separate immediate instructions, use the splitTwoPartImm two handle the
/// optimization.
///
/// To implement, the following function types must be passed to
/// splitTwoPartImm. A SplitAndOpcFunc must be implemented that determines if
/// splitting the immediate is valid and returns the associated new opcode. A
/// BuildMIFunc must be implemented to build the two immediate instructions.
///
/// Example Pattern (where IMM would require 2+ MOV instructions):
/// %dst = <Instr>rr %src IMM [...]
/// becomes:
/// %tmp = <Instr>ri %src (encode half IMM) [...]
/// %dst = <Instr>ri %tmp (encode half IMM) [...]
template <typename T>
bool splitTwoPartImm(MachineInstr &MI,
SplitAndOpcFunc<T> SplitAndOpc, BuildMIFunc BuildInstr);
bool checkMovImmInstr(MachineInstr &MI, MachineInstr *&MovMI,
MachineInstr *&SubregToRegMI);
template <typename T>
bool visitADDSUB(unsigned PosOpc, unsigned NegOpc, MachineInstr &MI);
template <typename T>
bool visitADDSSUBS(OpcodePair PosOpcs, OpcodePair NegOpcs, MachineInstr &MI);
template <typename T>
bool visitAND(unsigned Opc, MachineInstr &MI);
bool visitORR(MachineInstr &MI);
bool visitINSERT(MachineInstr &MI);
bool visitINSviGPR(MachineInstr &MI, unsigned Opc);
bool visitINSvi64lane(MachineInstr &MI);
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "AArch64 MI Peephole Optimization pass";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
char AArch64MIPeepholeOpt::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(AArch64MIPeepholeOpt, "aarch64-mi-peephole-opt",
"AArch64 MI Peephole Optimization", false, false)
template <typename T>
static bool splitBitmaskImm(T Imm, unsigned RegSize, T &Imm1Enc, T &Imm2Enc) {
T UImm = static_cast<T>(Imm);
if (AArch64_AM::isLogicalImmediate(UImm, RegSize))
return false;
// If this immediate can be handled by one instruction, do not split it.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(UImm, RegSize, Insn);
if (Insn.size() == 1)
return false;
// The bitmask immediate consists of consecutive ones. Let's say there is
// constant 0b00000000001000000000010000000000 which does not consist of
// consecutive ones. We can split it in to two bitmask immediate like
// 0b00000000001111111111110000000000 and 0b11111111111000000000011111111111.
// If we do AND with these two bitmask immediate, we can see original one.
unsigned LowestBitSet = llvm::countr_zero(UImm);
unsigned HighestBitSet = Log2_64(UImm);
// Create a mask which is filled with one from the position of lowest bit set
// to the position of highest bit set.
T NewImm1 = (static_cast<T>(2) << HighestBitSet) -
(static_cast<T>(1) << LowestBitSet);
// Create a mask which is filled with one outside the position of lowest bit
// set and the position of highest bit set.
T NewImm2 = UImm | ~NewImm1;
// If the split value is not valid bitmask immediate, do not split this
// constant.
if (!AArch64_AM::isLogicalImmediate(NewImm2, RegSize))
return false;
Imm1Enc = AArch64_AM::encodeLogicalImmediate(NewImm1, RegSize);
Imm2Enc = AArch64_AM::encodeLogicalImmediate(NewImm2, RegSize);
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::visitAND(
unsigned Opc, MachineInstr &MI) {
// Try below transformation.
//
// MOVi32imm + ANDWrr ==> ANDWri + ANDWri
// MOVi64imm + ANDXrr ==> ANDXri + ANDXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. Let's try to split the constant operand of mov instruction into two
// bitmask immediates. It makes only two AND instructions intead of multiple
// mov + and instructions.
return splitTwoPartImm<T>(
MI,
[Opc](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
if (splitBitmaskImm(Imm, RegSize, Imm0, Imm1))
return std::make_pair(Opc, Opc);
return std::nullopt;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1);
});
}
bool AArch64MIPeepholeOpt::visitORR(MachineInstr &MI) {
// Check this ORR comes from below zero-extend pattern.
//
// def : Pat<(i64 (zext GPR32:$src)),
// (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
if (MI.getOperand(3).getImm() != 0)
return false;
if (MI.getOperand(1).getReg() != AArch64::WZR)
return false;
MachineInstr *SrcMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!SrcMI)
return false;
// From https://developer.arm.com/documentation/dui0801/b/BABBGCAC
//
// When you use the 32-bit form of an instruction, the upper 32 bits of the
// source registers are ignored and the upper 32 bits of the destination
// register are set to zero.
//
// If AArch64's 32-bit form of instruction defines the source operand of
// zero-extend, we do not need the zero-extend. Let's check the MI's opcode is
// real AArch64 instruction and if it is not, do not process the opcode
// conservatively.
if (SrcMI->getOpcode() == TargetOpcode::COPY &&
SrcMI->getOperand(1).getReg().isVirtual()) {
const TargetRegisterClass *RC =
MRI->getRegClass(SrcMI->getOperand(1).getReg());
// A COPY from an FPR will become a FMOVSWr, so do so now so that we know
// that the upper bits are zero.
if (RC != &AArch64::FPR32RegClass &&
((RC != &AArch64::FPR64RegClass && RC != &AArch64::FPR128RegClass) ||
SrcMI->getOperand(1).getSubReg() != AArch64::ssub))
return false;
Register CpySrc = SrcMI->getOperand(1).getReg();
if (SrcMI->getOperand(1).getSubReg() == AArch64::ssub) {
CpySrc = MRI->createVirtualRegister(&AArch64::FPR32RegClass);
BuildMI(*SrcMI->getParent(), SrcMI, SrcMI->getDebugLoc(),
TII->get(TargetOpcode::COPY), CpySrc)
.add(SrcMI->getOperand(1));
}
BuildMI(*SrcMI->getParent(), SrcMI, SrcMI->getDebugLoc(),
TII->get(AArch64::FMOVSWr), SrcMI->getOperand(0).getReg())
.addReg(CpySrc);
SrcMI->eraseFromParent();
}
else if (SrcMI->getOpcode() <= TargetOpcode::GENERIC_OP_END)
return false;
Register DefReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(2).getReg();
MRI->replaceRegWith(DefReg, SrcReg);
MRI->clearKillFlags(SrcReg);
LLVM_DEBUG(dbgs() << "Removed: " << MI << "\n");
MI.eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::visitINSERT(MachineInstr &MI) {
// Check this INSERT_SUBREG comes from below zero-extend pattern.
//
// From %reg = INSERT_SUBREG %reg(tied-def 0), %subreg, subidx
// To %reg:subidx = SUBREG_TO_REG 0, %subreg, subidx
//
// We're assuming the first operand to INSERT_SUBREG is irrelevant because a
// COPY would destroy the upper part of the register anyway
if (!MI.isRegTiedToDefOperand(1))
return false;
Register DstReg = MI.getOperand(0).getReg();
const TargetRegisterClass *RC = MRI->getRegClass(DstReg);
MachineInstr *SrcMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!SrcMI)
return false;
// From https://developer.arm.com/documentation/dui0801/b/BABBGCAC
//
// When you use the 32-bit form of an instruction, the upper 32 bits of the
// source registers are ignored and the upper 32 bits of the destination
// register are set to zero.
//
// If AArch64's 32-bit form of instruction defines the source operand of
// zero-extend, we do not need the zero-extend. Let's check the MI's opcode is
// real AArch64 instruction and if it is not, do not process the opcode
// conservatively.
if ((SrcMI->getOpcode() <= TargetOpcode::GENERIC_OP_END) ||
!AArch64::GPR64allRegClass.hasSubClassEq(RC))
return false;
// Build a SUBREG_TO_REG instruction
MachineInstr *SubregMI =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
TII->get(TargetOpcode::SUBREG_TO_REG), DstReg)
.addImm(0)
.add(MI.getOperand(2))
.add(MI.getOperand(3));
LLVM_DEBUG(dbgs() << MI << " replace by:\n: " << *SubregMI << "\n");
(void)SubregMI;
MI.eraseFromParent();
return true;
}
template <typename T>
static bool splitAddSubImm(T Imm, unsigned RegSize, T &Imm0, T &Imm1) {
// The immediate must be in the form of ((imm0 << 12) + imm1), in which both
// imm0 and imm1 are non-zero 12-bit unsigned int.
if ((Imm & 0xfff000) == 0 || (Imm & 0xfff) == 0 ||
(Imm & ~static_cast<T>(0xffffff)) != 0)
return false;
// The immediate can not be composed via a single instruction.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(Imm, RegSize, Insn);
if (Insn.size() == 1)
return false;
// Split Imm into (Imm0 << 12) + Imm1;
Imm0 = (Imm >> 12) & 0xfff;
Imm1 = Imm & 0xfff;
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::visitADDSUB(
unsigned PosOpc, unsigned NegOpc, MachineInstr &MI) {
// Try below transformation.
//
// ADDWrr X, MOVi32imm ==> ADDWri + ADDWri
// ADDXrr X, MOVi64imm ==> ADDXri + ADDXri
//
// SUBWrr X, MOVi32imm ==> SUBWri + SUBWri
// SUBXrr X, MOVi64imm ==> SUBXri + SUBXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. Let's try to split the constant operand of mov instruction into two
// legal add/sub immediates. It makes only two ADD/SUB instructions intead of
// multiple `mov` + `and/sub` instructions.
// We can sometimes have ADDWrr WZR, MULi32imm that have not been constant
// folded. Make sure that we don't generate invalid instructions that use XZR
// in those cases.
if (MI.getOperand(1).getReg() == AArch64::XZR ||
MI.getOperand(1).getReg() == AArch64::WZR)
return false;
return splitTwoPartImm<T>(
MI,
[PosOpc, NegOpc](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
if (splitAddSubImm(Imm, RegSize, Imm0, Imm1))
return std::make_pair(PosOpc, PosOpc);
if (splitAddSubImm(-Imm, RegSize, Imm0, Imm1))
return std::make_pair(NegOpc, NegOpc);
return std::nullopt;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0)
.addImm(12);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1)
.addImm(0);
});
}
template <typename T>
bool AArch64MIPeepholeOpt::visitADDSSUBS(
OpcodePair PosOpcs, OpcodePair NegOpcs, MachineInstr &MI) {
// Try the same transformation as ADDSUB but with additional requirement
// that the condition code usages are only for Equal and Not Equal
if (MI.getOperand(1).getReg() == AArch64::XZR ||
MI.getOperand(1).getReg() == AArch64::WZR)
return false;
return splitTwoPartImm<T>(
MI,
[PosOpcs, NegOpcs, &MI, &TRI = TRI,
&MRI = MRI](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
OpcodePair OP;
if (splitAddSubImm(Imm, RegSize, Imm0, Imm1))
OP = PosOpcs;
else if (splitAddSubImm(-Imm, RegSize, Imm0, Imm1))
OP = NegOpcs;
else
return std::nullopt;
// Check conditional uses last since it is expensive for scanning
// proceeding instructions
MachineInstr &SrcMI = *MRI->getUniqueVRegDef(MI.getOperand(1).getReg());
std::optional<UsedNZCV> NZCVUsed = examineCFlagsUse(SrcMI, MI, *TRI);
if (!NZCVUsed || NZCVUsed->C || NZCVUsed->V)
return std::nullopt;
return OP;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0)
.addImm(12);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1)
.addImm(0);
});
}
// Checks if the corresponding MOV immediate instruction is applicable for
// this peephole optimization.
bool AArch64MIPeepholeOpt::checkMovImmInstr(MachineInstr &MI,
MachineInstr *&MovMI,
MachineInstr *&SubregToRegMI) {
// Check whether current MBB is in loop and the AND is loop invariant.
MachineBasicBlock *MBB = MI.getParent();
MachineLoop *L = MLI->getLoopFor(MBB);
if (L && !L->isLoopInvariant(MI))
return false;
// Check whether current MI's operand is MOV with immediate.
MovMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!MovMI)
return false;
// If it is SUBREG_TO_REG, check its operand.
SubregToRegMI = nullptr;
if (MovMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) {
SubregToRegMI = MovMI;
MovMI = MRI->getUniqueVRegDef(MovMI->getOperand(2).getReg());
if (!MovMI)
return false;
}
if (MovMI->getOpcode() != AArch64::MOVi32imm &&
MovMI->getOpcode() != AArch64::MOVi64imm)
return false;
// If the MOV has multiple uses, do not split the immediate because it causes
// more instructions.
if (!MRI->hasOneUse(MovMI->getOperand(0).getReg()))
return false;
if (SubregToRegMI && !MRI->hasOneUse(SubregToRegMI->getOperand(0).getReg()))
return false;
// It is OK to perform this peephole optimization.
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::splitTwoPartImm(
MachineInstr &MI,
SplitAndOpcFunc<T> SplitAndOpc, BuildMIFunc BuildInstr) {
unsigned RegSize = sizeof(T) * 8;
assert((RegSize == 32 || RegSize == 64) &&
"Invalid RegSize for legal immediate peephole optimization");
// Perform several essential checks against current MI.
MachineInstr *MovMI, *SubregToRegMI;
if (!checkMovImmInstr(MI, MovMI, SubregToRegMI))
return false;
// Split the immediate to Imm0 and Imm1, and calculate the Opcode.
T Imm = static_cast<T>(MovMI->getOperand(1).getImm()), Imm0, Imm1;
// For the 32 bit form of instruction, the upper 32 bits of the destination
// register are set to zero. If there is SUBREG_TO_REG, set the upper 32 bits
// of Imm to zero. This is essential if the Immediate value was a negative
// number since it was sign extended when we assign to the 64-bit Imm.
if (SubregToRegMI)
Imm &= 0xFFFFFFFF;
OpcodePair Opcode;
if (auto R = SplitAndOpc(Imm, RegSize, Imm0, Imm1))
Opcode = *R;
else
return false;
// Create new MIs using the first and second opcodes. Opcodes might differ for
// flag setting operations that should only set flags on second instruction.
// NewTmpReg = Opcode.first SrcReg Imm0
// NewDstReg = Opcode.second NewTmpReg Imm1
// Determine register classes for destinations and register operands
MachineFunction *MF = MI.getMF();
const TargetRegisterClass *FirstInstrDstRC =
TII->getRegClass(TII->get(Opcode.first), 0, TRI, *MF);
const TargetRegisterClass *FirstInstrOperandRC =
TII->getRegClass(TII->get(Opcode.first), 1, TRI, *MF);
const TargetRegisterClass *SecondInstrDstRC =
(Opcode.first == Opcode.second)
? FirstInstrDstRC
: TII->getRegClass(TII->get(Opcode.second), 0, TRI, *MF);
const TargetRegisterClass *SecondInstrOperandRC =
(Opcode.first == Opcode.second)
? FirstInstrOperandRC
: TII->getRegClass(TII->get(Opcode.second), 1, TRI, *MF);
// Get old registers destinations and new register destinations
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
Register NewTmpReg = MRI->createVirtualRegister(FirstInstrDstRC);
// In the situation that DstReg is not Virtual (likely WZR or XZR), we want to
// reuse that same destination register.
Register NewDstReg = DstReg.isVirtual()
? MRI->createVirtualRegister(SecondInstrDstRC)
: DstReg;
// Constrain registers based on their new uses
MRI->constrainRegClass(SrcReg, FirstInstrOperandRC);
MRI->constrainRegClass(NewTmpReg, SecondInstrOperandRC);
if (DstReg != NewDstReg)
MRI->constrainRegClass(NewDstReg, MRI->getRegClass(DstReg));
// Call the delegating operation to build the instruction
BuildInstr(MI, Opcode, Imm0, Imm1, SrcReg, NewTmpReg, NewDstReg);
// replaceRegWith changes MI's definition register. Keep it for SSA form until
// deleting MI. Only if we made a new destination register.
if (DstReg != NewDstReg) {
MRI->replaceRegWith(DstReg, NewDstReg);
MI.getOperand(0).setReg(DstReg);
}
// Record the MIs need to be removed.
MI.eraseFromParent();
if (SubregToRegMI)
SubregToRegMI->eraseFromParent();
MovMI->eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::visitINSviGPR(MachineInstr &MI, unsigned Opc) {
// Check if this INSvi[X]gpr comes from COPY of a source FPR128
//
// From
// %intermediate1:gpr64 = COPY %src:fpr128
// %intermediate2:gpr32 = COPY %intermediate1:gpr64
// %dst:fpr128 = INSvi[X]gpr %dst_vec:fpr128, dst_index, %intermediate2:gpr32
// To
// %dst:fpr128 = INSvi[X]lane %dst_vec:fpr128, dst_index, %src:fpr128,
// src_index
// where src_index = 0, X = [8|16|32|64]
MachineInstr *SrcMI = MRI->getUniqueVRegDef(MI.getOperand(3).getReg());
// For a chain of COPY instructions, find the initial source register
// and check if it's an FPR128
while (true) {
if (!SrcMI || SrcMI->getOpcode() != TargetOpcode::COPY)
return false;
if (!SrcMI->getOperand(1).getReg().isVirtual())
return false;
if (MRI->getRegClass(SrcMI->getOperand(1).getReg()) ==
&AArch64::FPR128RegClass) {
break;
}
SrcMI = MRI->getUniqueVRegDef(SrcMI->getOperand(1).getReg());
}
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = SrcMI->getOperand(1).getReg();
MachineInstr *INSvilaneMI =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opc), DstReg)
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.addUse(SrcReg, getRegState(SrcMI->getOperand(1)))
.addImm(0);
LLVM_DEBUG(dbgs() << MI << " replace by:\n: " << *INSvilaneMI << "\n");
(void)INSvilaneMI;
MI.eraseFromParent();
return true;
}
// All instructions that set a FPR64 will implicitly zero the top bits of the
// register.
static bool is64bitDefwithZeroHigh64bit(MachineInstr *MI,
MachineRegisterInfo *MRI) {
if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
return false;
const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
if (RC != &AArch64::FPR64RegClass)
return false;
return MI->getOpcode() > TargetOpcode::GENERIC_OP_END;
}
bool AArch64MIPeepholeOpt::visitINSvi64lane(MachineInstr &MI) {
// Check the MI for low 64-bits sets zero for high 64-bits implicitly.
// We are expecting below case.
//
// %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr
// %6:fpr128 = IMPLICIT_DEF
// %5:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), killed %1:fpr64, %subreg.dsub
// %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, killed %3:fpr128, 0
MachineInstr *Low64MI = MRI->getUniqueVRegDef(MI.getOperand(1).getReg());
if (Low64MI->getOpcode() != AArch64::INSERT_SUBREG)
return false;
Low64MI = MRI->getUniqueVRegDef(Low64MI->getOperand(2).getReg());
if (!Low64MI || !is64bitDefwithZeroHigh64bit(Low64MI, MRI))
return false;
// Check there is `mov 0` MI for high 64-bits.
// We are expecting below cases.
//
// %2:fpr64 = MOVID 0
// %4:fpr128 = IMPLICIT_DEF
// %3:fpr128 = INSERT_SUBREG %4:fpr128(tied-def 0), killed %2:fpr64, %subreg.dsub
// %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, killed %3:fpr128, 0
// or
// %5:fpr128 = MOVIv2d_ns 0
// %6:fpr64 = COPY %5.dsub:fpr128
// %8:fpr128 = IMPLICIT_DEF
// %7:fpr128 = INSERT_SUBREG %8:fpr128(tied-def 0), killed %6:fpr64, %subreg.dsub
// %11:fpr128 = INSvi64lane %9:fpr128(tied-def 0), 1, killed %7:fpr128, 0
MachineInstr *High64MI = MRI->getUniqueVRegDef(MI.getOperand(3).getReg());
if (!High64MI || High64MI->getOpcode() != AArch64::INSERT_SUBREG)
return false;
High64MI = MRI->getUniqueVRegDef(High64MI->getOperand(2).getReg());
if (High64MI && High64MI->getOpcode() == TargetOpcode::COPY)
High64MI = MRI->getUniqueVRegDef(High64MI->getOperand(1).getReg());
if (!High64MI || (High64MI->getOpcode() != AArch64::MOVID &&
High64MI->getOpcode() != AArch64::MOVIv2d_ns))
return false;
if (High64MI->getOperand(1).getImm() != 0)
return false;
// Let's remove MIs for high 64-bits.
Register OldDef = MI.getOperand(0).getReg();
Register NewDef = MI.getOperand(1).getReg();
MRI->constrainRegClass(NewDef, MRI->getRegClass(OldDef));
MRI->replaceRegWith(OldDef, NewDef);
MI.eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
TRI = static_cast<const AArch64RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
MLI = &getAnalysis<MachineLoopInfo>();
MRI = &MF.getRegInfo();
assert(MRI->isSSA() && "Expected to be run on SSA form!");
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : make_early_inc_range(MBB)) {
switch (MI.getOpcode()) {
default:
break;
case AArch64::INSERT_SUBREG:
Changed |= visitINSERT(MI);
break;
case AArch64::ANDWrr:
Changed |= visitAND<uint32_t>(AArch64::ANDWri, MI);
break;
case AArch64::ANDXrr:
Changed |= visitAND<uint64_t>(AArch64::ANDXri, MI);
break;
case AArch64::ORRWrs:
Changed |= visitORR(MI);
break;
case AArch64::ADDWrr:
Changed |= visitADDSUB<uint32_t>(AArch64::ADDWri, AArch64::SUBWri, MI);
break;
case AArch64::SUBWrr:
Changed |= visitADDSUB<uint32_t>(AArch64::SUBWri, AArch64::ADDWri, MI);
break;
case AArch64::ADDXrr:
Changed |= visitADDSUB<uint64_t>(AArch64::ADDXri, AArch64::SUBXri, MI);
break;
case AArch64::SUBXrr:
Changed |= visitADDSUB<uint64_t>(AArch64::SUBXri, AArch64::ADDXri, MI);
break;
case AArch64::ADDSWrr:
Changed |=
visitADDSSUBS<uint32_t>({AArch64::ADDWri, AArch64::ADDSWri},
{AArch64::SUBWri, AArch64::SUBSWri}, MI);
break;
case AArch64::SUBSWrr:
Changed |=
visitADDSSUBS<uint32_t>({AArch64::SUBWri, AArch64::SUBSWri},
{AArch64::ADDWri, AArch64::ADDSWri}, MI);
break;
case AArch64::ADDSXrr:
Changed |=
visitADDSSUBS<uint64_t>({AArch64::ADDXri, AArch64::ADDSXri},
{AArch64::SUBXri, AArch64::SUBSXri}, MI);
break;
case AArch64::SUBSXrr:
Changed |=
visitADDSSUBS<uint64_t>({AArch64::SUBXri, AArch64::SUBSXri},
{AArch64::ADDXri, AArch64::ADDSXri}, MI);
break;
case AArch64::INSvi64gpr:
Changed |= visitINSviGPR(MI, AArch64::INSvi64lane);
break;
case AArch64::INSvi32gpr:
Changed |= visitINSviGPR(MI, AArch64::INSvi32lane);
break;
case AArch64::INSvi16gpr:
Changed |= visitINSviGPR(MI, AArch64::INSvi16lane);
break;
case AArch64::INSvi8gpr:
Changed |= visitINSviGPR(MI, AArch64::INSvi8lane);
break;
case AArch64::INSvi64lane:
Changed |= visitINSvi64lane(MI);
break;
}
}
}
return Changed;
}
FunctionPass *llvm::createAArch64MIPeepholeOptPass() {
return new AArch64MIPeepholeOpt();
}
|