1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
|
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "SIModeRegisterDefaults.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/UniformityAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/IntegerDivision.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "amdgpu-codegenprepare"
using namespace llvm;
using namespace llvm::PatternMatch;
namespace {
static cl::opt<bool> WidenLoads(
"amdgpu-codegenprepare-widen-constant-loads",
cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
static cl::opt<bool> Widen16BitOps(
"amdgpu-codegenprepare-widen-16-bit-ops",
cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
static cl::opt<bool>
ScalarizeLargePHIs("amdgpu-codegenprepare-break-large-phis",
cl::desc("Break large PHI nodes for DAGISel"),
cl::ReallyHidden, cl::init(true));
static cl::opt<bool>
ForceScalarizeLargePHIs("amdgpu-codegenprepare-force-break-large-phis",
cl::desc("For testing purposes, always break large "
"PHIs even if it isn't profitable."),
cl::ReallyHidden, cl::init(false));
static cl::opt<unsigned> ScalarizeLargePHIsThreshold(
"amdgpu-codegenprepare-break-large-phis-threshold",
cl::desc("Minimum type size in bits for breaking large PHI nodes"),
cl::ReallyHidden, cl::init(32));
static cl::opt<bool> UseMul24Intrin(
"amdgpu-codegenprepare-mul24",
cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
// Legalize 64-bit division by using the generic IR expansion.
static cl::opt<bool> ExpandDiv64InIR(
"amdgpu-codegenprepare-expand-div64",
cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
// Leave all division operations as they are. This supersedes ExpandDiv64InIR
// and is used for testing the legalizer.
static cl::opt<bool> DisableIDivExpand(
"amdgpu-codegenprepare-disable-idiv-expansion",
cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
// Disable processing of fdiv so we can better test the backend implementations.
static cl::opt<bool> DisableFDivExpand(
"amdgpu-codegenprepare-disable-fdiv-expansion",
cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
class AMDGPUCodeGenPrepareImpl
: public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> {
public:
const GCNSubtarget *ST = nullptr;
const TargetLibraryInfo *TLInfo = nullptr;
AssumptionCache *AC = nullptr;
DominatorTree *DT = nullptr;
UniformityInfo *UA = nullptr;
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
bool HasUnsafeFPMath = false;
bool HasFP32DenormalFlush = false;
bool FlowChanged = false;
DenseMap<const PHINode *, bool> BreakPhiNodesCache;
bool canBreakPHINode(const PHINode &I);
/// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
/// binary operation \p V.
///
/// \returns Binary operation \p V.
/// \returns \p T's base element bit width.
unsigned getBaseElementBitWidth(const Type *T) const;
/// \returns Equivalent 32 bit integer type for given type \p T. For example,
/// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
/// is returned.
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
/// \returns True if binary operation \p I is a signed binary operation, false
/// otherwise.
bool isSigned(const BinaryOperator &I) const;
/// \returns True if the condition of 'select' operation \p I comes from a
/// signed 'icmp' operation, false otherwise.
bool isSigned(const SelectInst &I) const;
/// \returns True if type \p T needs to be promoted to 32 bit integer type,
/// false otherwise.
bool needsPromotionToI32(const Type *T) const;
/// Return true if \p T is a legal scalar floating point type.
bool isLegalFloatingTy(const Type *T) const;
/// Wrapper to pass all the arguments to computeKnownFPClass
KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested,
const Instruction *CtxI) const {
return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI,
DT);
}
bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const {
return HasFP32DenormalFlush ||
computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal();
}
/// Promotes uniform binary operation \p I to equivalent 32 bit binary
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
/// truncating the result of 32 bit binary operation back to \p I's original
/// type. Division operation is not promoted.
///
/// \returns True if \p I is promoted to equivalent 32 bit binary operation,
/// false otherwise.
bool promoteUniformOpToI32(BinaryOperator &I) const;
/// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
///
/// \returns True.
bool promoteUniformOpToI32(ICmpInst &I) const;
/// Promotes uniform 'select' operation \p I to 32 bit 'select'
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
/// result of 32 bit 'select' operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformOpToI32(SelectInst &I) const;
/// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
/// intrinsic.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by zero extending the operand to 32
/// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
/// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
/// shift amount is 32 minus \p I's base element bit width), and truncating
/// the result of the shift operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
/// \returns The minimum number of bits needed to store the value of \Op as an
/// unsigned integer. Truncating to this size and then zero-extending to
/// the original will not change the value.
unsigned numBitsUnsigned(Value *Op) const;
/// \returns The minimum number of bits needed to store the value of \Op as a
/// signed integer. Truncating to this size and then sign-extending to
/// the original size will not change the value.
unsigned numBitsSigned(Value *Op) const;
/// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
/// SelectionDAG has an issue where an and asserting the bits are known
bool replaceMulWithMul24(BinaryOperator &I) const;
/// Perform same function as equivalently named function in DAGCombiner. Since
/// we expand some divisions here, we need to perform this before obscuring.
bool foldBinOpIntoSelect(BinaryOperator &I) const;
bool divHasSpecialOptimization(BinaryOperator &I,
Value *Num, Value *Den) const;
int getDivNumBits(BinaryOperator &I,
Value *Num, Value *Den,
unsigned AtLeast, bool Signed) const;
/// Expands 24 bit div or rem.
Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const;
Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den, unsigned NumBits,
bool IsDiv, bool IsSigned) const;
/// Expands 32 bit div or rem.
Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
void expandDivRem64(BinaryOperator &I) const;
/// Widen a scalar load.
///
/// \details \p Widen scalar load for uniform, small type loads from constant
// memory / to a full 32-bits and then truncate the input to allow a scalar
// load instead of a vector load.
//
/// \returns True.
bool canWidenScalarExtLoad(LoadInst &I) const;
Value *matchFractPat(IntrinsicInst &I);
Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg);
bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF,
FastMathFlags SqrtFMF) const;
Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den,
FastMathFlags DivFMF, FastMathFlags SqrtFMF,
const Instruction *CtxI) const;
Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den,
FastMathFlags FMF, const Instruction *CtxI) const;
Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den,
float ReqdAccuracy) const;
Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den,
FastMathFlags DivFMF, FastMathFlags SqrtFMF,
Value *RsqOp, const Instruction *FDiv,
float ReqdAccuracy) const;
std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder,
Value *Src) const;
Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src,
bool IsNegative) const;
Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS,
FastMathFlags FMF) const;
public:
bool visitFDiv(BinaryOperator &I);
bool visitInstruction(Instruction &I) { return false; }
bool visitBinaryOperator(BinaryOperator &I);
bool visitLoadInst(LoadInst &I);
bool visitICmpInst(ICmpInst &I);
bool visitSelectInst(SelectInst &I);
bool visitPHINode(PHINode &I);
bool visitIntrinsicInst(IntrinsicInst &I);
bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
bool visitMinNum(IntrinsicInst &I);
bool run(Function &F);
};
class AMDGPUCodeGenPrepare : public FunctionPass {
private:
AMDGPUCodeGenPrepareImpl Impl;
public:
static char ID;
AMDGPUCodeGenPrepare() : FunctionPass(ID) {
initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<UniformityInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
// FIXME: Division expansion needs to preserve the dominator tree.
if (!ExpandDiv64InIR)
AU.setPreservesAll();
}
bool runOnFunction(Function &F) override;
bool doInitialization(Module &M) override;
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
};
} // end anonymous namespace
bool AMDGPUCodeGenPrepareImpl::run(Function &F) {
bool MadeChange = false;
Function::iterator NextBB;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
BasicBlock *BB = &*FI;
NextBB = std::next(FI);
BasicBlock::iterator Next;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
I = Next) {
Next = std::next(I);
MadeChange |= visit(*I);
if (Next != E) { // Control flow changed
BasicBlock *NextInstBB = Next->getParent();
if (NextInstBB != BB) {
BB = NextInstBB;
E = BB->end();
FE = F.end();
}
}
}
}
return MadeChange;
}
unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return T->getIntegerBitWidth();
return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
}
Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return B.getInt32Ty();
return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
}
bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const {
return I.getOpcode() == Instruction::AShr ||
I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
}
bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const {
return isa<ICmpInst>(I.getOperand(0)) ?
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
}
bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const {
if (!Widen16BitOps)
return false;
const IntegerType *IntTy = dyn_cast<IntegerType>(T);
if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
return true;
if (const VectorType *VT = dyn_cast<VectorType>(T)) {
// TODO: The set of packed operations is more limited, so may want to
// promote some anyway.
if (ST->hasVOP3PInsts())
return false;
return needsPromotionToI32(VT->getElementType());
}
return false;
}
bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const {
return Ty->isFloatTy() || Ty->isDoubleTy() ||
(Ty->isHalfTy() && ST->has16BitInsts());
}
// Return true if the op promoted to i32 should have nsw set.
static bool promotedOpIsNSW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Sub:
return true;
case Instruction::Mul:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
// Return true if the op promoted to i32 should have nuw set.
static bool promotedOpIsNUW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Mul:
return true;
case Instruction::Sub:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const {
Type *Ty = I.getType();
const DataLayout &DL = Mod->getDataLayout();
int TySize = DL.getTypeSizeInBits(Ty);
Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I);
}
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
if (I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SRem ||
I.getOpcode() == Instruction::URem)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
if (promotedOpIsNSW(cast<Instruction>(I)))
Inst->setHasNoSignedWrap();
if (promotedOpIsNUW(cast<Instruction>(I)))
Inst->setHasNoUnsignedWrap();
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
Inst->setIsExact(ExactOp->isExact());
}
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const {
assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *NewICmp = nullptr;
if (I.isSigned()) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
I.replaceAllUsesWith(NewICmp);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp1 = nullptr;
Value *ExtOp2 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
} else {
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
}
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32(
IntrinsicInst &I) const {
assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
"I must be bitreverse intrinsic");
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Function *I32 =
Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
Value *LShrOp =
Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
Value *TruncRes =
Builder.CreateTrunc(LShrOp, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const {
return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits();
}
unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const {
return ComputeMaxSignificantBits(Op, *DL, 0, AC);
}
static void extractValues(IRBuilder<> &Builder,
SmallVectorImpl<Value *> &Values, Value *V) {
auto *VT = dyn_cast<FixedVectorType>(V->getType());
if (!VT) {
Values.push_back(V);
return;
}
for (int I = 0, E = VT->getNumElements(); I != E; ++I)
Values.push_back(Builder.CreateExtractElement(V, I));
}
static Value *insertValues(IRBuilder<> &Builder,
Type *Ty,
SmallVectorImpl<Value *> &Values) {
if (!Ty->isVectorTy()) {
assert(Values.size() == 1);
return Values[0];
}
Value *NewVal = PoisonValue::get(Ty);
for (int I = 0, E = Values.size(); I != E; ++I)
NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
return NewVal;
}
// Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and
// `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the
// width of the original destination.
static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS,
unsigned Size, unsigned NumBits, bool IsSigned) {
if (Size <= 32 || NumBits <= 32) {
Intrinsic::ID ID =
IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
return Builder.CreateIntrinsic(ID, {}, {LHS, RHS});
}
assert(NumBits <= 48);
Intrinsic::ID LoID =
IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
Intrinsic::ID HiID =
IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24;
Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS});
Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS});
IntegerType *I64Ty = Builder.getInt64Ty();
Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty);
Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty);
return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32));
}
bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const {
if (I.getOpcode() != Instruction::Mul)
return false;
Type *Ty = I.getType();
unsigned Size = Ty->getScalarSizeInBits();
if (Size <= 16 && ST->has16BitInsts())
return false;
// Prefer scalar if this could be s_mul_i32
if (UA->isUniform(&I))
return false;
Value *LHS = I.getOperand(0);
Value *RHS = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
unsigned LHSBits = 0, RHSBits = 0;
bool IsSigned = false;
if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 &&
(RHSBits = numBitsUnsigned(RHS)) <= 24) {
IsSigned = false;
} else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 &&
(RHSBits = numBitsSigned(RHS)) <= 24) {
IsSigned = true;
} else
return false;
SmallVector<Value *, 4> LHSVals;
SmallVector<Value *, 4> RHSVals;
SmallVector<Value *, 4> ResultVals;
extractValues(Builder, LHSVals, LHS);
extractValues(Builder, RHSVals, RHS);
IntegerType *I32Ty = Builder.getInt32Ty();
for (int I = 0, E = LHSVals.size(); I != E; ++I) {
Value *LHS, *RHS;
if (IsSigned) {
LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
} else {
LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
}
Value *Result =
getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned);
if (IsSigned) {
ResultVals.push_back(
Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType()));
} else {
ResultVals.push_back(
Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType()));
}
}
Value *NewVal = insertValues(Builder, Ty, ResultVals);
NewVal->takeName(&I);
I.replaceAllUsesWith(NewVal);
I.eraseFromParent();
return true;
}
// Find a select instruction, which may have been casted. This is mostly to deal
// with cases where i16 selects were promoted here to i32.
static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
Cast = nullptr;
if (SelectInst *Sel = dyn_cast<SelectInst>(V))
return Sel;
if ((Cast = dyn_cast<CastInst>(V))) {
if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
return Sel;
}
return nullptr;
}
bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const {
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
int SelOpNo = 0;
CastInst *CastOp;
// TODO: Should probably try to handle some cases with multiple
// users. Duplicating the select may be profitable for division.
SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
if (!Sel || !Sel->hasOneUse()) {
SelOpNo = 1;
Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
}
if (!Sel || !Sel->hasOneUse())
return false;
Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
if (!CBO || !CT || !CF)
return false;
if (CastOp) {
if (!CastOp->hasOneUse())
return false;
CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
}
// TODO: Handle special 0/-1 cases DAG combine does, although we only really
// need to handle divisions here.
Constant *FoldedT = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
if (!FoldedT || isa<ConstantExpr>(FoldedT))
return false;
Constant *FoldedF = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
if (!FoldedF || isa<ConstantExpr>(FoldedF))
return false;
IRBuilder<> Builder(&BO);
Builder.SetCurrentDebugLocation(BO.getDebugLoc());
if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
Builder.setFastMathFlags(FPOp->getFastMathFlags());
Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
FoldedT, FoldedF);
NewSelect->takeName(&BO);
BO.replaceAllUsesWith(NewSelect);
BO.eraseFromParent();
if (CastOp)
CastOp->eraseFromParent();
Sel->eraseFromParent();
return true;
}
std::pair<Value *, Value *>
AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder,
Value *Src) const {
Type *Ty = Src->getType();
Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp,
{Ty, Builder.getInt32Ty()}, Src);
Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0});
// Bypass the bug workaround for the exponent result since it doesn't matter.
// TODO: Does the bug workaround even really need to consider the exponent
// result? It's unspecified by the spec.
Value *FrexpExp =
ST->hasFractBug()
? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp,
{Builder.getInt32Ty(), Ty}, Src)
: Builder.CreateExtractValue(Frexp, {1});
return {FrexpMant, FrexpExp};
}
/// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals.
Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder,
Value *Src,
bool IsNegative) const {
// Same as for 1.0, but expand the sign out of the constant.
// -1.0 / x -> rcp (fneg x)
if (IsNegative)
Src = Builder.CreateFNeg(Src);
// The rcp instruction doesn't support denormals, so scale the input
// out of the denormal range and convert at the end.
//
// Expand as 2^-n * (1.0 / (x * 2^n))
// TODO: Skip scaling if input is known never denormal and the input
// range won't underflow to denormal. The hard part is knowing the
// result. We need a range check, the result could be denormal for
// 0x1p+126 < den <= 0x1p+127.
Type *Ty = Src->getType();
auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src);
Value *ScaleFactor = Builder.CreateNeg(FrexpExp);
Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant);
return Builder.CreateIntrinsic(Intrinsic::ldexp, {Ty, Builder.getInt32Ty()},
{Rcp, ScaleFactor});
}
/// Emit a 2ulp expansion for fdiv by using frexp for input scaling.
Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS,
Value *RHS,
FastMathFlags FMF) const {
// If we have have to work around the fract/frexp bug, we're worse off than
// using the fdiv.fast expansion. The full safe expansion is faster if we have
// fast FMA.
if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() &&
(!FMF.noNaNs() || !FMF.noInfs()))
return nullptr;
// We're scaling the LHS to avoid a denormal input, and scale the denominator
// to avoid large values underflowing the result.
Type *Ty = LHS->getType();
auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS);
Value *Rcp =
Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS);
auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS);
Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp);
// We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the
// result.
Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS);
return Builder.CreateIntrinsic(Intrinsic::ldexp, {Ty, Builder.getInt32Ty()},
{Mul, ExpDiff});
}
/// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals.
static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src,
bool IsNegative) {
// bool need_scale = x < 0x1p-126f;
// float input_scale = need_scale ? 0x1.0p+24f : 1.0f;
// float output_scale = need_scale ? 0x1.0p+12f : 1.0f;
// rsq(x * input_scale) * output_scale;
Type *Ty = Src->getType();
APFloat SmallestNormal =
APFloat::getSmallestNormalized(Ty->getFltSemantics());
Value *NeedScale =
Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
Constant *One = ConstantFP::get(Ty, 1.0);
Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24);
Constant *OutputScale =
ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12);
Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One);
Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor);
Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput);
Value *OutputScaleFactor = Builder.CreateSelect(
NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One);
return Builder.CreateFMul(Rsq, OutputScaleFactor);
}
bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp,
FastMathFlags DivFMF,
FastMathFlags SqrtFMF) const {
// The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
if (!DivFMF.allowContract() || !SqrtFMF.allowContract())
return false;
// v_rsq_f32 gives 1ulp
return SqrtFMF.approxFunc() || HasUnsafeFPMath ||
SqrtOp->getFPAccuracy() >= 1.0f;
}
Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq(
IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF,
FastMathFlags SqrtFMF, const Instruction *CtxI) const {
// The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
assert(DivFMF.allowContract() && SqrtFMF.allowContract());
// rsq_f16 is accurate to 0.51 ulp.
// rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
// rsq_f64 is never accurate.
const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num);
if (!CLHS)
return nullptr;
assert(Den->getType()->isFloatTy());
bool IsNegative = false;
// TODO: Handle other numerator values with arcp.
if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) {
// Add in the sqrt flags.
IRBuilder<>::FastMathFlagGuard Guard(Builder);
DivFMF |= SqrtFMF;
Builder.setFastMathFlags(DivFMF);
if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) ||
canIgnoreDenormalInput(Den, CtxI)) {
Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den);
// -1.0 / sqrt(x) -> fneg(rsq(x))
return IsNegative ? Builder.CreateFNeg(Result) : Result;
}
return emitRsqIEEE1ULP(Builder, Den, IsNegative);
}
return nullptr;
}
// Optimize fdiv with rcp:
//
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0
Value *
AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num,
Value *Den, FastMathFlags FMF,
const Instruction *CtxI) const {
// rcp_f16 is accurate to 0.51 ulp.
// rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
// rcp_f64 is never accurate.
assert(Den->getType()->isFloatTy());
if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
bool IsNegative = false;
if (CLHS->isExactlyValue(1.0) ||
(IsNegative = CLHS->isExactlyValue(-1.0))) {
Value *Src = Den;
if (HasFP32DenormalFlush || FMF.approxFunc()) {
// -1.0 / x -> 1.0 / fneg(x)
if (IsNegative)
Src = Builder.CreateFNeg(Src);
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK
// to use it as long as we aren't trying to use denormals.
//
// v_rcp_f16 and v_rsq_f16 DO support denormals.
// NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
// insert rsq intrinsic here.
// 1.0 / x -> rcp(x)
return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src);
}
// TODO: If the input isn't denormal, and we know the input exponent isn't
// big enough to introduce a denormal we can avoid the scaling.
return emitRcpIEEE1ULP(Builder, Src, IsNegative);
}
}
if (FMF.allowReciprocal()) {
// x / y -> x * (1.0 / y)
// TODO: Could avoid denormal scaling and use raw rcp if we knew the output
// will never underflow.
if (HasFP32DenormalFlush || FMF.approxFunc()) {
Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den);
return Builder.CreateFMul(Num, Recip);
}
Value *Recip = emitRcpIEEE1ULP(Builder, Den, false);
return Builder.CreateFMul(Num, Recip);
}
return nullptr;
}
// optimize with fdiv.fast:
//
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: optimizeWithRcp should be tried first because rcp is the preference.
Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast(
IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const {
// fdiv.fast can achieve 2.5 ULP accuracy.
if (ReqdAccuracy < 2.5f)
return nullptr;
// Only have fdiv.fast for f32.
assert(Den->getType()->isFloatTy());
bool NumIsOne = false;
if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
NumIsOne = true;
}
// fdiv does not support denormals. But 1.0/x is always fine to use it.
//
// TODO: This works for any value with a specific known exponent range, don't
// just limit to constant 1.
if (!HasFP32DenormalFlush && !NumIsOne)
return nullptr;
return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den});
}
Value *AMDGPUCodeGenPrepareImpl::visitFDivElement(
IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF,
FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst,
float ReqdDivAccuracy) const {
if (RsqOp) {
Value *Rsq =
optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst);
if (Rsq)
return Rsq;
}
Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst);
if (Rcp)
return Rcp;
// In the basic case fdiv_fast has the same instruction count as the frexp div
// expansion. Slightly prefer fdiv_fast since it ends in an fmul that can
// potentially be fused into a user. Also, materialization of the constants
// can be reused for multiple instances.
Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy);
if (FDivFast)
return FDivFast;
return emitFrexpDiv(Builder, Num, Den, DivFMF);
}
// Optimizations is performed based on fpmath, fast math flags as well as
// denormals to optimize fdiv with either rcp or fdiv.fast.
//
// With rcp:
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
//
// With fdiv.fast:
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: rcp is the preference in cases that both are legal.
bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) {
if (DisableFDivExpand)
return false;
Type *Ty = FDiv.getType()->getScalarType();
if (!Ty->isFloatTy())
return false;
// The f64 rcp/rsq approximations are pretty inaccurate. We can do an
// expansion around them in codegen. f16 is good enough to always use.
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
const FastMathFlags DivFMF = FPOp->getFastMathFlags();
const float ReqdAccuracy = FPOp->getFPAccuracy();
// Inaccurate rcp is allowed with unsafe-fp-math or afn.
//
// Defer to codegen to handle this.
//
// TODO: Decide on an interpretation for interactions between afn + arcp +
// !fpmath, and make it consistent between here and codegen. For now, defer
// expansion of afn to codegen. The current interpretation is so aggressive we
// don't need any pre-consideration here when we have better information. A
// more conservative interpretation could use handling here.
const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc();
if (AllowInaccurateRcp)
return false;
// Defer the correct implementations to codegen.
if (ReqdAccuracy < 1.0f)
return false;
FastMathFlags SqrtFMF;
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *RsqOp = nullptr;
auto *DenII = dyn_cast<IntrinsicInst>(Den);
if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt &&
DenII->hasOneUse()) {
const auto *SqrtOp = cast<FPMathOperator>(DenII);
SqrtFMF = SqrtOp->getFastMathFlags();
if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF))
RsqOp = SqrtOp->getOperand(0);
}
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
Builder.setFastMathFlags(DivFMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
SmallVector<Value *, 4> NumVals;
SmallVector<Value *, 4> DenVals;
SmallVector<Value *, 4> RsqDenVals;
extractValues(Builder, NumVals, Num);
extractValues(Builder, DenVals, Den);
if (RsqOp)
extractValues(Builder, RsqDenVals, RsqOp);
SmallVector<Value *, 4> ResultVals(NumVals.size());
for (int I = 0, E = NumVals.size(); I != E; ++I) {
Value *NumElt = NumVals[I];
Value *DenElt = DenVals[I];
Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr;
Value *NewElt =
visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt,
cast<Instruction>(FPOp), ReqdAccuracy);
if (!NewElt) {
// Keep the original, but scalarized.
// This has the unfortunate side effect of sometimes scalarizing when
// we're not going to do anything.
NewElt = Builder.CreateFDiv(NumElt, DenElt);
if (auto *NewEltInst = dyn_cast<Instruction>(NewElt))
NewEltInst->copyMetadata(FDiv);
}
ResultVals[I] = NewElt;
}
Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals);
if (NewVal) {
FDiv.replaceAllUsesWith(NewVal);
NewVal->takeName(&FDiv);
RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo);
}
return true;
}
static bool hasUnsafeFPMath(const Function &F) {
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
return Attr.getValueAsBool();
}
static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
Value *LHS, Value *RHS) {
Type *I32Ty = Builder.getInt32Ty();
Type *I64Ty = Builder.getInt64Ty();
Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
Hi = Builder.CreateTrunc(Hi, I32Ty);
return std::pair(Lo, Hi);
}
static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
return getMul64(Builder, LHS, RHS).second;
}
/// Figure out how many bits are really needed for this division. \p AtLeast is
/// an optimization hint to bypass the second ComputeNumSignBits call if we the
/// first one is insufficient. Returns -1 on failure.
int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num,
Value *Den, unsigned AtLeast,
bool IsSigned) const {
const DataLayout &DL = Mod->getDataLayout();
unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
if (LHSSignBits < AtLeast)
return -1;
unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
if (RHSSignBits < AtLeast)
return -1;
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
if (IsSigned)
++DivBits;
return DivBits;
}
// The fractional part of a float is enough to accurately represent up to
// a 24-bit signed integer.
Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder,
BinaryOperator &I, Value *Num,
Value *Den, bool IsDiv,
bool IsSigned) const {
int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
if (DivBits == -1)
return nullptr;
return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
}
Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl(
IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den,
unsigned DivBits, bool IsDiv, bool IsSigned) const {
Type *I32Ty = Builder.getInt32Ty();
Num = Builder.CreateTrunc(Num, I32Ty);
Den = Builder.CreateTrunc(Den, I32Ty);
Type *F32Ty = Builder.getFloatTy();
ConstantInt *One = Builder.getInt32(1);
Value *JQ = One;
if (IsSigned) {
// char|short jq = ia ^ ib;
JQ = Builder.CreateXor(Num, Den);
// jq = jq >> (bitsize - 2)
JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
// jq = jq | 0x1
JQ = Builder.CreateOr(JQ, One);
}
// int ia = (int)LHS;
Value *IA = Num;
// int ib, (int)RHS;
Value *IB = Den;
// float fa = (float)ia;
Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
: Builder.CreateUIToFP(IA, F32Ty);
// float fb = (float)ib;
Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
: Builder.CreateUIToFP(IB,F32Ty);
Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
Builder.getFloatTy());
Value *RCP = Builder.CreateCall(RcpDecl, { FB });
Value *FQM = Builder.CreateFMul(FA, RCP);
// fq = trunc(fqm);
CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
FQ->copyFastMathFlags(Builder.getFastMathFlags());
// float fqneg = -fq;
Value *FQNeg = Builder.CreateFNeg(FQ);
// float fr = mad(fqneg, fb, fa);
auto FMAD = !ST->hasMadMacF32Insts()
? Intrinsic::fma
: (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
Value *FR = Builder.CreateIntrinsic(FMAD,
{FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
// int iq = (int)fq;
Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
: Builder.CreateFPToUI(FQ, I32Ty);
// fr = fabs(fr);
FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
// fb = fabs(fb);
FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
// int cv = fr >= fb;
Value *CV = Builder.CreateFCmpOGE(FR, FB);
// jq = (cv ? jq : 0);
JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
// dst = iq + jq;
Value *Div = Builder.CreateAdd(IQ, JQ);
Value *Res = Div;
if (!IsDiv) {
// Rem needs compensation, it's easier to recompute it
Value *Rem = Builder.CreateMul(Div, Den);
Res = Builder.CreateSub(Num, Rem);
}
if (DivBits != 0 && DivBits < 32) {
// Extend in register from the number of bits this divide really is.
if (IsSigned) {
int InRegBits = 32 - DivBits;
Res = Builder.CreateShl(Res, InRegBits);
Res = Builder.CreateAShr(Res, InRegBits);
} else {
ConstantInt *TruncMask
= Builder.getInt32((UINT64_C(1) << DivBits) - 1);
Res = Builder.CreateAnd(Res, TruncMask);
}
}
return Res;
}
// Try to recognize special cases the DAG will emit special, better expansions
// than the general expansion we do here.
// TODO: It would be better to just directly handle those optimizations here.
bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I,
Value *Num,
Value *Den) const {
if (Constant *C = dyn_cast<Constant>(Den)) {
// Arbitrary constants get a better expansion as long as a wider mulhi is
// legal.
if (C->getType()->getScalarSizeInBits() <= 32)
return true;
// TODO: Sdiv check for not exact for some reason.
// If there's no wider mulhi, there's only a better expansion for powers of
// two.
// TODO: Should really know for each vector element.
if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
return true;
return false;
}
if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (BinOpDen->getOpcode() == Instruction::Shl &&
isa<Constant>(BinOpDen->getOperand(0)) &&
isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
0, AC, &I, DT)) {
return true;
}
}
return false;
}
static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
// Check whether the sign can be determined statically.
KnownBits Known = computeKnownBits(V, *DL);
if (Known.isNegative())
return Constant::getAllOnesValue(V->getType());
if (Known.isNonNegative())
return Constant::getNullValue(V->getType());
return Builder.CreateAShr(V, Builder.getInt32(31));
}
Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder,
BinaryOperator &I, Value *X,
Value *Y) const {
Instruction::BinaryOps Opc = I.getOpcode();
assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv);
FastMathFlags FMF;
FMF.setFast();
Builder.setFastMathFlags(FMF);
if (divHasSpecialOptimization(I, X, Y))
return nullptr; // Keep it for later optimization.
bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
Type *Ty = X->getType();
Type *I32Ty = Builder.getInt32Ty();
Type *F32Ty = Builder.getFloatTy();
if (Ty->getScalarSizeInBits() < 32) {
if (IsSigned) {
X = Builder.CreateSExt(X, I32Ty);
Y = Builder.CreateSExt(Y, I32Ty);
} else {
X = Builder.CreateZExt(X, I32Ty);
Y = Builder.CreateZExt(Y, I32Ty);
}
}
if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
Builder.CreateZExtOrTrunc(Res, Ty);
}
ConstantInt *Zero = Builder.getInt32(0);
ConstantInt *One = Builder.getInt32(1);
Value *Sign = nullptr;
if (IsSigned) {
Value *SignX = getSign32(X, Builder, DL);
Value *SignY = getSign32(Y, Builder, DL);
// Remainder sign is the same as LHS
Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
X = Builder.CreateAdd(X, SignX);
Y = Builder.CreateAdd(Y, SignY);
X = Builder.CreateXor(X, SignX);
Y = Builder.CreateXor(Y, SignY);
}
// The algorithm here is based on ideas from "Software Integer Division", Tom
// Rodeheffer, August 2008.
//
// unsigned udiv(unsigned x, unsigned y) {
// // Initial estimate of inv(y). The constant is less than 2^32 to ensure
// // that this is a lower bound on inv(y), even if some of the calculations
// // round up.
// unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
//
// // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
// // Empirically this is guaranteed to give a "two-y" lower bound on
// // inv(y).
// z += umulh(z, -y * z);
//
// // Quotient/remainder estimate.
// unsigned q = umulh(x, z);
// unsigned r = x - q * y;
//
// // Two rounds of quotient/remainder refinement.
// if (r >= y) {
// ++q;
// r -= y;
// }
// if (r >= y) {
// ++q;
// r -= y;
// }
//
// return q;
// }
// Initial estimate of inv(y).
Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE));
Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
// One round of UNR.
Value *NegY = Builder.CreateSub(Zero, Y);
Value *NegYZ = Builder.CreateMul(NegY, Z);
Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
// Quotient/remainder estimate.
Value *Q = getMulHu(Builder, X, Z);
Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
// First quotient/remainder refinement.
Value *Cond = Builder.CreateICmpUGE(R, Y);
if (IsDiv)
Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
// Second quotient/remainder refinement.
Cond = Builder.CreateICmpUGE(R, Y);
Value *Res;
if (IsDiv)
Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
else
Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
if (IsSigned) {
Res = Builder.CreateXor(Res, Sign);
Res = Builder.CreateSub(Res, Sign);
}
Res = Builder.CreateTrunc(Res, Ty);
return Res;
}
Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder,
BinaryOperator &I, Value *Num,
Value *Den) const {
if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
return nullptr; // Keep it for later optimization.
Instruction::BinaryOps Opc = I.getOpcode();
bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
if (NumDivBits == -1)
return nullptr;
Value *Narrowed = nullptr;
if (NumDivBits <= 24) {
Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
IsDiv, IsSigned);
} else if (NumDivBits <= 32) {
Narrowed = expandDivRem32(Builder, I, Num, Den);
}
if (Narrowed) {
return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
Builder.CreateZExt(Narrowed, Num->getType());
}
return nullptr;
}
void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const {
Instruction::BinaryOps Opc = I.getOpcode();
// Do the general expansion.
if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
expandDivisionUpTo64Bits(&I);
return;
}
if (Opc == Instruction::URem || Opc == Instruction::SRem) {
expandRemainderUpTo64Bits(&I);
return;
}
llvm_unreachable("not a division");
}
bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) {
if (foldBinOpIntoSelect(I))
return true;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
UA->isUniform(&I) && promoteUniformOpToI32(I))
return true;
if (UseMul24Intrin && replaceMulWithMul24(I))
return true;
bool Changed = false;
Instruction::BinaryOps Opc = I.getOpcode();
Type *Ty = I.getType();
Value *NewDiv = nullptr;
unsigned ScalarSize = Ty->getScalarSizeInBits();
SmallVector<BinaryOperator *, 8> Div64ToExpand;
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
ScalarSize <= 64 &&
!DisableIDivExpand) {
Value *Num = I.getOperand(0);
Value *Den = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
NewDiv = PoisonValue::get(VT);
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
Value *NumEltN = Builder.CreateExtractElement(Num, N);
Value *DenEltN = Builder.CreateExtractElement(Den, N);
Value *NewElt;
if (ScalarSize <= 32) {
NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
if (!NewElt)
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
} else {
// See if this 64-bit division can be shrunk to 32/24-bits before
// producing the general expansion.
NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
if (!NewElt) {
// The general 64-bit expansion introduces control flow and doesn't
// return the new value. Just insert a scalar copy and defer
// expanding it.
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
}
}
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
}
} else {
if (ScalarSize <= 32)
NewDiv = expandDivRem32(Builder, I, Num, Den);
else {
NewDiv = shrinkDivRem64(Builder, I, Num, Den);
if (!NewDiv)
Div64ToExpand.push_back(&I);
}
}
if (NewDiv) {
I.replaceAllUsesWith(NewDiv);
I.eraseFromParent();
Changed = true;
}
}
if (ExpandDiv64InIR) {
// TODO: We get much worse code in specially handled constant cases.
for (BinaryOperator *Div : Div64ToExpand) {
expandDivRem64(*Div);
FlowChanged = true;
Changed = true;
}
}
return Changed;
}
bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) {
if (!WidenLoads)
return false;
if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
canWidenScalarExtLoad(I)) {
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = Builder.getInt32Ty();
LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand());
WidenLoad->copyMetadata(I);
// If we have range metadata, we need to convert the type, and not make
// assumptions about the high bits.
if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Range->getOperand(0));
if (Lower->isNullValue()) {
WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
} else {
Metadata *LowAndHigh[] = {
ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
// Don't make assumptions about the high bits.
ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
};
WidenLoad->setMetadata(LLVMContext::MD_range,
MDNode::get(Mod->getContext(), LowAndHigh));
}
}
int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
Type *IntNTy = Builder.getIntNTy(TySize);
Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
I.replaceAllUsesWith(ValOrig);
I.eraseFromParent();
return true;
}
return false;
}
bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
UA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) {
Value *Cond = I.getCondition();
Value *TrueVal = I.getTrueValue();
Value *FalseVal = I.getFalseValue();
Value *CmpVal;
FCmpInst::Predicate Pred;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) {
if (UA->isUniform(&I))
return promoteUniformOpToI32(I);
return false;
}
// Match fract pattern with nan check.
if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN())))
return false;
FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I);
if (!FPOp)
return false;
IRBuilder<> Builder(&I);
Builder.setFastMathFlags(FPOp->getFastMathFlags());
auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal);
auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal);
Value *Fract = nullptr;
if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse &&
CmpVal == matchFractPat(*IIFalse)) {
// isnan(x) ? x : fract(x)
Fract = applyFractPat(Builder, CmpVal);
} else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue &&
CmpVal == matchFractPat(*IITrue)) {
// !isnan(x) ? fract(x) : x
Fract = applyFractPat(Builder, CmpVal);
} else
return false;
Fract->takeName(&I);
I.replaceAllUsesWith(Fract);
RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
return true;
}
static bool areInSameBB(const Value *A, const Value *B) {
const auto *IA = dyn_cast<Instruction>(A);
const auto *IB = dyn_cast<Instruction>(B);
return IA && IB && IA->getParent() == IB->getParent();
}
// Helper for breaking large PHIs that returns true when an extractelement on V
// is likely to be folded away by the DAG combiner.
static bool isInterestingPHIIncomingValue(const Value *V) {
const auto *FVT = dyn_cast<FixedVectorType>(V->getType());
if (!FVT)
return false;
const Value *CurVal = V;
// Check for insertelements, keeping track of the elements covered.
BitVector EltsCovered(FVT->getNumElements());
while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) {
const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2));
// Non constant index/out of bounds index -> folding is unlikely.
// The latter is more of a sanity check because canonical IR should just
// have replaced those with poison.
if (!Idx || Idx->getSExtValue() >= FVT->getNumElements())
return false;
const auto *VecSrc = IE->getOperand(0);
// If the vector source is another instruction, it must be in the same basic
// block. Otherwise, the DAGCombiner won't see the whole thing and is
// unlikely to be able to do anything interesting here.
if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE))
return false;
CurVal = VecSrc;
EltsCovered.set(Idx->getSExtValue());
// All elements covered.
if (EltsCovered.all())
return true;
}
// We either didn't find a single insertelement, or the insertelement chain
// ended before all elements were covered. Check for other interesting values.
// Constants are always interesting because we can just constant fold the
// extractelements.
if (isa<Constant>(CurVal))
return true;
// shufflevector is likely to be profitable if either operand is a constant,
// or if either source is in the same block.
// This is because shufflevector is most often lowered as a series of
// insert/extract elements anyway.
if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) {
return isa<Constant>(SV->getOperand(1)) ||
areInSameBB(SV, SV->getOperand(0)) ||
areInSameBB(SV, SV->getOperand(1));
}
return false;
}
bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) {
// Check in the cache, or add an entry for this node.
//
// We init with false because we consider all PHI nodes unbreakable until we
// reach a conclusion. Doing the opposite - assuming they're break-able until
// proven otherwise - can be harmful in some pathological cases so we're
// conservative for now.
const auto [It, DidInsert] = BreakPhiNodesCache.insert({&I, false});
if (!DidInsert)
return It->second;
// This function may recurse, so to guard against infinite looping, this PHI
// is conservatively considered unbreakable until we reach a conclusion.
// Don't break PHIs that have no interesting incoming values. That is, where
// there is no clear opportunity to fold the "extractelement" instructions we
// would add.
//
// Note: IC does not run after this pass, so we're only interested in the
// foldings that the DAG combiner can do.
if (none_of(I.incoming_values(),
[&](Value *V) { return isInterestingPHIIncomingValue(V); }))
return false;
// Now, check users for unbreakable PHI nodes. If we have an unbreakable PHI
// node as user, we don't want to break this PHI either because it's unlikely
// to be beneficial. We would just explode the vector and reassemble it
// directly, wasting instructions.
//
// In the case where multiple users are PHI nodes, we want at least half of
// them to be breakable.
int Score = 0;
for (const Value *U : I.users()) {
if (const auto *PU = dyn_cast<PHINode>(U))
Score += canBreakPHINode(*PU) ? 1 : -1;
}
if (Score < 0)
return false;
return BreakPhiNodesCache[&I] = true;
}
/// Helper class for "break large PHIs" (visitPHINode).
///
/// This represents a slice of a PHI's incoming value, which is made up of:
/// - The type of the slice (Ty)
/// - The index in the incoming value's vector where the slice starts (Idx)
/// - The number of elements in the slice (NumElts).
/// It also keeps track of the NewPHI node inserted for this particular slice.
///
/// Slice examples:
/// <4 x i64> -> Split into four i64 slices.
/// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1]
/// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail.
/// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1]
class VectorSlice {
public:
VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts)
: Ty(Ty), Idx(Idx), NumElts(NumElts) {}
Type *Ty = nullptr;
unsigned Idx = 0;
unsigned NumElts = 0;
PHINode *NewPHI = nullptr;
/// Slice \p Inc according to the information contained within this slice.
/// This is cached, so if called multiple times for the same \p BB & \p Inc
/// pair, it returns the same Sliced value as well.
///
/// Note this *intentionally* does not return the same value for, say,
/// [%bb.0, %0] & [%bb.1, %0] as:
/// - It could cause issues with dominance (e.g. if bb.1 is seen first, then
/// the value in bb.1 may not be reachable from bb.0 if it's its
/// predecessor.)
/// - We also want to make our extract instructions as local as possible so
/// the DAG has better chances of folding them out. Duplicating them like
/// that is beneficial in that regard.
///
/// This is both a minor optimization to avoid creating duplicate
/// instructions, but also a requirement for correctness. It is not forbidden
/// for a PHI node to have the same [BB, Val] pair multiple times. If we
/// returned a new value each time, those previously identical pairs would all
/// have different incoming values (from the same block) and it'd cause a "PHI
/// node has multiple entries for the same basic block with different incoming
/// values!" verifier error.
Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) {
Value *&Res = SlicedVals[{BB, Inc}];
if (Res)
return Res;
IRBuilder<> B(BB->getTerminator());
if (Instruction *IncInst = dyn_cast<Instruction>(Inc))
B.SetCurrentDebugLocation(IncInst->getDebugLoc());
if (NumElts > 1) {
SmallVector<int, 4> Mask;
for (unsigned K = Idx; K < (Idx + NumElts); ++K)
Mask.push_back(K);
Res = B.CreateShuffleVector(Inc, Mask, NewValName);
} else
Res = B.CreateExtractElement(Inc, Idx, NewValName);
return Res;
}
private:
SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals;
};
bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) {
// Break-up fixed-vector PHIs into smaller pieces.
// Default threshold is 32, so it breaks up any vector that's >32 bits into
// its elements, or into 32-bit pieces (for 8/16 bit elts).
//
// This is only helpful for DAGISel because it doesn't handle large PHIs as
// well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg.
// With large, odd-sized PHIs we may end up needing many `build_vector`
// operations with most elements being "undef". This inhibits a lot of
// optimization opportunities and can result in unreasonably high register
// pressure and the inevitable stack spilling.
if (!ScalarizeLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption)
return false;
FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType());
if (!FVT || DL->getTypeSizeInBits(FVT) <= ScalarizeLargePHIsThreshold)
return false;
if (!ForceScalarizeLargePHIs && !canBreakPHINode(I))
return false;
std::vector<VectorSlice> Slices;
Type *EltTy = FVT->getElementType();
{
unsigned Idx = 0;
// For 8/16 bits type, don't scalarize fully but break it up into as many
// 32-bit slices as we can, and scalarize the tail.
const unsigned EltSize = DL->getTypeSizeInBits(EltTy);
const unsigned NumElts = FVT->getNumElements();
if (EltSize == 8 || EltSize == 16) {
const unsigned SubVecSize = (32 / EltSize);
Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize);
for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End;
Idx += SubVecSize)
Slices.emplace_back(SubVecTy, Idx, SubVecSize);
}
// Scalarize all remaining elements.
for (; Idx < NumElts; ++Idx)
Slices.emplace_back(EltTy, Idx, 1);
}
if (Slices.size() == 1)
return false;
// Create one PHI per vector piece. The "VectorSlice" class takes care of
// creating the necessary instruction to extract the relevant slices of each
// incoming value.
IRBuilder<> B(I.getParent());
B.SetCurrentDebugLocation(I.getDebugLoc());
unsigned IncNameSuffix = 0;
for (VectorSlice &S : Slices) {
// We need to reset the build on each iteration, because getSlicedVal may
// have inserted something into I's BB.
B.SetInsertPoint(I.getParent()->getFirstNonPHI());
S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues());
for (const auto &[Idx, BB] : enumerate(I.blocks())) {
S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx),
"largephi.extractslice" +
std::to_string(IncNameSuffix++)),
BB);
}
}
// And replace this PHI with a vector of all the previous PHI values.
Value *Vec = PoisonValue::get(FVT);
unsigned NameSuffix = 0;
for (VectorSlice &S : Slices) {
const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++);
if (S.NumElts > 1)
Vec =
B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName);
else
Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName);
}
I.replaceAllUsesWith(Vec);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) {
switch (I.getIntrinsicID()) {
case Intrinsic::bitreverse:
return visitBitreverseIntrinsicInst(I);
case Intrinsic::minnum:
return visitMinNum(I);
default:
return false;
}
}
bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
UA->isUniform(&I))
Changed |= promoteUniformBitreverseToI32(I);
return Changed;
}
/// Match non-nan fract pattern.
/// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0)
///
/// If fract is a useful instruction for the subtarget. Does not account for the
/// nan handling; the instruction has a nan check on the input value.
Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) {
if (ST->hasFractBug())
return nullptr;
if (I.getIntrinsicID() != Intrinsic::minnum)
return nullptr;
Type *Ty = I.getType();
if (!isLegalFloatingTy(Ty->getScalarType()))
return nullptr;
Value *Arg0 = I.getArgOperand(0);
Value *Arg1 = I.getArgOperand(1);
const APFloat *C;
if (!match(Arg1, m_APFloat(C)))
return nullptr;
APFloat One(1.0);
bool LosesInfo;
One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo);
// Match nextafter(1.0, -1)
One.next(true);
if (One != *C)
return nullptr;
Value *FloorSrc;
if (match(Arg0, m_FSub(m_Value(FloorSrc),
m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc)))))
return FloorSrc;
return nullptr;
}
Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder,
Value *FractArg) {
SmallVector<Value *, 4> FractVals;
extractValues(Builder, FractVals, FractArg);
SmallVector<Value *, 4> ResultVals(FractVals.size());
Type *Ty = FractArg->getType()->getScalarType();
for (unsigned I = 0, E = FractVals.size(); I != E; ++I) {
ResultVals[I] =
Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]});
}
return insertValues(Builder, FractArg->getType(), ResultVals);
}
bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) {
Value *FractArg = matchFractPat(I);
if (!FractArg)
return false;
// Match pattern for fract intrinsic in contexts where the nan check has been
// optimized out (and hope the knowledge the source can't be nan wasn't lost).
if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo))
return false;
IRBuilder<> Builder(&I);
FastMathFlags FMF = I.getFastMathFlags();
FMF.setNoNaNs();
Builder.setFastMathFlags(FMF);
Value *Fract = applyFractPat(Builder, FractArg);
Fract->takeName(&I);
I.replaceAllUsesWith(Fract);
RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
return true;
}
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
Impl.Mod = &M;
Impl.DL = &Impl.Mod->getDataLayout();
return false;
}
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr;
Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
SIModeRegisterDefaults Mode(F);
Impl.HasFP32DenormalFlush =
Mode.FP32Denormals == DenormalMode::getPreserveSign();
return Impl.run(F);
}
PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F,
FunctionAnalysisManager &FAM) {
AMDGPUCodeGenPrepareImpl Impl;
Impl.Mod = F.getParent();
Impl.DL = &Impl.Mod->getDataLayout();
Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F);
Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
Impl.AC = &FAM.getResult<AssumptionAnalysis>(F);
Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F);
Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
SIModeRegisterDefaults Mode(F);
Impl.HasFP32DenormalFlush =
Mode.FP32Denormals == DenormalMode::getPreserveSign();
PreservedAnalyses PA = PreservedAnalyses::none();
if (!Impl.FlowChanged)
PA.preserveSet<CFGAnalyses>();
return Impl.run(F) ? PA : PreservedAnalyses::all();
}
INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
false, false)
char AMDGPUCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
return new AMDGPUCodeGenPrepare();
}
|