File: AMDGPUIGroupLP.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (1704 lines) | stat: -rw-r--r-- 59,876 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
//===--- AMDGPUIGroupLP.cpp - AMDGPU IGroupLP  ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file This file defines a set of schedule DAG mutations that can be used to
// override default scheduler behavior to enforce specific scheduling patterns.
// They should be used in cases where runtime performance considerations such as
// inter-wavefront interactions, mean that compile-time heuristics cannot
// predict the optimal instruction ordering, or in kernels where optimum
// instruction scheduling is important enough to warrant manual intervention.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUIGroupLP.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/TargetOpcodes.h"

using namespace llvm;

#define DEBUG_TYPE "igrouplp"

namespace {

static cl::opt<bool> EnableExactSolver(
    "amdgpu-igrouplp-exact-solver", cl::Hidden,
    cl::desc("Whether to use the exponential time solver to fit "
             "the instructions to the pipeline as closely as "
             "possible."),
    cl::init(false));

static cl::opt<unsigned> CutoffForExact(
    "amdgpu-igrouplp-exact-solver-cutoff", cl::init(0), cl::Hidden,
    cl::desc("The maximum number of scheduling group conflicts "
             "which we attempt to solve with the exponential time "
             "exact solver. Problem sizes greater than this will"
             "be solved by the less accurate greedy algorithm. Selecting "
             "solver by size is superseded by manually selecting "
             "the solver (e.g. by amdgpu-igrouplp-exact-solver"));

static cl::opt<uint64_t> MaxBranchesExplored(
    "amdgpu-igrouplp-exact-solver-max-branches", cl::init(0), cl::Hidden,
    cl::desc("The amount of branches that we are willing to explore with"
             "the exact algorithm before giving up."));

static cl::opt<bool> UseCostHeur(
    "amdgpu-igrouplp-exact-solver-cost-heur", cl::init(true), cl::Hidden,
    cl::desc("Whether to use the cost heuristic to make choices as we "
             "traverse the search space using the exact solver. Defaulted "
             "to on, and if turned off, we will use the node order -- "
             "attempting to put the later nodes in the later sched groups. "
             "Experimentally, results are mixed, so this should be set on a "
             "case-by-case basis."));

// Components of the mask that determines which instruction types may be may be
// classified into a SchedGroup.
enum class SchedGroupMask {
  NONE = 0u,
  ALU = 1u << 0,
  VALU = 1u << 1,
  SALU = 1u << 2,
  MFMA = 1u << 3,
  VMEM = 1u << 4,
  VMEM_READ = 1u << 5,
  VMEM_WRITE = 1u << 6,
  DS = 1u << 7,
  DS_READ = 1u << 8,
  DS_WRITE = 1u << 9,
  ALL = ALU | VALU | SALU | MFMA | VMEM | VMEM_READ | VMEM_WRITE | DS |
        DS_READ | DS_WRITE,
  LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL)
};

class SchedGroup;

// InstructionRule class is used to enact a filter which determines whether or
// not an SU maps to a given SchedGroup. It contains complementary data
// structures (e.g Cache) to help those filters.
class InstructionRule {
protected:
  const SIInstrInfo *TII;
  unsigned SGID;
  // A cache made available to the Filter to store SUnits for subsequent
  // invocations of the Filter
  std::optional<SmallVector<SUnit *, 4>> Cache;

public:
  virtual bool
  apply(const SUnit *, const ArrayRef<SUnit *>,
        SmallVectorImpl<SchedGroup> &) {
    return true;
  };

  InstructionRule(const SIInstrInfo *TII, unsigned SGID,
                  bool NeedsCache = false)
      : TII(TII), SGID(SGID) {
    if (NeedsCache) {
      Cache = SmallVector<SUnit *, 4>();
    }
  }

  virtual ~InstructionRule() = default;
};

typedef DenseMap<SUnit *, SmallVector<int, 4>> SUnitsToCandidateSGsMap;

// Classify instructions into groups to enable fine tuned control over the
// scheduler. These groups may be more specific than current SchedModel
// instruction classes.
class SchedGroup {
private:
  // Mask that defines which instruction types can be classified into this
  // SchedGroup. The instruction types correspond to the mask from SCHED_BARRIER
  // and SCHED_GROUP_BARRIER.
  SchedGroupMask SGMask;

  // Maximum number of SUnits that can be added to this group.
  std::optional<unsigned> MaxSize;

  // SchedGroups will only synchronize with other SchedGroups that have the same
  // SyncID.
  int SyncID = 0;

  // SGID is used to map instructions to candidate SchedGroups
  unsigned SGID;

  // The different rules each instruction in this SchedGroup must conform to
  SmallVector<std::shared_ptr<InstructionRule>, 4> Rules;

  // Count of the number of created SchedGroups, used to initialize SGID.
  static unsigned NumSchedGroups;

  const SIInstrInfo *TII;

  // Try to add and edge from SU A to SU B.
  bool tryAddEdge(SUnit *A, SUnit *B);

  // Use SGMask to determine whether we can classify MI as a member of this
  // SchedGroup object.
  bool canAddMI(const MachineInstr &MI) const;

public:
  // Collection of SUnits that are classified as members of this group.
  SmallVector<SUnit *, 32> Collection;

  ScheduleDAGInstrs *DAG;

  // Returns true if SU can be added to this SchedGroup.
  bool canAddSU(SUnit &SU) const;

  // Add DAG dependencies from all SUnits in this SchedGroup and this SU. If
  // MakePred is true, SU will be a predecessor of the SUnits in this
  // SchedGroup, otherwise SU will be a successor.
  void link(SUnit &SU, bool MakePred = false);

  // Add DAG dependencies and track which edges are added, and the count of
  // missed edges
  int link(SUnit &SU, bool MakePred,
           std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);

  // Add DAG dependencies from all SUnits in this SchedGroup and this SU.
  // Use the predicate to determine whether SU should be a predecessor (P =
  // true) or a successor (P = false) of this SchedGroup.
  void link(SUnit &SU, function_ref<bool(const SUnit *A, const SUnit *B)> P);

  // Add DAG dependencies such that SUnits in this group shall be ordered
  // before SUnits in OtherGroup.
  void link(SchedGroup &OtherGroup);

  // Returns true if no more instructions may be added to this group.
  bool isFull() const { return MaxSize && Collection.size() >= *MaxSize; }

  // Append a constraint that SUs must meet in order to fit into this
  // SchedGroup. Since many rules involve the relationship between a SchedGroup
  // and the SUnits in other SchedGroups, rules are checked at Pipeline Solve
  // time (rather than SchedGroup init time.)
  void addRule(std::shared_ptr<InstructionRule> NewRule) {
    Rules.push_back(NewRule);
  }

  // Returns true if the SU matches all rules
  bool allowedByRules(const SUnit *SU,
                      SmallVectorImpl<SchedGroup> &SyncPipe) const {
    if (Rules.empty())
      return true;
    for (size_t I = 0; I < Rules.size(); I++) {
      auto TheRule = Rules[I].get();
      if (!TheRule->apply(SU, Collection, SyncPipe)) {
        return false;
      }
    }
    return true;
  }

  // Add SU to the SchedGroup.
  void add(SUnit &SU) {
    LLVM_DEBUG(dbgs() << "For SchedGroup with mask "
                      << format_hex((int)SGMask, 10, true) << " adding "
                      << *SU.getInstr());
    Collection.push_back(&SU);
  }

  // Remove last element in the SchedGroup
  void pop() { Collection.pop_back(); }

  // Identify and add all relevant SUs from the DAG to this SchedGroup.
  void initSchedGroup();

  // Add instructions to the SchedGroup bottom up starting from RIter.
  // PipelineInstrs is a set of instructions that should not be added to the
  // SchedGroup even when the other conditions for adding it are satisfied.
  // RIter will be added to the SchedGroup as well, and dependencies will be
  // added so that RIter will always be scheduled at the end of the group.
  void initSchedGroup(std::vector<SUnit>::reverse_iterator RIter,
                      SUnitsToCandidateSGsMap &SyncedInstrs);

  void initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs);

  int getSyncID() { return SyncID; }

  int getSGID() { return SGID; }

  SchedGroupMask getMask() { return SGMask; }

  SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize,
             ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
      : SGMask(SGMask), MaxSize(MaxSize), TII(TII), DAG(DAG) {
    SGID = NumSchedGroups++;
  }

  SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize, int SyncID,
             ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
      : SGMask(SGMask), MaxSize(MaxSize), SyncID(SyncID), TII(TII), DAG(DAG) {
    SGID = NumSchedGroups++;
  }
};

// Remove all existing edges from a SCHED_BARRIER or SCHED_GROUP_BARRIER.
static void resetEdges(SUnit &SU, ScheduleDAGInstrs *DAG) {
  assert(SU.getInstr()->getOpcode() == AMDGPU::SCHED_BARRIER ||
         SU.getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER ||
         SU.getInstr()->getOpcode() == AMDGPU::IGLP_OPT);

  while (!SU.Preds.empty())
    for (auto &P : SU.Preds)
      SU.removePred(P);

  while (!SU.Succs.empty())
    for (auto &S : SU.Succs)
      for (auto &SP : S.getSUnit()->Preds)
        if (SP.getSUnit() == &SU)
          S.getSUnit()->removePred(SP);
}

typedef std::pair<SUnit *, SmallVector<int, 4>> SUToCandSGsPair;
typedef SmallVector<SUToCandSGsPair, 4> SUsToCandSGsVec;

// The PipelineSolver is used to assign SUnits to SchedGroups in a pipeline
// in non-trivial cases. For example, if the requested pipeline is
// {VMEM_READ, VALU, MFMA, VMEM_READ} and we encounter a VMEM_READ instruction
// in the DAG, then we will have an instruction that can not be trivially
// assigned to a SchedGroup. The PipelineSolver class implements two algorithms
// to find a good solution to the pipeline -- a greedy algorithm and an exact
// algorithm. The exact algorithm has an exponential time complexity and should
// only be used for small sized problems or medium sized problems where an exact
// solution is highly desired.
class PipelineSolver {
  ScheduleDAGMI *DAG;

  // Instructions that can be assigned to multiple SchedGroups
  DenseMap<int, SUnitsToCandidateSGsMap> SyncedInstrs;
  SmallVector<SUsToCandSGsVec, 4> PipelineInstrs;
  DenseMap<int, SmallVector<SchedGroup, 4>> SyncedSchedGroups;
  // The current working pipeline
  SmallVector<SmallVector<SchedGroup, 4>, 4> CurrPipeline;
  // The pipeline that has the best solution found so far
  SmallVector<SmallVector<SchedGroup, 4>, 4> BestPipeline;

  // Whether or not we actually have any SyncedInstrs to try to solve.
  bool NeedsSolver = false;

  // Compute an estimate of the size of search tree -- the true size is
  // the product of each conflictedInst.Matches.size() across all SyncPipelines
  unsigned computeProblemSize();

  // The cost penalty of not assigning a SU to a SchedGroup
  int MissPenalty = 0;

  // Costs in terms of the number of edges we are unable to add
  int BestCost = -1;
  int CurrCost = 0;

  // Index pointing to the conflicting instruction that is currently being
  // fitted
  int CurrConflInstNo = 0;
  // Index to the pipeline that is currently being fitted
  int CurrSyncGroupIdx = 0;
  // The first non trivial pipeline
  int BeginSyncGroupIdx = 0;

  // How many branches we have explored
  uint64_t BranchesExplored = 0;

  // The direction in which we process the candidate SchedGroups per SU
  bool IsBottomUp = 1;

  // Update indices to fit next conflicting instruction
  void advancePosition();
  // Recede indices to attempt to find better fit for previous conflicting
  // instruction
  void retreatPosition();

  // The exponential time algorithm which finds the provably best fit
  bool solveExact();
  // The polynomial time algorithm which attempts to find a good fit
  bool solveGreedy();
  // Find the best SchedGroup for the current SU using the heuristic given all
  // current information. One step in the greedy algorithm. Templated against
  // the SchedGroup iterator (either reverse or forward).
  template <typename T>
  void greedyFind(std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I,
                  T E);
  // Whether or not the current solution is optimal
  bool checkOptimal();
  // Populate the ready list, prioiritizing fewest missed edges first
  // Templated against the SchedGroup iterator (either reverse or forward).
  template <typename T>
  void populateReadyList(SmallVectorImpl<std::pair<int, int>> &ReadyList, T I,
                         T E);
  // Add edges corresponding to the SchedGroups as assigned by solver
  void makePipeline();
  // Link the SchedGroups in the best found pipeline.
  // Tmplated against the SchedGroup iterator (either reverse or forward).
  template <typename T> void linkSchedGroups(T I, T E);
  // Add the edges from the SU to the other SchedGroups in pipeline, and
  // return the number of edges missed.
  int addEdges(SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID,
               std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
  // Link the pipeline as if \p SU was in the SchedGroup with ID \p SGID. It
  // returns the cost (in terms of missed pipeline edges), and tracks the edges
  // added in \p AddedEdges
  template <typename T>
  int linkSUnit(SUnit *SU, int SGID,
                std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E);
  // Remove the edges passed via \p AddedEdges
  void removeEdges(const std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
  // Convert the passed in maps to arrays for bidirectional iterators
  void convertSyncMapsToArrays();

  void reset();

public:
  // Invoke the solver to map instructions to instruction groups. Heuristic &&
  // command-line-option determines to use exact or greedy algorithm.
  void solve();

  PipelineSolver(DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
                 DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
                 ScheduleDAGMI *DAG, bool IsBottomUp = 1)
      : DAG(DAG), SyncedInstrs(SyncedInstrs),
        SyncedSchedGroups(SyncedSchedGroups), IsBottomUp(IsBottomUp) {

    for (auto &PipelineInstrs : SyncedInstrs) {
      if (PipelineInstrs.second.size() > 0) {
        NeedsSolver = true;
        break;
      }
    }

    if (!NeedsSolver)
      return;

    convertSyncMapsToArrays();

    CurrPipeline = BestPipeline;

    while (static_cast<size_t>(BeginSyncGroupIdx) < PipelineInstrs.size() &&
           PipelineInstrs[BeginSyncGroupIdx].size() == 0)
      ++BeginSyncGroupIdx;

    if (static_cast<size_t>(BeginSyncGroupIdx) >= PipelineInstrs.size())
      return;
  }
};

void PipelineSolver::reset() {

  for (auto &SyncPipeline : CurrPipeline) {
    for (auto &SG : SyncPipeline) {
      SmallVector<SUnit *, 32> TempCollection = SG.Collection;
      SG.Collection.clear();
      auto SchedBarr = llvm::find_if(TempCollection, [](SUnit *SU) {
        return SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER;
      });
      if (SchedBarr != TempCollection.end())
        SG.Collection.push_back(*SchedBarr);
    }
  }

  CurrSyncGroupIdx = BeginSyncGroupIdx;
  CurrConflInstNo = 0;
  CurrCost = 0;
}

void PipelineSolver::convertSyncMapsToArrays() {
  for (auto &SyncPipe : SyncedSchedGroups) {
    BestPipeline.insert(BestPipeline.begin(), SyncPipe.second);
  }

  int PipelineIDx = SyncedInstrs.size() - 1;
  PipelineInstrs.resize(SyncedInstrs.size());
  for (auto &SyncInstrMap : SyncedInstrs) {
    for (auto &SUsToCandSGs : SyncInstrMap.second) {
      if (PipelineInstrs[PipelineIDx].size() == 0) {
        PipelineInstrs[PipelineIDx].push_back(
            std::pair(SUsToCandSGs.first, SUsToCandSGs.second));
        continue;
      }
      auto SortPosition = PipelineInstrs[PipelineIDx].begin();
      // Insert them in sorted order -- this allows for good parsing order in
      // the greedy algorithm
      while (SortPosition != PipelineInstrs[PipelineIDx].end() &&
             SUsToCandSGs.first->NodeNum > SortPosition->first->NodeNum)
        ++SortPosition;
      PipelineInstrs[PipelineIDx].insert(
          SortPosition, std::pair(SUsToCandSGs.first, SUsToCandSGs.second));
    }
    --PipelineIDx;
  }
}

template <typename T> void PipelineSolver::linkSchedGroups(T I, T E) {
  for (; I != E; ++I) {
    auto &GroupA = *I;
    for (auto J = std::next(I); J != E; ++J) {
      auto &GroupB = *J;
      GroupA.link(GroupB);
    }
  }
}

void PipelineSolver::makePipeline() {
  // Preserve the order of barrier for subsequent SchedGroupBarrier mutations
  for (auto &SyncPipeline : BestPipeline) {
    LLVM_DEBUG(dbgs() << "Printing SchedGroups\n");
    for (auto &SG : SyncPipeline) {
      LLVM_DEBUG(dbgs() << "SchedGroup with SGID " << SG.getSGID()
                        << " has: \n");
      SUnit *SGBarr = nullptr;
      for (auto &SU : SG.Collection) {
        if (SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
          SGBarr = SU;
        LLVM_DEBUG(dbgs() << "SU(" << SU->NodeNum << ")\n");
      }
      // Command line requested IGroupLP doesn't have SGBarr
      if (!SGBarr)
        continue;
      resetEdges(*SGBarr, DAG);
      SG.link(*SGBarr, false);
    }
  }

  for (auto &SyncPipeline : BestPipeline) {
    IsBottomUp ? linkSchedGroups(SyncPipeline.rbegin(), SyncPipeline.rend())
               : linkSchedGroups(SyncPipeline.begin(), SyncPipeline.end());
  }
}

template <typename T>
int PipelineSolver::linkSUnit(
    SUnit *SU, int SGID, std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges,
    T I, T E) {
  bool MakePred = false;
  int AddedCost = 0;
  for (; I < E; ++I) {
    if (I->getSGID() == SGID) {
      MakePred = true;
      continue;
    }
    auto Group = *I;
    AddedCost += Group.link(*SU, MakePred, AddedEdges);
    assert(AddedCost >= 0);
  }
  return AddedCost;
}

int PipelineSolver::addEdges(
    SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID,
    std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) {

  // For IsBottomUp, the first SchedGroup in SyncPipeline contains the
  // instructions that are the ultimate successors in the resultant mutation.
  // Therefore, in such a configuration, the SchedGroups occurring before the
  // candidate SGID are successors of the candidate SchedGroup, thus the current
  // SU should be linked as a predecessor to SUs in those SchedGroups. The
  // opposite is true if !IsBottomUp. IsBottomUp occurs in the case of multiple
  // SCHED_GROUP_BARRIERS, or if a user specifies IGLP_OPT SchedGroups using
  // IsBottomUp (in reverse).
  return IsBottomUp ? linkSUnit(SU, SGID, AddedEdges, SyncPipeline.rbegin(),
                                SyncPipeline.rend())
                    : linkSUnit(SU, SGID, AddedEdges, SyncPipeline.begin(),
                                SyncPipeline.end());
}

void PipelineSolver::removeEdges(
    const std::vector<std::pair<SUnit *, SUnit *>> &EdgesToRemove) {
  // Only remove the edges that we have added when testing
  // the fit.
  for (auto &PredSuccPair : EdgesToRemove) {
    SUnit *Pred = PredSuccPair.first;
    SUnit *Succ = PredSuccPair.second;

    auto Match = llvm::find_if(
        Succ->Preds, [&Pred](SDep &P) { return P.getSUnit() == Pred; });
    if (Match != Succ->Preds.end()) {
      assert(Match->isArtificial());
      Succ->removePred(*Match);
    }
  }
}

void PipelineSolver::advancePosition() {
  ++CurrConflInstNo;

  if (static_cast<size_t>(CurrConflInstNo) >=
      PipelineInstrs[CurrSyncGroupIdx].size()) {
    CurrConflInstNo = 0;
    ++CurrSyncGroupIdx;
    // Advance to next non-trivial pipeline
    while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size() &&
           PipelineInstrs[CurrSyncGroupIdx].size() == 0)
      ++CurrSyncGroupIdx;
  }
}

void PipelineSolver::retreatPosition() {
  assert(CurrConflInstNo >= 0);
  assert(CurrSyncGroupIdx >= 0);

  if (CurrConflInstNo > 0) {
    --CurrConflInstNo;
    return;
  }

  if (CurrConflInstNo == 0) {
    // If we return to the starting position, we have explored
    // the entire tree
    if (CurrSyncGroupIdx == BeginSyncGroupIdx)
      return;

    --CurrSyncGroupIdx;
    // Go to previous non-trivial pipeline
    while (PipelineInstrs[CurrSyncGroupIdx].size() == 0)
      --CurrSyncGroupIdx;

    CurrConflInstNo = PipelineInstrs[CurrSyncGroupIdx].size() - 1;
  }
}

bool PipelineSolver::checkOptimal() {
  if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size()) {
    if (BestCost == -1 || CurrCost < BestCost) {
      BestPipeline = CurrPipeline;
      BestCost = CurrCost;
      LLVM_DEBUG(dbgs() << "Found Fit with cost " << BestCost << "\n");
    }
    assert(BestCost >= 0);
  }

  bool DoneExploring = false;
  if (MaxBranchesExplored > 0 && BranchesExplored >= MaxBranchesExplored)
    DoneExploring = true;

  return (DoneExploring || BestCost == 0);
}

template <typename T>
void PipelineSolver::populateReadyList(
    SmallVectorImpl<std::pair<int, int>> &ReadyList, T I, T E) {
  SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
  auto SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
  assert(CurrSU.second.size() >= 1);

  for (; I != E; ++I) {
    std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
    int CandSGID = *I;
    SchedGroup *Match;
    for (auto &SG : SyncPipeline) {
      if (SG.getSGID() == CandSGID)
        Match = &SG;
    }

    if (UseCostHeur) {
      if (Match->isFull()) {
        ReadyList.push_back(std::pair(*I, MissPenalty));
        continue;
      }

      int TempCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
      ReadyList.push_back(std::pair(*I, TempCost));
      removeEdges(AddedEdges);
    } else
      ReadyList.push_back(std::pair(*I, -1));
  }

  if (UseCostHeur) {
    std::sort(ReadyList.begin(), ReadyList.end(),
              [](std::pair<int, int> A, std::pair<int, int> B) {
                return A.second < B.second;
              });
  }

  assert(ReadyList.size() == CurrSU.second.size());
}

bool PipelineSolver::solveExact() {
  if (checkOptimal())
    return true;

  if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size())
    return false;

  assert(static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size());
  assert(static_cast<size_t>(CurrConflInstNo) <
         PipelineInstrs[CurrSyncGroupIdx].size());
  SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
  LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum
                    << ") in Pipeline # " << CurrSyncGroupIdx << "\n");

  // SchedGroup -> Cost pairs
  SmallVector<std::pair<int, int>, 4> ReadyList;
  // Prioritize the candidate sched groups in terms of lowest cost first
  IsBottomUp ? populateReadyList(ReadyList, CurrSU.second.rbegin(),
                                 CurrSU.second.rend())
             : populateReadyList(ReadyList, CurrSU.second.begin(),
                                 CurrSU.second.end());

  auto I = ReadyList.begin();
  auto E = ReadyList.end();
  for (; I != E; ++I) {
    // If we are trying SGs in least cost order, and the current SG is cost
    // infeasible, then all subsequent SGs will also be cost infeasible, so we
    // can prune.
    if (BestCost != -1 && (CurrCost + I->second > BestCost))
      return false;

    int CandSGID = I->first;
    int AddedCost = 0;
    std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
    auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
    SchedGroup *Match;
    for (auto &SG : SyncPipeline) {
      if (SG.getSGID() == CandSGID)
        Match = &SG;
    }

    if (Match->isFull())
      continue;

    if (!Match->allowedByRules(CurrSU.first, SyncPipeline))
      continue;

    LLVM_DEBUG(dbgs() << "Assigning to SchedGroup with Mask "
                      << (int)Match->getMask() << "and ID " << CandSGID
                      << "\n");
    Match->add(*CurrSU.first);
    AddedCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
    LLVM_DEBUG(dbgs() << "Cost of Assignment: " << AddedCost << "\n");
    CurrCost += AddedCost;
    advancePosition();
    ++BranchesExplored;
    bool FinishedExploring = false;
    // If the Cost after adding edges is greater than a known solution,
    // backtrack
    if (CurrCost < BestCost || BestCost == -1) {
      if (solveExact()) {
        FinishedExploring = BestCost != 0;
        if (!FinishedExploring)
          return true;
      }
    }

    retreatPosition();
    CurrCost -= AddedCost;
    removeEdges(AddedEdges);
    Match->pop();
    CurrPipeline[CurrSyncGroupIdx] = SyncPipeline;
    if (FinishedExploring)
      return true;
  }

  // Try the pipeline where the current instruction is omitted
  // Potentially if we omit a problematic instruction from the pipeline,
  // all the other instructions can nicely fit.
  CurrCost += MissPenalty;
  advancePosition();

  LLVM_DEBUG(dbgs() << "NOT Assigned (" << CurrSU.first->NodeNum << ")\n");

  bool FinishedExploring = false;
  if (CurrCost < BestCost || BestCost == -1) {
    if (solveExact()) {
      bool FinishedExploring = BestCost != 0;
      if (!FinishedExploring)
        return true;
    }
  }

  retreatPosition();
  CurrCost -= MissPenalty;
  return FinishedExploring;
}

template <typename T>
void PipelineSolver::greedyFind(
    std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E) {
  SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
  int BestNodeCost = -1;
  int TempCost;
  SchedGroup *BestGroup = nullptr;
  int BestGroupID = -1;
  auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
  LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum
                    << ") in Pipeline # " << CurrSyncGroupIdx << "\n");

  // Since we have added the potential SchedGroups from bottom up, but
  // traversed the DAG from top down, parse over the groups from last to
  // first. If we fail to do this for the greedy algorithm, the solution will
  // likely not be good in more complex cases.
  for (; I != E; ++I) {
    std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
    int CandSGID = *I;
    SchedGroup *Match;
    for (auto &SG : SyncPipeline) {
      if (SG.getSGID() == CandSGID)
        Match = &SG;
    }

    LLVM_DEBUG(dbgs() << "Trying SGID # " << CandSGID << " with Mask "
                      << (int)Match->getMask() << "\n");

    if (Match->isFull()) {
      LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " is full\n");
      continue;
    }
    if (!Match->allowedByRules(CurrSU.first, SyncPipeline)) {
      LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " has conflicting rule\n");
      continue;
    }
    TempCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
    LLVM_DEBUG(dbgs() << "Cost of Group " << TempCost << "\n");
    if (TempCost < BestNodeCost || BestNodeCost == -1) {
      BestGroup = Match;
      BestNodeCost = TempCost;
      BestGroupID = CandSGID;
    }
    removeEdges(AddedEdges);
    if (BestNodeCost == 0)
      break;
  }

  if (BestGroupID != -1) {
    BestGroup->add(*CurrSU.first);
    addEdges(SyncPipeline, CurrSU.first, BestGroupID, AddedEdges);
    LLVM_DEBUG(dbgs() << "Best Group has ID: " << BestGroupID << " and Mask"
                      << (int)BestGroup->getMask() << "\n");
    BestCost += TempCost;
  } else
    BestCost += MissPenalty;

  CurrPipeline[CurrSyncGroupIdx] = SyncPipeline;
}

bool PipelineSolver::solveGreedy() {
  BestCost = 0;
  std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;

  while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size()) {
    SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
    IsBottomUp
        ? greedyFind(AddedEdges, CurrSU.second.rbegin(), CurrSU.second.rend())
        : greedyFind(AddedEdges, CurrSU.second.begin(), CurrSU.second.end());
    advancePosition();
  }
  BestPipeline = CurrPipeline;
  removeEdges(AddedEdges);
  return false;
}

unsigned PipelineSolver::computeProblemSize() {
  unsigned ProblemSize = 0;
  for (auto &PipeConflicts : PipelineInstrs) {
    ProblemSize += PipeConflicts.size();
  }

  return ProblemSize;
}

void PipelineSolver::solve() {
  if (!NeedsSolver)
    return;

  unsigned ProblemSize = computeProblemSize();
  assert(ProblemSize > 0);

  bool BelowCutoff = (CutoffForExact > 0) && ProblemSize <= CutoffForExact;
  MissPenalty = (ProblemSize / 2) + 1;

  LLVM_DEBUG(DAG->dump());
  if (EnableExactSolver || BelowCutoff) {
    LLVM_DEBUG(dbgs() << "Starting Greedy pipeline solver\n");
    solveGreedy();
    reset();
    LLVM_DEBUG(dbgs() << "Greedy produced best cost of " << BestCost << "\n");
    if (BestCost > 0) {
      LLVM_DEBUG(dbgs() << "Starting EXACT pipeline solver\n");
      solveExact();
      LLVM_DEBUG(dbgs() << "Exact produced best cost of " << BestCost << "\n");
    }
  } else { // Use the Greedy Algorithm by default
    LLVM_DEBUG(dbgs() << "Starting GREEDY pipeline solver\n");
    solveGreedy();
  }

  makePipeline();
  LLVM_DEBUG(dbgs() << "After applying mutation\n");
  LLVM_DEBUG(DAG->dump());
}

enum IGLPStrategyID : int {
  MFMASmallGemmOptID = 0,
  MFMASmallGemmSingleWaveOptID = 1,
};

// Implement a IGLP scheduling strategy.
class IGLPStrategy {
protected:
  ScheduleDAGInstrs *DAG;

  const SIInstrInfo *TII;

public:
  // Add SchedGroups to \p Pipeline to implement this Strategy.
  virtual void applyIGLPStrategy(
      DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
      DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) = 0;

  // Returns true if this strategy should be applied to a ScheduleDAG.
  virtual bool shouldApplyStrategy(ScheduleDAGInstrs *DAG) = 0;

  bool IsBottomUp = 1;

  IGLPStrategy(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
      : DAG(DAG), TII(TII) {}

  virtual ~IGLPStrategy() = default;
};

class MFMASmallGemmOpt final : public IGLPStrategy {
private:
public:
  void applyIGLPStrategy(
      DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
      DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) override;

  bool shouldApplyStrategy(ScheduleDAGInstrs *DAG) override { return true; }

  MFMASmallGemmOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
      : IGLPStrategy(DAG, TII) {
    IsBottomUp = 1;
  }
};

void MFMASmallGemmOpt::applyIGLPStrategy(
    DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
    DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) {
  // Count the number of MFMA instructions.
  unsigned MFMACount = 0;
  for (const MachineInstr &I : *DAG)
    if (TII->isMFMAorWMMA(I))
      ++MFMACount;

  const unsigned PipelineSyncID = 0;
  SchedGroup *SG = nullptr;
  for (unsigned I = 0; I < MFMACount * 3; ++I) {
    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::DS, 2, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
  }
}

class MFMASmallGemmSingleWaveOpt final : public IGLPStrategy {
private:
  // Whether the DS_READ is a predecessor of first four MFMA in region
  class EnablesInitialMFMA final : public InstructionRule {
  public:
    bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
               SmallVectorImpl<SchedGroup> &SyncPipe) override {
      if (!SyncPipe.size())
        return false;
      int MFMAsFound = 0;
      if (!Cache->size()) {
        for (auto &Elt : SyncPipe[0].DAG->SUnits) {
          if (TII->isMFMAorWMMA(*Elt.getInstr())) {
            ++MFMAsFound;
            if (MFMAsFound > 4)
              break;
            Cache->push_back(&Elt);
          }
        }
      }

      assert(Cache->size());
      auto DAG = SyncPipe[0].DAG;
      for (auto &Elt : *Cache) {
        if (DAG->IsReachable(Elt, const_cast<SUnit *>(SU)))
          return true;
      }
      return false;
    }

    EnablesInitialMFMA(const SIInstrInfo *TII, unsigned SGID,
                       bool NeedsCache = false)
        : InstructionRule(TII, SGID, NeedsCache) {}
  };

  // Whether the MI is a V_PERM and is a predecessor of a common DS_WRITE
  class IsPermForDSW final : public InstructionRule {
  public:
    bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
               SmallVectorImpl<SchedGroup> &SyncPipe) override {
      auto MI = SU->getInstr();
      if (MI->getOpcode() != AMDGPU::V_PERM_B32_e64)
        return false;

      bool FitsInGroup = false;
      // Does the VALU have a DS_WRITE successor
      if (!Collection.size()) {
        for (auto &Succ : SU->Succs) {
          SUnit *SuccUnit = Succ.getSUnit();
          if (TII->isDS(*SuccUnit->getInstr()) &&
              SuccUnit->getInstr()->mayStore()) {
            Cache->push_back(SuccUnit);
            FitsInGroup = true;
          }
        }
        return FitsInGroup;
      }

      assert(Cache->size());

      // Does the VALU have a DS_WRITE successor that is the same as other
      // VALU already in the group. The V_PERMs will all share 1 DS_W succ
      return std::any_of(Cache->begin(), Cache->end(), [&SU](SUnit *Elt) {
        return std::any_of(SU->Succs.begin(), SU->Succs.end(),
                           [&Elt](const SDep &ThisSucc) {
                             return ThisSucc.getSUnit() == Elt;
                           });
      });
    }

    IsPermForDSW(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
        : InstructionRule(TII, SGID, NeedsCache) {}
  };

  // Whether the SU is a successor of any element in previous SchedGroup
  class IsSuccOfPrevGroup final : public InstructionRule {
  public:
    bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
               SmallVectorImpl<SchedGroup> &SyncPipe) override {
      SchedGroup *OtherGroup = nullptr;
      for (auto &PipeSG : SyncPipe) {
        if ((unsigned)PipeSG.getSGID() == SGID - 1) {
          OtherGroup = &PipeSG;
        }
      }

      if (!OtherGroup)
        return false;
      if (!OtherGroup->Collection.size())
        return true;

      // Does the previous VALU have this DS_Write as a successor
      return (std::any_of(OtherGroup->Collection.begin(),
                          OtherGroup->Collection.end(), [&SU](SUnit *Elt) {
                            return std::any_of(Elt->Succs.begin(),
                                               Elt->Succs.end(),
                                               [&SU](SDep &Succ) {
                                                 return Succ.getSUnit() == SU;
                                               });
                          }));
    }
    IsSuccOfPrevGroup(const SIInstrInfo *TII, unsigned SGID,
                      bool NeedsCache = false)
        : InstructionRule(TII, SGID, NeedsCache) {}
  };

  // Whether the combined load width of group is 128 bits
  class VMEMSize final : public InstructionRule {
  public:
    bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
               SmallVectorImpl<SchedGroup> &SyncPipe) override {
      auto MI = SU->getInstr();
      if (MI->getOpcode() == TargetOpcode::BUNDLE)
        return false;
      if (!Collection.size())
        return true;

      int NumBits = 0;

      auto TRI = TII->getRegisterInfo();
      auto &MRI = MI->getParent()->getParent()->getRegInfo();
      for (auto &Elt : Collection) {
        auto Op = Elt->getInstr()->getOperand(0);
        auto Size =
            TRI.getRegSizeInBits(*TRI.getRegClassForOperandReg(MRI, Op));
        NumBits += Size;
      }

      if (NumBits < 128) {
        assert(TII->isVMEM(*MI) && MI->mayLoad());
        if (NumBits + TRI.getRegSizeInBits(*TRI.getRegClassForOperandReg(
                          MRI, MI->getOperand(0))) <=
            128)
          return true;
      }

      return false;
    }

    VMEMSize(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
        : InstructionRule(TII, SGID, NeedsCache) {}
  };

  // Whether the SU shares a V_PERM predecessor with any SU in the SchedGroup
  // that is /p Distance steps away
  class SharesPredWithPrevNthGroup final : public InstructionRule {
  private:
    unsigned Distance = 1;

  public:
    bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
               SmallVectorImpl<SchedGroup> &SyncPipe) override {
      SchedGroup *OtherGroup = nullptr;
      if (!SyncPipe.size())
        return false;

      if (!Cache->size()) {

        for (auto &PipeSG : SyncPipe) {
          if ((unsigned)PipeSG.getSGID() == SGID - Distance) {
            OtherGroup = &PipeSG;
          }
        }

        if (!OtherGroup)
          return false;
        if (!OtherGroup->Collection.size())
          return true;

        for (auto &OtherEle : OtherGroup->Collection) {
          for (auto &Pred : OtherEle->Preds) {
            if (Pred.getSUnit()->getInstr()->getOpcode() ==
                AMDGPU::V_PERM_B32_e64)
              Cache->push_back(Pred.getSUnit());
          }
        }
      }

      assert(Cache->size());
      auto DAG = SyncPipe[0].DAG;
      // Does the previous DS_WRITE share a V_PERM predecessor with this
      // VMEM_READ
      return (
          std::any_of(Cache->begin(), Cache->end(), [&SU, &DAG](SUnit *Elt) {
            return DAG->IsReachable(const_cast<SUnit *>(SU), Elt);
          }));
    }
    SharesPredWithPrevNthGroup(unsigned Distance, const SIInstrInfo *TII,
                               unsigned SGID, bool NeedsCache = false)
        : InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {}
  };

public:
  void applyIGLPStrategy(
      DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
      DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) override;

  bool shouldApplyStrategy(ScheduleDAGInstrs *DAG) override { return true; }

  MFMASmallGemmSingleWaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
      : IGLPStrategy(DAG, TII) {
    IsBottomUp = 0;
  }
};

void MFMASmallGemmSingleWaveOpt::applyIGLPStrategy(
    DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
    DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) {
  unsigned MFMACount = 0;
  unsigned DSWCount = 0;
  unsigned DSWWithPermCount = 0;
  unsigned DSWWithSharedVMEMCount = 0;
  unsigned DSRCount = 0;
  SmallVector<SUnit *, 6> DSWithPerms;
  for (auto &SU : DAG->SUnits) {
    auto I = SU.getInstr();
    if (TII->isMFMAorWMMA(*I))
      ++MFMACount;
    else if (TII->isDS(*I)) {
      if (I->mayLoad())
        ++DSRCount;
      else if (I->mayStore()) {
        ++DSWCount;
        for (auto Pred : SU.Preds) {
          if (Pred.getSUnit()->getInstr()->getOpcode() ==
              AMDGPU::V_PERM_B32_e64) {
            DSWithPerms.push_back(&SU);
            break;
          }
        }
      }
    }
  }
  DSWWithPermCount = DSWithPerms.size();
  auto I = DSWithPerms.begin();
  auto E = DSWithPerms.end();

  // Get the count of DS_WRITES with V_PERM predecessors which
  // have loop carried dependencies (WAR) on the same VMEM_READs.
  // We consider partial overlap as a miss -- in other words,
  // for a given DS_W, we only consider another DS_W as matching
  // if there is a corresponding (in terms of the VMEM_R it uses) V_PERM pred
  // for every V_PERM pred of this DS_W.
  DenseMap<MachineInstr *, SUnit *> VMEMLookup;
  SmallVector<SUnit *, 6> Counted;
  for (; I != E; I++) {
    SUnit *Cand = nullptr;
    bool MissedAny = false;
    for (auto &Pred : (*I)->Preds) {
      if (Pred.getSUnit()->getInstr()->getOpcode() != AMDGPU::V_PERM_B32_e64)
        continue;

      if (Cand &&
          std::find(Counted.begin(), Counted.end(), Cand) != Counted.end())
        break;

      for (auto &Succ : Pred.getSUnit()->Succs) {
        auto MI = Succ.getSUnit()->getInstr();
        if (!TII->isVMEM(*MI) || !MI->mayLoad())
          continue;

        if (MissedAny || !VMEMLookup.size()) {
          MissedAny = true;
          VMEMLookup[MI] = *I;
          continue;
        }

        if (!VMEMLookup.contains(MI)) {
          MissedAny = true;
          VMEMLookup[MI] = *I;
          continue;
        }

        Cand = VMEMLookup[MI];
        if (std::find(Counted.begin(), Counted.end(), Cand) != Counted.end()) {
          MissedAny = true;
          break;
        }
      }
    }
    if (!MissedAny && Cand) {
      DSWWithSharedVMEMCount += 2;
      Counted.push_back(Cand);
      Counted.push_back(*I);
    }
  }

  assert(DSWWithSharedVMEMCount <= DSWWithPermCount);
  SchedGroup *SG;
  unsigned PipelineSyncID = 0;
  // For kernels with V_PERM, there are enough VALU to mix in between MFMAs
  if (DSWWithPermCount) {
    for (unsigned I = 0; I < MFMACount; I++) {
      SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
          SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
      SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

      SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
          SchedGroupMask::VALU, 2, PipelineSyncID, DAG, TII);
      SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
    }
  }

  PipelineSyncID = 1;
  // Phase 1: Break up DS_READ and MFMA clusters.
  // First DS_READ to make ready initial MFMA, then interleave MFMA with DS_READ
  // prefetch

  // Make ready initial MFMA
  SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
      SchedGroupMask::DS_READ, 4, PipelineSyncID, DAG, TII);
  SG->addRule(std::make_shared<EnablesInitialMFMA>(TII, SG->getSGID(), true));
  SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

  SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
      SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
  SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

  // Interleave MFMA with DS_READ prefetch
  for (unsigned I = 0; I < DSRCount - 4; ++I) {
    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::DS_READ, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
  }

  // Phase 2a: Loop carried dependency with V_PERM
  // Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they
  // depend on. Interleave MFMA to keep XDL unit busy throughout.
  for (unsigned I = 0; I < DSWWithPermCount - DSWWithSharedVMEMCount; ++I) {
    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID(), false));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
        1, TII, SG->getSGID(), true));
    SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
        3, TII, SG->getSGID(), true));
    SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
  }

  // Phase 2b: Loop carried dependency without V_PERM
  // Schedule DS_WRITE as closely as possible to the VMEM_READ they depend on.
  // Interleave MFMA to keep XDL unit busy throughout.
  for (unsigned I = 0; I < DSWCount - DSWWithPermCount; I++) {
    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
  }

  // Phase 2c: Loop carried dependency with V_PERM, VMEM_READs are
  // ultimately used by two DS_WRITE
  // Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they
  // depend on. Interleave MFMA to keep XDL unit busy throughout.

  for (unsigned I = 0; I < DSWWithSharedVMEMCount; ++I) {
    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID(), false));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID(), false));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
        2, TII, SG->getSGID(), true));
    SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
    SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
        4, TII, SG->getSGID(), true));
    SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);

    SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
        SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
    SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
  }
}

static std::unique_ptr<IGLPStrategy>
createIGLPStrategy(IGLPStrategyID ID, ScheduleDAGInstrs *DAG,
                   const SIInstrInfo *TII) {
  switch (ID) {
  case MFMASmallGemmOptID:
    return std::make_unique<MFMASmallGemmOpt>(DAG, TII);
  case MFMASmallGemmSingleWaveOptID:
    return std::make_unique<MFMASmallGemmSingleWaveOpt>(DAG, TII);
  }

  llvm_unreachable("Unknown IGLPStrategyID");
}

class IGroupLPDAGMutation : public ScheduleDAGMutation {
private:
  const SIInstrInfo *TII;

  ScheduleDAGMI *DAG;

  // Organize lists of SchedGroups by their SyncID. SchedGroups /
  // SCHED_GROUP_BARRIERs with different SyncIDs will have no edges added
  // between then.
  DenseMap<int, SmallVector<SchedGroup, 4>> SyncedSchedGroups;

  // Used to track instructions that can be mapped to multiple sched groups
  DenseMap<int, SUnitsToCandidateSGsMap> SyncedInstrs;

  // Add DAG edges that enforce SCHED_BARRIER ordering.
  void addSchedBarrierEdges(SUnit &SU);

  // Use a SCHED_BARRIER's mask to identify instruction SchedGroups that should
  // not be reordered accross the SCHED_BARRIER. This is used for the base
  // SCHED_BARRIER, and not SCHED_GROUP_BARRIER. The difference is that
  // SCHED_BARRIER will always block all instructions that can be classified
  // into a particular SchedClass, whereas SCHED_GROUP_BARRIER has a fixed size
  // and may only synchronize with some SchedGroups. Returns the inverse of
  // Mask. SCHED_BARRIER's mask describes which instruction types should be
  // allowed to be scheduled across it. Invert the mask to get the
  // SchedGroupMask of instructions that should be barred.
  SchedGroupMask invertSchedBarrierMask(SchedGroupMask Mask) const;

  // Create SchedGroups for a SCHED_GROUP_BARRIER.
  void initSchedGroupBarrierPipelineStage(
      std::vector<SUnit>::reverse_iterator RIter);

  void initIGLPOpt(SUnit &SU);

public:
  void apply(ScheduleDAGInstrs *DAGInstrs) override;

  // The order in which the PipelineSolver should process the candidate
  // SchedGroup for a PipelineInstr. BOTTOM_UP will try to add SUs to the last
  // created SchedGroup first, and will consider that as the ultimate
  // predecessor group when linking. TOP_DOWN instead links and processes the
  // first created SchedGroup first.
  bool IsBottomUp = 1;

  IGroupLPDAGMutation() = default;
};

unsigned SchedGroup::NumSchedGroups = 0;

bool SchedGroup::tryAddEdge(SUnit *A, SUnit *B) {
  if (A != B && DAG->canAddEdge(B, A)) {
    DAG->addEdge(B, SDep(A, SDep::Artificial));
    return true;
  }
  return false;
}

bool SchedGroup::canAddMI(const MachineInstr &MI) const {
  bool Result = false;
  if (MI.isMetaInstruction())
    Result = false;

  else if (((SGMask & SchedGroupMask::ALU) != SchedGroupMask::NONE) &&
           (TII->isVALU(MI) || TII->isMFMAorWMMA(MI) || TII->isSALU(MI)))
    Result = true;

  else if (((SGMask & SchedGroupMask::VALU) != SchedGroupMask::NONE) &&
           TII->isVALU(MI) && !TII->isMFMAorWMMA(MI))
    Result = true;

  else if (((SGMask & SchedGroupMask::SALU) != SchedGroupMask::NONE) &&
           TII->isSALU(MI))
    Result = true;

  else if (((SGMask & SchedGroupMask::MFMA) != SchedGroupMask::NONE) &&
           TII->isMFMAorWMMA(MI))
    Result = true;

  else if (((SGMask & SchedGroupMask::VMEM) != SchedGroupMask::NONE) &&
           (TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
    Result = true;

  else if (((SGMask & SchedGroupMask::VMEM_READ) != SchedGroupMask::NONE) &&
           MI.mayLoad() &&
           (TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
    Result = true;

  else if (((SGMask & SchedGroupMask::VMEM_WRITE) != SchedGroupMask::NONE) &&
           MI.mayStore() &&
           (TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
    Result = true;

  else if (((SGMask & SchedGroupMask::DS) != SchedGroupMask::NONE) &&
           TII->isDS(MI))
    Result = true;

  else if (((SGMask & SchedGroupMask::DS_READ) != SchedGroupMask::NONE) &&
           MI.mayLoad() && TII->isDS(MI))
    Result = true;

  else if (((SGMask & SchedGroupMask::DS_WRITE) != SchedGroupMask::NONE) &&
           MI.mayStore() && TII->isDS(MI))
    Result = true;

  LLVM_DEBUG(
      dbgs() << "For SchedGroup with mask " << format_hex((int)SGMask, 10, true)
             << (Result ? " could classify " : " unable to classify ") << MI);

  return Result;
}

int SchedGroup::link(SUnit &SU, bool MakePred,
                     std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) {
  int MissedEdges = 0;
  for (auto *A : Collection) {
    SUnit *B = &SU;
    if (A == B || A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
      continue;
    if (MakePred)
      std::swap(A, B);

    if (DAG->IsReachable(B, A))
      continue;

    // tryAddEdge returns false if there is a dependency that makes adding
    // the A->B edge impossible, otherwise it returns true;
    bool Added = tryAddEdge(A, B);
    if (Added)
      AddedEdges.push_back(std::pair(A, B));
    else
      ++MissedEdges;
  }

  return MissedEdges;
}

void SchedGroup::link(SUnit &SU, bool MakePred) {
  for (auto *A : Collection) {
    SUnit *B = &SU;
    if (A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
      continue;
    if (MakePred)
      std::swap(A, B);

    tryAddEdge(A, B);
  }
}

void SchedGroup::link(SUnit &SU,
                      function_ref<bool(const SUnit *A, const SUnit *B)> P) {
  for (auto *A : Collection) {
    SUnit *B = &SU;
    if (P(A, B))
      std::swap(A, B);

    tryAddEdge(A, B);
  }
}

void SchedGroup::link(SchedGroup &OtherGroup) {
  for (auto *B : OtherGroup.Collection)
    link(*B);
}

bool SchedGroup::canAddSU(SUnit &SU) const {
  MachineInstr &MI = *SU.getInstr();
  if (MI.getOpcode() != TargetOpcode::BUNDLE)
    return canAddMI(MI);

  // Special case for bundled MIs.
  const MachineBasicBlock *MBB = MI.getParent();
  MachineBasicBlock::instr_iterator B = MI.getIterator(), E = ++B;
  while (E != MBB->end() && E->isBundledWithPred())
    ++E;

  // Return true if all of the bundled MIs can be added to this group.
  return std::all_of(B, E, [this](MachineInstr &MI) { return canAddMI(MI); });
}

void SchedGroup::initSchedGroup() {
  for (auto &SU : DAG->SUnits) {
    if (isFull())
      break;

    if (canAddSU(SU))
      add(SU);
  }
}

void SchedGroup::initSchedGroup(std::vector<SUnit>::reverse_iterator RIter,
                                SUnitsToCandidateSGsMap &SyncedInstrs) {
  SUnit &InitSU = *RIter;
  for (auto E = DAG->SUnits.rend(); RIter != E; ++RIter) {
    auto &SU = *RIter;
    if (isFull())
      break;

    if (canAddSU(SU))
      SyncedInstrs[&SU].push_back(SGID);
  }

  add(InitSU);
  assert(MaxSize);
  (*MaxSize)++;
}

void SchedGroup::initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs) {
  auto I = DAG->SUnits.rbegin();
  auto E = DAG->SUnits.rend();
  for (; I != E; ++I) {
    auto &SU = *I;
    if (isFull())
      break;

    if (canAddSU(SU))
      SyncedInstrs[&SU].push_back(SGID);
  }
}

void IGroupLPDAGMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
  const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
  if (!TSchedModel || DAGInstrs->SUnits.empty())
    return;

  LLVM_DEBUG(dbgs() << "Applying IGroupLPDAGMutation...\n");
  const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
  TII = ST.getInstrInfo();
  DAG = static_cast<ScheduleDAGMI *>(DAGInstrs);
  SyncedSchedGroups.clear();
  SyncedInstrs.clear();
  bool foundSB = false;
  bool foundIGLP = false;
  for (auto R = DAG->SUnits.rbegin(), E = DAG->SUnits.rend(); R != E; ++R) {
    unsigned Opc = R->getInstr()->getOpcode();
    // SCHED_[GROUP_]BARRIER and IGLP are mutually exclusive.
    if (Opc == AMDGPU::SCHED_BARRIER) {
      addSchedBarrierEdges(*R);
      foundSB = true;
    } else if (Opc == AMDGPU::SCHED_GROUP_BARRIER) {
      initSchedGroupBarrierPipelineStage(R);
      foundSB = true;
    } else if (Opc == AMDGPU::IGLP_OPT) {
      resetEdges(*R, DAG);
      if (!foundSB && !foundIGLP)
        initIGLPOpt(*R);
      foundIGLP = true;
    }
  }

  if (foundSB || foundIGLP) {
    PipelineSolver PS(SyncedSchedGroups, SyncedInstrs, DAG, IsBottomUp);
    // PipelineSolver performs the mutation by adding the edges it
    // determined as the best
    PS.solve();
  }
}

void IGroupLPDAGMutation::addSchedBarrierEdges(SUnit &SchedBarrier) {
  MachineInstr &MI = *SchedBarrier.getInstr();
  assert(MI.getOpcode() == AMDGPU::SCHED_BARRIER);
  // Remove all existing edges from the SCHED_BARRIER that were added due to the
  // instruction having side effects.
  resetEdges(SchedBarrier, DAG);
  auto InvertedMask =
      invertSchedBarrierMask((SchedGroupMask)MI.getOperand(0).getImm());
  SchedGroup SG(InvertedMask, std::nullopt, DAG, TII);
  SG.initSchedGroup();
  // Preserve original instruction ordering relative to the SCHED_BARRIER.
  SG.link(
      SchedBarrier,
      (function_ref<bool(const SUnit *A, const SUnit *B)>)[](
          const SUnit *A, const SUnit *B) { return A->NodeNum > B->NodeNum; });
}

SchedGroupMask
IGroupLPDAGMutation::invertSchedBarrierMask(SchedGroupMask Mask) const {
  // Invert mask and erase bits for types of instructions that are implied to be
  // allowed past the SCHED_BARRIER.
  SchedGroupMask InvertedMask = ~Mask;

  // ALU implies VALU, SALU, MFMA.
  if ((InvertedMask & SchedGroupMask::ALU) == SchedGroupMask::NONE)
    InvertedMask &=
        ~SchedGroupMask::VALU & ~SchedGroupMask::SALU & ~SchedGroupMask::MFMA;
  // VALU, SALU, MFMA implies ALU.
  else if ((InvertedMask & SchedGroupMask::VALU) == SchedGroupMask::NONE ||
           (InvertedMask & SchedGroupMask::SALU) == SchedGroupMask::NONE ||
           (InvertedMask & SchedGroupMask::MFMA) == SchedGroupMask::NONE)
    InvertedMask &= ~SchedGroupMask::ALU;

  // VMEM implies VMEM_READ, VMEM_WRITE.
  if ((InvertedMask & SchedGroupMask::VMEM) == SchedGroupMask::NONE)
    InvertedMask &= ~SchedGroupMask::VMEM_READ & ~SchedGroupMask::VMEM_WRITE;
  // VMEM_READ, VMEM_WRITE implies VMEM.
  else if ((InvertedMask & SchedGroupMask::VMEM_READ) == SchedGroupMask::NONE ||
           (InvertedMask & SchedGroupMask::VMEM_WRITE) == SchedGroupMask::NONE)
    InvertedMask &= ~SchedGroupMask::VMEM;

  // DS implies DS_READ, DS_WRITE.
  if ((InvertedMask & SchedGroupMask::DS) == SchedGroupMask::NONE)
    InvertedMask &= ~SchedGroupMask::DS_READ & ~SchedGroupMask::DS_WRITE;
  // DS_READ, DS_WRITE implies DS.
  else if ((InvertedMask & SchedGroupMask::DS_READ) == SchedGroupMask::NONE ||
           (InvertedMask & SchedGroupMask::DS_WRITE) == SchedGroupMask::NONE)
    InvertedMask &= ~SchedGroupMask::DS;

  return InvertedMask;
}

void IGroupLPDAGMutation::initSchedGroupBarrierPipelineStage(
    std::vector<SUnit>::reverse_iterator RIter) {
  // Remove all existing edges from the SCHED_GROUP_BARRIER that were added due
  // to the instruction having side effects.
  resetEdges(*RIter, DAG);
  MachineInstr &SGB = *RIter->getInstr();
  assert(SGB.getOpcode() == AMDGPU::SCHED_GROUP_BARRIER);
  int32_t SGMask = SGB.getOperand(0).getImm();
  int32_t Size = SGB.getOperand(1).getImm();
  int32_t SyncID = SGB.getOperand(2).getImm();

  auto &SG = SyncedSchedGroups[SyncID].emplace_back((SchedGroupMask)SGMask,
                                                    Size, SyncID, DAG, TII);

  SG.initSchedGroup(RIter, SyncedInstrs[SG.getSyncID()]);
}

void IGroupLPDAGMutation::initIGLPOpt(SUnit &SU) {
  IGLPStrategyID StrategyID =
      (IGLPStrategyID)SU.getInstr()->getOperand(0).getImm();
  auto S = createIGLPStrategy(StrategyID, DAG, TII);
  if (S->shouldApplyStrategy(DAG)) {
    IsBottomUp = S->IsBottomUp;
    S->applyIGLPStrategy(SyncedInstrs, SyncedSchedGroups);
  }
}

} // namespace

namespace llvm {

std::unique_ptr<ScheduleDAGMutation> createIGroupLPDAGMutation() {
  return std::make_unique<IGroupLPDAGMutation>();
}

} // end namespace llvm