1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
|
//===--- AMDGPUIGroupLP.cpp - AMDGPU IGroupLP ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file This file defines a set of schedule DAG mutations that can be used to
// override default scheduler behavior to enforce specific scheduling patterns.
// They should be used in cases where runtime performance considerations such as
// inter-wavefront interactions, mean that compile-time heuristics cannot
// predict the optimal instruction ordering, or in kernels where optimum
// instruction scheduling is important enough to warrant manual intervention.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUIGroupLP.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/TargetOpcodes.h"
using namespace llvm;
#define DEBUG_TYPE "igrouplp"
namespace {
static cl::opt<bool> EnableExactSolver(
"amdgpu-igrouplp-exact-solver", cl::Hidden,
cl::desc("Whether to use the exponential time solver to fit "
"the instructions to the pipeline as closely as "
"possible."),
cl::init(false));
static cl::opt<unsigned> CutoffForExact(
"amdgpu-igrouplp-exact-solver-cutoff", cl::init(0), cl::Hidden,
cl::desc("The maximum number of scheduling group conflicts "
"which we attempt to solve with the exponential time "
"exact solver. Problem sizes greater than this will"
"be solved by the less accurate greedy algorithm. Selecting "
"solver by size is superseded by manually selecting "
"the solver (e.g. by amdgpu-igrouplp-exact-solver"));
static cl::opt<uint64_t> MaxBranchesExplored(
"amdgpu-igrouplp-exact-solver-max-branches", cl::init(0), cl::Hidden,
cl::desc("The amount of branches that we are willing to explore with"
"the exact algorithm before giving up."));
static cl::opt<bool> UseCostHeur(
"amdgpu-igrouplp-exact-solver-cost-heur", cl::init(true), cl::Hidden,
cl::desc("Whether to use the cost heuristic to make choices as we "
"traverse the search space using the exact solver. Defaulted "
"to on, and if turned off, we will use the node order -- "
"attempting to put the later nodes in the later sched groups. "
"Experimentally, results are mixed, so this should be set on a "
"case-by-case basis."));
// Components of the mask that determines which instruction types may be may be
// classified into a SchedGroup.
enum class SchedGroupMask {
NONE = 0u,
ALU = 1u << 0,
VALU = 1u << 1,
SALU = 1u << 2,
MFMA = 1u << 3,
VMEM = 1u << 4,
VMEM_READ = 1u << 5,
VMEM_WRITE = 1u << 6,
DS = 1u << 7,
DS_READ = 1u << 8,
DS_WRITE = 1u << 9,
ALL = ALU | VALU | SALU | MFMA | VMEM | VMEM_READ | VMEM_WRITE | DS |
DS_READ | DS_WRITE,
LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL)
};
class SchedGroup;
// InstructionRule class is used to enact a filter which determines whether or
// not an SU maps to a given SchedGroup. It contains complementary data
// structures (e.g Cache) to help those filters.
class InstructionRule {
protected:
const SIInstrInfo *TII;
unsigned SGID;
// A cache made available to the Filter to store SUnits for subsequent
// invocations of the Filter
std::optional<SmallVector<SUnit *, 4>> Cache;
public:
virtual bool
apply(const SUnit *, const ArrayRef<SUnit *>,
SmallVectorImpl<SchedGroup> &) {
return true;
};
InstructionRule(const SIInstrInfo *TII, unsigned SGID,
bool NeedsCache = false)
: TII(TII), SGID(SGID) {
if (NeedsCache) {
Cache = SmallVector<SUnit *, 4>();
}
}
virtual ~InstructionRule() = default;
};
typedef DenseMap<SUnit *, SmallVector<int, 4>> SUnitsToCandidateSGsMap;
// Classify instructions into groups to enable fine tuned control over the
// scheduler. These groups may be more specific than current SchedModel
// instruction classes.
class SchedGroup {
private:
// Mask that defines which instruction types can be classified into this
// SchedGroup. The instruction types correspond to the mask from SCHED_BARRIER
// and SCHED_GROUP_BARRIER.
SchedGroupMask SGMask;
// Maximum number of SUnits that can be added to this group.
std::optional<unsigned> MaxSize;
// SchedGroups will only synchronize with other SchedGroups that have the same
// SyncID.
int SyncID = 0;
// SGID is used to map instructions to candidate SchedGroups
unsigned SGID;
// The different rules each instruction in this SchedGroup must conform to
SmallVector<std::shared_ptr<InstructionRule>, 4> Rules;
// Count of the number of created SchedGroups, used to initialize SGID.
static unsigned NumSchedGroups;
const SIInstrInfo *TII;
// Try to add and edge from SU A to SU B.
bool tryAddEdge(SUnit *A, SUnit *B);
// Use SGMask to determine whether we can classify MI as a member of this
// SchedGroup object.
bool canAddMI(const MachineInstr &MI) const;
public:
// Collection of SUnits that are classified as members of this group.
SmallVector<SUnit *, 32> Collection;
ScheduleDAGInstrs *DAG;
// Returns true if SU can be added to this SchedGroup.
bool canAddSU(SUnit &SU) const;
// Add DAG dependencies from all SUnits in this SchedGroup and this SU. If
// MakePred is true, SU will be a predecessor of the SUnits in this
// SchedGroup, otherwise SU will be a successor.
void link(SUnit &SU, bool MakePred = false);
// Add DAG dependencies and track which edges are added, and the count of
// missed edges
int link(SUnit &SU, bool MakePred,
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
// Add DAG dependencies from all SUnits in this SchedGroup and this SU.
// Use the predicate to determine whether SU should be a predecessor (P =
// true) or a successor (P = false) of this SchedGroup.
void link(SUnit &SU, function_ref<bool(const SUnit *A, const SUnit *B)> P);
// Add DAG dependencies such that SUnits in this group shall be ordered
// before SUnits in OtherGroup.
void link(SchedGroup &OtherGroup);
// Returns true if no more instructions may be added to this group.
bool isFull() const { return MaxSize && Collection.size() >= *MaxSize; }
// Append a constraint that SUs must meet in order to fit into this
// SchedGroup. Since many rules involve the relationship between a SchedGroup
// and the SUnits in other SchedGroups, rules are checked at Pipeline Solve
// time (rather than SchedGroup init time.)
void addRule(std::shared_ptr<InstructionRule> NewRule) {
Rules.push_back(NewRule);
}
// Returns true if the SU matches all rules
bool allowedByRules(const SUnit *SU,
SmallVectorImpl<SchedGroup> &SyncPipe) const {
if (Rules.empty())
return true;
for (size_t I = 0; I < Rules.size(); I++) {
auto TheRule = Rules[I].get();
if (!TheRule->apply(SU, Collection, SyncPipe)) {
return false;
}
}
return true;
}
// Add SU to the SchedGroup.
void add(SUnit &SU) {
LLVM_DEBUG(dbgs() << "For SchedGroup with mask "
<< format_hex((int)SGMask, 10, true) << " adding "
<< *SU.getInstr());
Collection.push_back(&SU);
}
// Remove last element in the SchedGroup
void pop() { Collection.pop_back(); }
// Identify and add all relevant SUs from the DAG to this SchedGroup.
void initSchedGroup();
// Add instructions to the SchedGroup bottom up starting from RIter.
// PipelineInstrs is a set of instructions that should not be added to the
// SchedGroup even when the other conditions for adding it are satisfied.
// RIter will be added to the SchedGroup as well, and dependencies will be
// added so that RIter will always be scheduled at the end of the group.
void initSchedGroup(std::vector<SUnit>::reverse_iterator RIter,
SUnitsToCandidateSGsMap &SyncedInstrs);
void initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs);
int getSyncID() { return SyncID; }
int getSGID() { return SGID; }
SchedGroupMask getMask() { return SGMask; }
SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize,
ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
: SGMask(SGMask), MaxSize(MaxSize), TII(TII), DAG(DAG) {
SGID = NumSchedGroups++;
}
SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize, int SyncID,
ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
: SGMask(SGMask), MaxSize(MaxSize), SyncID(SyncID), TII(TII), DAG(DAG) {
SGID = NumSchedGroups++;
}
};
// Remove all existing edges from a SCHED_BARRIER or SCHED_GROUP_BARRIER.
static void resetEdges(SUnit &SU, ScheduleDAGInstrs *DAG) {
assert(SU.getInstr()->getOpcode() == AMDGPU::SCHED_BARRIER ||
SU.getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER ||
SU.getInstr()->getOpcode() == AMDGPU::IGLP_OPT);
while (!SU.Preds.empty())
for (auto &P : SU.Preds)
SU.removePred(P);
while (!SU.Succs.empty())
for (auto &S : SU.Succs)
for (auto &SP : S.getSUnit()->Preds)
if (SP.getSUnit() == &SU)
S.getSUnit()->removePred(SP);
}
typedef std::pair<SUnit *, SmallVector<int, 4>> SUToCandSGsPair;
typedef SmallVector<SUToCandSGsPair, 4> SUsToCandSGsVec;
// The PipelineSolver is used to assign SUnits to SchedGroups in a pipeline
// in non-trivial cases. For example, if the requested pipeline is
// {VMEM_READ, VALU, MFMA, VMEM_READ} and we encounter a VMEM_READ instruction
// in the DAG, then we will have an instruction that can not be trivially
// assigned to a SchedGroup. The PipelineSolver class implements two algorithms
// to find a good solution to the pipeline -- a greedy algorithm and an exact
// algorithm. The exact algorithm has an exponential time complexity and should
// only be used for small sized problems or medium sized problems where an exact
// solution is highly desired.
class PipelineSolver {
ScheduleDAGMI *DAG;
// Instructions that can be assigned to multiple SchedGroups
DenseMap<int, SUnitsToCandidateSGsMap> SyncedInstrs;
SmallVector<SUsToCandSGsVec, 4> PipelineInstrs;
DenseMap<int, SmallVector<SchedGroup, 4>> SyncedSchedGroups;
// The current working pipeline
SmallVector<SmallVector<SchedGroup, 4>, 4> CurrPipeline;
// The pipeline that has the best solution found so far
SmallVector<SmallVector<SchedGroup, 4>, 4> BestPipeline;
// Whether or not we actually have any SyncedInstrs to try to solve.
bool NeedsSolver = false;
// Compute an estimate of the size of search tree -- the true size is
// the product of each conflictedInst.Matches.size() across all SyncPipelines
unsigned computeProblemSize();
// The cost penalty of not assigning a SU to a SchedGroup
int MissPenalty = 0;
// Costs in terms of the number of edges we are unable to add
int BestCost = -1;
int CurrCost = 0;
// Index pointing to the conflicting instruction that is currently being
// fitted
int CurrConflInstNo = 0;
// Index to the pipeline that is currently being fitted
int CurrSyncGroupIdx = 0;
// The first non trivial pipeline
int BeginSyncGroupIdx = 0;
// How many branches we have explored
uint64_t BranchesExplored = 0;
// The direction in which we process the candidate SchedGroups per SU
bool IsBottomUp = 1;
// Update indices to fit next conflicting instruction
void advancePosition();
// Recede indices to attempt to find better fit for previous conflicting
// instruction
void retreatPosition();
// The exponential time algorithm which finds the provably best fit
bool solveExact();
// The polynomial time algorithm which attempts to find a good fit
bool solveGreedy();
// Find the best SchedGroup for the current SU using the heuristic given all
// current information. One step in the greedy algorithm. Templated against
// the SchedGroup iterator (either reverse or forward).
template <typename T>
void greedyFind(std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I,
T E);
// Whether or not the current solution is optimal
bool checkOptimal();
// Populate the ready list, prioiritizing fewest missed edges first
// Templated against the SchedGroup iterator (either reverse or forward).
template <typename T>
void populateReadyList(SmallVectorImpl<std::pair<int, int>> &ReadyList, T I,
T E);
// Add edges corresponding to the SchedGroups as assigned by solver
void makePipeline();
// Link the SchedGroups in the best found pipeline.
// Tmplated against the SchedGroup iterator (either reverse or forward).
template <typename T> void linkSchedGroups(T I, T E);
// Add the edges from the SU to the other SchedGroups in pipeline, and
// return the number of edges missed.
int addEdges(SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID,
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
// Link the pipeline as if \p SU was in the SchedGroup with ID \p SGID. It
// returns the cost (in terms of missed pipeline edges), and tracks the edges
// added in \p AddedEdges
template <typename T>
int linkSUnit(SUnit *SU, int SGID,
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E);
// Remove the edges passed via \p AddedEdges
void removeEdges(const std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
// Convert the passed in maps to arrays for bidirectional iterators
void convertSyncMapsToArrays();
void reset();
public:
// Invoke the solver to map instructions to instruction groups. Heuristic &&
// command-line-option determines to use exact or greedy algorithm.
void solve();
PipelineSolver(DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
ScheduleDAGMI *DAG, bool IsBottomUp = 1)
: DAG(DAG), SyncedInstrs(SyncedInstrs),
SyncedSchedGroups(SyncedSchedGroups), IsBottomUp(IsBottomUp) {
for (auto &PipelineInstrs : SyncedInstrs) {
if (PipelineInstrs.second.size() > 0) {
NeedsSolver = true;
break;
}
}
if (!NeedsSolver)
return;
convertSyncMapsToArrays();
CurrPipeline = BestPipeline;
while (static_cast<size_t>(BeginSyncGroupIdx) < PipelineInstrs.size() &&
PipelineInstrs[BeginSyncGroupIdx].size() == 0)
++BeginSyncGroupIdx;
if (static_cast<size_t>(BeginSyncGroupIdx) >= PipelineInstrs.size())
return;
}
};
void PipelineSolver::reset() {
for (auto &SyncPipeline : CurrPipeline) {
for (auto &SG : SyncPipeline) {
SmallVector<SUnit *, 32> TempCollection = SG.Collection;
SG.Collection.clear();
auto SchedBarr = llvm::find_if(TempCollection, [](SUnit *SU) {
return SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER;
});
if (SchedBarr != TempCollection.end())
SG.Collection.push_back(*SchedBarr);
}
}
CurrSyncGroupIdx = BeginSyncGroupIdx;
CurrConflInstNo = 0;
CurrCost = 0;
}
void PipelineSolver::convertSyncMapsToArrays() {
for (auto &SyncPipe : SyncedSchedGroups) {
BestPipeline.insert(BestPipeline.begin(), SyncPipe.second);
}
int PipelineIDx = SyncedInstrs.size() - 1;
PipelineInstrs.resize(SyncedInstrs.size());
for (auto &SyncInstrMap : SyncedInstrs) {
for (auto &SUsToCandSGs : SyncInstrMap.second) {
if (PipelineInstrs[PipelineIDx].size() == 0) {
PipelineInstrs[PipelineIDx].push_back(
std::pair(SUsToCandSGs.first, SUsToCandSGs.second));
continue;
}
auto SortPosition = PipelineInstrs[PipelineIDx].begin();
// Insert them in sorted order -- this allows for good parsing order in
// the greedy algorithm
while (SortPosition != PipelineInstrs[PipelineIDx].end() &&
SUsToCandSGs.first->NodeNum > SortPosition->first->NodeNum)
++SortPosition;
PipelineInstrs[PipelineIDx].insert(
SortPosition, std::pair(SUsToCandSGs.first, SUsToCandSGs.second));
}
--PipelineIDx;
}
}
template <typename T> void PipelineSolver::linkSchedGroups(T I, T E) {
for (; I != E; ++I) {
auto &GroupA = *I;
for (auto J = std::next(I); J != E; ++J) {
auto &GroupB = *J;
GroupA.link(GroupB);
}
}
}
void PipelineSolver::makePipeline() {
// Preserve the order of barrier for subsequent SchedGroupBarrier mutations
for (auto &SyncPipeline : BestPipeline) {
LLVM_DEBUG(dbgs() << "Printing SchedGroups\n");
for (auto &SG : SyncPipeline) {
LLVM_DEBUG(dbgs() << "SchedGroup with SGID " << SG.getSGID()
<< " has: \n");
SUnit *SGBarr = nullptr;
for (auto &SU : SG.Collection) {
if (SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
SGBarr = SU;
LLVM_DEBUG(dbgs() << "SU(" << SU->NodeNum << ")\n");
}
// Command line requested IGroupLP doesn't have SGBarr
if (!SGBarr)
continue;
resetEdges(*SGBarr, DAG);
SG.link(*SGBarr, false);
}
}
for (auto &SyncPipeline : BestPipeline) {
IsBottomUp ? linkSchedGroups(SyncPipeline.rbegin(), SyncPipeline.rend())
: linkSchedGroups(SyncPipeline.begin(), SyncPipeline.end());
}
}
template <typename T>
int PipelineSolver::linkSUnit(
SUnit *SU, int SGID, std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges,
T I, T E) {
bool MakePred = false;
int AddedCost = 0;
for (; I < E; ++I) {
if (I->getSGID() == SGID) {
MakePred = true;
continue;
}
auto Group = *I;
AddedCost += Group.link(*SU, MakePred, AddedEdges);
assert(AddedCost >= 0);
}
return AddedCost;
}
int PipelineSolver::addEdges(
SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID,
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) {
// For IsBottomUp, the first SchedGroup in SyncPipeline contains the
// instructions that are the ultimate successors in the resultant mutation.
// Therefore, in such a configuration, the SchedGroups occurring before the
// candidate SGID are successors of the candidate SchedGroup, thus the current
// SU should be linked as a predecessor to SUs in those SchedGroups. The
// opposite is true if !IsBottomUp. IsBottomUp occurs in the case of multiple
// SCHED_GROUP_BARRIERS, or if a user specifies IGLP_OPT SchedGroups using
// IsBottomUp (in reverse).
return IsBottomUp ? linkSUnit(SU, SGID, AddedEdges, SyncPipeline.rbegin(),
SyncPipeline.rend())
: linkSUnit(SU, SGID, AddedEdges, SyncPipeline.begin(),
SyncPipeline.end());
}
void PipelineSolver::removeEdges(
const std::vector<std::pair<SUnit *, SUnit *>> &EdgesToRemove) {
// Only remove the edges that we have added when testing
// the fit.
for (auto &PredSuccPair : EdgesToRemove) {
SUnit *Pred = PredSuccPair.first;
SUnit *Succ = PredSuccPair.second;
auto Match = llvm::find_if(
Succ->Preds, [&Pred](SDep &P) { return P.getSUnit() == Pred; });
if (Match != Succ->Preds.end()) {
assert(Match->isArtificial());
Succ->removePred(*Match);
}
}
}
void PipelineSolver::advancePosition() {
++CurrConflInstNo;
if (static_cast<size_t>(CurrConflInstNo) >=
PipelineInstrs[CurrSyncGroupIdx].size()) {
CurrConflInstNo = 0;
++CurrSyncGroupIdx;
// Advance to next non-trivial pipeline
while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size() &&
PipelineInstrs[CurrSyncGroupIdx].size() == 0)
++CurrSyncGroupIdx;
}
}
void PipelineSolver::retreatPosition() {
assert(CurrConflInstNo >= 0);
assert(CurrSyncGroupIdx >= 0);
if (CurrConflInstNo > 0) {
--CurrConflInstNo;
return;
}
if (CurrConflInstNo == 0) {
// If we return to the starting position, we have explored
// the entire tree
if (CurrSyncGroupIdx == BeginSyncGroupIdx)
return;
--CurrSyncGroupIdx;
// Go to previous non-trivial pipeline
while (PipelineInstrs[CurrSyncGroupIdx].size() == 0)
--CurrSyncGroupIdx;
CurrConflInstNo = PipelineInstrs[CurrSyncGroupIdx].size() - 1;
}
}
bool PipelineSolver::checkOptimal() {
if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size()) {
if (BestCost == -1 || CurrCost < BestCost) {
BestPipeline = CurrPipeline;
BestCost = CurrCost;
LLVM_DEBUG(dbgs() << "Found Fit with cost " << BestCost << "\n");
}
assert(BestCost >= 0);
}
bool DoneExploring = false;
if (MaxBranchesExplored > 0 && BranchesExplored >= MaxBranchesExplored)
DoneExploring = true;
return (DoneExploring || BestCost == 0);
}
template <typename T>
void PipelineSolver::populateReadyList(
SmallVectorImpl<std::pair<int, int>> &ReadyList, T I, T E) {
SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
auto SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
assert(CurrSU.second.size() >= 1);
for (; I != E; ++I) {
std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
int CandSGID = *I;
SchedGroup *Match;
for (auto &SG : SyncPipeline) {
if (SG.getSGID() == CandSGID)
Match = &SG;
}
if (UseCostHeur) {
if (Match->isFull()) {
ReadyList.push_back(std::pair(*I, MissPenalty));
continue;
}
int TempCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
ReadyList.push_back(std::pair(*I, TempCost));
removeEdges(AddedEdges);
} else
ReadyList.push_back(std::pair(*I, -1));
}
if (UseCostHeur) {
std::sort(ReadyList.begin(), ReadyList.end(),
[](std::pair<int, int> A, std::pair<int, int> B) {
return A.second < B.second;
});
}
assert(ReadyList.size() == CurrSU.second.size());
}
bool PipelineSolver::solveExact() {
if (checkOptimal())
return true;
if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size())
return false;
assert(static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size());
assert(static_cast<size_t>(CurrConflInstNo) <
PipelineInstrs[CurrSyncGroupIdx].size());
SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum
<< ") in Pipeline # " << CurrSyncGroupIdx << "\n");
// SchedGroup -> Cost pairs
SmallVector<std::pair<int, int>, 4> ReadyList;
// Prioritize the candidate sched groups in terms of lowest cost first
IsBottomUp ? populateReadyList(ReadyList, CurrSU.second.rbegin(),
CurrSU.second.rend())
: populateReadyList(ReadyList, CurrSU.second.begin(),
CurrSU.second.end());
auto I = ReadyList.begin();
auto E = ReadyList.end();
for (; I != E; ++I) {
// If we are trying SGs in least cost order, and the current SG is cost
// infeasible, then all subsequent SGs will also be cost infeasible, so we
// can prune.
if (BestCost != -1 && (CurrCost + I->second > BestCost))
return false;
int CandSGID = I->first;
int AddedCost = 0;
std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
SchedGroup *Match;
for (auto &SG : SyncPipeline) {
if (SG.getSGID() == CandSGID)
Match = &SG;
}
if (Match->isFull())
continue;
if (!Match->allowedByRules(CurrSU.first, SyncPipeline))
continue;
LLVM_DEBUG(dbgs() << "Assigning to SchedGroup with Mask "
<< (int)Match->getMask() << "and ID " << CandSGID
<< "\n");
Match->add(*CurrSU.first);
AddedCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
LLVM_DEBUG(dbgs() << "Cost of Assignment: " << AddedCost << "\n");
CurrCost += AddedCost;
advancePosition();
++BranchesExplored;
bool FinishedExploring = false;
// If the Cost after adding edges is greater than a known solution,
// backtrack
if (CurrCost < BestCost || BestCost == -1) {
if (solveExact()) {
FinishedExploring = BestCost != 0;
if (!FinishedExploring)
return true;
}
}
retreatPosition();
CurrCost -= AddedCost;
removeEdges(AddedEdges);
Match->pop();
CurrPipeline[CurrSyncGroupIdx] = SyncPipeline;
if (FinishedExploring)
return true;
}
// Try the pipeline where the current instruction is omitted
// Potentially if we omit a problematic instruction from the pipeline,
// all the other instructions can nicely fit.
CurrCost += MissPenalty;
advancePosition();
LLVM_DEBUG(dbgs() << "NOT Assigned (" << CurrSU.first->NodeNum << ")\n");
bool FinishedExploring = false;
if (CurrCost < BestCost || BestCost == -1) {
if (solveExact()) {
bool FinishedExploring = BestCost != 0;
if (!FinishedExploring)
return true;
}
}
retreatPosition();
CurrCost -= MissPenalty;
return FinishedExploring;
}
template <typename T>
void PipelineSolver::greedyFind(
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E) {
SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
int BestNodeCost = -1;
int TempCost;
SchedGroup *BestGroup = nullptr;
int BestGroupID = -1;
auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum
<< ") in Pipeline # " << CurrSyncGroupIdx << "\n");
// Since we have added the potential SchedGroups from bottom up, but
// traversed the DAG from top down, parse over the groups from last to
// first. If we fail to do this for the greedy algorithm, the solution will
// likely not be good in more complex cases.
for (; I != E; ++I) {
std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
int CandSGID = *I;
SchedGroup *Match;
for (auto &SG : SyncPipeline) {
if (SG.getSGID() == CandSGID)
Match = &SG;
}
LLVM_DEBUG(dbgs() << "Trying SGID # " << CandSGID << " with Mask "
<< (int)Match->getMask() << "\n");
if (Match->isFull()) {
LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " is full\n");
continue;
}
if (!Match->allowedByRules(CurrSU.first, SyncPipeline)) {
LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " has conflicting rule\n");
continue;
}
TempCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
LLVM_DEBUG(dbgs() << "Cost of Group " << TempCost << "\n");
if (TempCost < BestNodeCost || BestNodeCost == -1) {
BestGroup = Match;
BestNodeCost = TempCost;
BestGroupID = CandSGID;
}
removeEdges(AddedEdges);
if (BestNodeCost == 0)
break;
}
if (BestGroupID != -1) {
BestGroup->add(*CurrSU.first);
addEdges(SyncPipeline, CurrSU.first, BestGroupID, AddedEdges);
LLVM_DEBUG(dbgs() << "Best Group has ID: " << BestGroupID << " and Mask"
<< (int)BestGroup->getMask() << "\n");
BestCost += TempCost;
} else
BestCost += MissPenalty;
CurrPipeline[CurrSyncGroupIdx] = SyncPipeline;
}
bool PipelineSolver::solveGreedy() {
BestCost = 0;
std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size()) {
SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
IsBottomUp
? greedyFind(AddedEdges, CurrSU.second.rbegin(), CurrSU.second.rend())
: greedyFind(AddedEdges, CurrSU.second.begin(), CurrSU.second.end());
advancePosition();
}
BestPipeline = CurrPipeline;
removeEdges(AddedEdges);
return false;
}
unsigned PipelineSolver::computeProblemSize() {
unsigned ProblemSize = 0;
for (auto &PipeConflicts : PipelineInstrs) {
ProblemSize += PipeConflicts.size();
}
return ProblemSize;
}
void PipelineSolver::solve() {
if (!NeedsSolver)
return;
unsigned ProblemSize = computeProblemSize();
assert(ProblemSize > 0);
bool BelowCutoff = (CutoffForExact > 0) && ProblemSize <= CutoffForExact;
MissPenalty = (ProblemSize / 2) + 1;
LLVM_DEBUG(DAG->dump());
if (EnableExactSolver || BelowCutoff) {
LLVM_DEBUG(dbgs() << "Starting Greedy pipeline solver\n");
solveGreedy();
reset();
LLVM_DEBUG(dbgs() << "Greedy produced best cost of " << BestCost << "\n");
if (BestCost > 0) {
LLVM_DEBUG(dbgs() << "Starting EXACT pipeline solver\n");
solveExact();
LLVM_DEBUG(dbgs() << "Exact produced best cost of " << BestCost << "\n");
}
} else { // Use the Greedy Algorithm by default
LLVM_DEBUG(dbgs() << "Starting GREEDY pipeline solver\n");
solveGreedy();
}
makePipeline();
LLVM_DEBUG(dbgs() << "After applying mutation\n");
LLVM_DEBUG(DAG->dump());
}
enum IGLPStrategyID : int {
MFMASmallGemmOptID = 0,
MFMASmallGemmSingleWaveOptID = 1,
};
// Implement a IGLP scheduling strategy.
class IGLPStrategy {
protected:
ScheduleDAGInstrs *DAG;
const SIInstrInfo *TII;
public:
// Add SchedGroups to \p Pipeline to implement this Strategy.
virtual void applyIGLPStrategy(
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) = 0;
// Returns true if this strategy should be applied to a ScheduleDAG.
virtual bool shouldApplyStrategy(ScheduleDAGInstrs *DAG) = 0;
bool IsBottomUp = 1;
IGLPStrategy(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
: DAG(DAG), TII(TII) {}
virtual ~IGLPStrategy() = default;
};
class MFMASmallGemmOpt final : public IGLPStrategy {
private:
public:
void applyIGLPStrategy(
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) override;
bool shouldApplyStrategy(ScheduleDAGInstrs *DAG) override { return true; }
MFMASmallGemmOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
: IGLPStrategy(DAG, TII) {
IsBottomUp = 1;
}
};
void MFMASmallGemmOpt::applyIGLPStrategy(
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) {
// Count the number of MFMA instructions.
unsigned MFMACount = 0;
for (const MachineInstr &I : *DAG)
if (TII->isMFMAorWMMA(I))
++MFMACount;
const unsigned PipelineSyncID = 0;
SchedGroup *SG = nullptr;
for (unsigned I = 0; I < MFMACount * 3; ++I) {
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::DS, 2, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
}
}
class MFMASmallGemmSingleWaveOpt final : public IGLPStrategy {
private:
// Whether the DS_READ is a predecessor of first four MFMA in region
class EnablesInitialMFMA final : public InstructionRule {
public:
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
SmallVectorImpl<SchedGroup> &SyncPipe) override {
if (!SyncPipe.size())
return false;
int MFMAsFound = 0;
if (!Cache->size()) {
for (auto &Elt : SyncPipe[0].DAG->SUnits) {
if (TII->isMFMAorWMMA(*Elt.getInstr())) {
++MFMAsFound;
if (MFMAsFound > 4)
break;
Cache->push_back(&Elt);
}
}
}
assert(Cache->size());
auto DAG = SyncPipe[0].DAG;
for (auto &Elt : *Cache) {
if (DAG->IsReachable(Elt, const_cast<SUnit *>(SU)))
return true;
}
return false;
}
EnablesInitialMFMA(const SIInstrInfo *TII, unsigned SGID,
bool NeedsCache = false)
: InstructionRule(TII, SGID, NeedsCache) {}
};
// Whether the MI is a V_PERM and is a predecessor of a common DS_WRITE
class IsPermForDSW final : public InstructionRule {
public:
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
SmallVectorImpl<SchedGroup> &SyncPipe) override {
auto MI = SU->getInstr();
if (MI->getOpcode() != AMDGPU::V_PERM_B32_e64)
return false;
bool FitsInGroup = false;
// Does the VALU have a DS_WRITE successor
if (!Collection.size()) {
for (auto &Succ : SU->Succs) {
SUnit *SuccUnit = Succ.getSUnit();
if (TII->isDS(*SuccUnit->getInstr()) &&
SuccUnit->getInstr()->mayStore()) {
Cache->push_back(SuccUnit);
FitsInGroup = true;
}
}
return FitsInGroup;
}
assert(Cache->size());
// Does the VALU have a DS_WRITE successor that is the same as other
// VALU already in the group. The V_PERMs will all share 1 DS_W succ
return std::any_of(Cache->begin(), Cache->end(), [&SU](SUnit *Elt) {
return std::any_of(SU->Succs.begin(), SU->Succs.end(),
[&Elt](const SDep &ThisSucc) {
return ThisSucc.getSUnit() == Elt;
});
});
}
IsPermForDSW(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
: InstructionRule(TII, SGID, NeedsCache) {}
};
// Whether the SU is a successor of any element in previous SchedGroup
class IsSuccOfPrevGroup final : public InstructionRule {
public:
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
SmallVectorImpl<SchedGroup> &SyncPipe) override {
SchedGroup *OtherGroup = nullptr;
for (auto &PipeSG : SyncPipe) {
if ((unsigned)PipeSG.getSGID() == SGID - 1) {
OtherGroup = &PipeSG;
}
}
if (!OtherGroup)
return false;
if (!OtherGroup->Collection.size())
return true;
// Does the previous VALU have this DS_Write as a successor
return (std::any_of(OtherGroup->Collection.begin(),
OtherGroup->Collection.end(), [&SU](SUnit *Elt) {
return std::any_of(Elt->Succs.begin(),
Elt->Succs.end(),
[&SU](SDep &Succ) {
return Succ.getSUnit() == SU;
});
}));
}
IsSuccOfPrevGroup(const SIInstrInfo *TII, unsigned SGID,
bool NeedsCache = false)
: InstructionRule(TII, SGID, NeedsCache) {}
};
// Whether the combined load width of group is 128 bits
class VMEMSize final : public InstructionRule {
public:
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
SmallVectorImpl<SchedGroup> &SyncPipe) override {
auto MI = SU->getInstr();
if (MI->getOpcode() == TargetOpcode::BUNDLE)
return false;
if (!Collection.size())
return true;
int NumBits = 0;
auto TRI = TII->getRegisterInfo();
auto &MRI = MI->getParent()->getParent()->getRegInfo();
for (auto &Elt : Collection) {
auto Op = Elt->getInstr()->getOperand(0);
auto Size =
TRI.getRegSizeInBits(*TRI.getRegClassForOperandReg(MRI, Op));
NumBits += Size;
}
if (NumBits < 128) {
assert(TII->isVMEM(*MI) && MI->mayLoad());
if (NumBits + TRI.getRegSizeInBits(*TRI.getRegClassForOperandReg(
MRI, MI->getOperand(0))) <=
128)
return true;
}
return false;
}
VMEMSize(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
: InstructionRule(TII, SGID, NeedsCache) {}
};
// Whether the SU shares a V_PERM predecessor with any SU in the SchedGroup
// that is /p Distance steps away
class SharesPredWithPrevNthGroup final : public InstructionRule {
private:
unsigned Distance = 1;
public:
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
SmallVectorImpl<SchedGroup> &SyncPipe) override {
SchedGroup *OtherGroup = nullptr;
if (!SyncPipe.size())
return false;
if (!Cache->size()) {
for (auto &PipeSG : SyncPipe) {
if ((unsigned)PipeSG.getSGID() == SGID - Distance) {
OtherGroup = &PipeSG;
}
}
if (!OtherGroup)
return false;
if (!OtherGroup->Collection.size())
return true;
for (auto &OtherEle : OtherGroup->Collection) {
for (auto &Pred : OtherEle->Preds) {
if (Pred.getSUnit()->getInstr()->getOpcode() ==
AMDGPU::V_PERM_B32_e64)
Cache->push_back(Pred.getSUnit());
}
}
}
assert(Cache->size());
auto DAG = SyncPipe[0].DAG;
// Does the previous DS_WRITE share a V_PERM predecessor with this
// VMEM_READ
return (
std::any_of(Cache->begin(), Cache->end(), [&SU, &DAG](SUnit *Elt) {
return DAG->IsReachable(const_cast<SUnit *>(SU), Elt);
}));
}
SharesPredWithPrevNthGroup(unsigned Distance, const SIInstrInfo *TII,
unsigned SGID, bool NeedsCache = false)
: InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {}
};
public:
void applyIGLPStrategy(
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) override;
bool shouldApplyStrategy(ScheduleDAGInstrs *DAG) override { return true; }
MFMASmallGemmSingleWaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
: IGLPStrategy(DAG, TII) {
IsBottomUp = 0;
}
};
void MFMASmallGemmSingleWaveOpt::applyIGLPStrategy(
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups) {
unsigned MFMACount = 0;
unsigned DSWCount = 0;
unsigned DSWWithPermCount = 0;
unsigned DSWWithSharedVMEMCount = 0;
unsigned DSRCount = 0;
SmallVector<SUnit *, 6> DSWithPerms;
for (auto &SU : DAG->SUnits) {
auto I = SU.getInstr();
if (TII->isMFMAorWMMA(*I))
++MFMACount;
else if (TII->isDS(*I)) {
if (I->mayLoad())
++DSRCount;
else if (I->mayStore()) {
++DSWCount;
for (auto Pred : SU.Preds) {
if (Pred.getSUnit()->getInstr()->getOpcode() ==
AMDGPU::V_PERM_B32_e64) {
DSWithPerms.push_back(&SU);
break;
}
}
}
}
}
DSWWithPermCount = DSWithPerms.size();
auto I = DSWithPerms.begin();
auto E = DSWithPerms.end();
// Get the count of DS_WRITES with V_PERM predecessors which
// have loop carried dependencies (WAR) on the same VMEM_READs.
// We consider partial overlap as a miss -- in other words,
// for a given DS_W, we only consider another DS_W as matching
// if there is a corresponding (in terms of the VMEM_R it uses) V_PERM pred
// for every V_PERM pred of this DS_W.
DenseMap<MachineInstr *, SUnit *> VMEMLookup;
SmallVector<SUnit *, 6> Counted;
for (; I != E; I++) {
SUnit *Cand = nullptr;
bool MissedAny = false;
for (auto &Pred : (*I)->Preds) {
if (Pred.getSUnit()->getInstr()->getOpcode() != AMDGPU::V_PERM_B32_e64)
continue;
if (Cand &&
std::find(Counted.begin(), Counted.end(), Cand) != Counted.end())
break;
for (auto &Succ : Pred.getSUnit()->Succs) {
auto MI = Succ.getSUnit()->getInstr();
if (!TII->isVMEM(*MI) || !MI->mayLoad())
continue;
if (MissedAny || !VMEMLookup.size()) {
MissedAny = true;
VMEMLookup[MI] = *I;
continue;
}
if (!VMEMLookup.contains(MI)) {
MissedAny = true;
VMEMLookup[MI] = *I;
continue;
}
Cand = VMEMLookup[MI];
if (std::find(Counted.begin(), Counted.end(), Cand) != Counted.end()) {
MissedAny = true;
break;
}
}
}
if (!MissedAny && Cand) {
DSWWithSharedVMEMCount += 2;
Counted.push_back(Cand);
Counted.push_back(*I);
}
}
assert(DSWWithSharedVMEMCount <= DSWWithPermCount);
SchedGroup *SG;
unsigned PipelineSyncID = 0;
// For kernels with V_PERM, there are enough VALU to mix in between MFMAs
if (DSWWithPermCount) {
for (unsigned I = 0; I < MFMACount; I++) {
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VALU, 2, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
}
}
PipelineSyncID = 1;
// Phase 1: Break up DS_READ and MFMA clusters.
// First DS_READ to make ready initial MFMA, then interleave MFMA with DS_READ
// prefetch
// Make ready initial MFMA
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::DS_READ, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<EnablesInitialMFMA>(TII, SG->getSGID(), true));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
// Interleave MFMA with DS_READ prefetch
for (unsigned I = 0; I < DSRCount - 4; ++I) {
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::DS_READ, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
}
// Phase 2a: Loop carried dependency with V_PERM
// Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they
// depend on. Interleave MFMA to keep XDL unit busy throughout.
for (unsigned I = 0; I < DSWWithPermCount - DSWWithSharedVMEMCount; ++I) {
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID(), false));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
1, TII, SG->getSGID(), true));
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
3, TII, SG->getSGID(), true));
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
}
// Phase 2b: Loop carried dependency without V_PERM
// Schedule DS_WRITE as closely as possible to the VMEM_READ they depend on.
// Interleave MFMA to keep XDL unit busy throughout.
for (unsigned I = 0; I < DSWCount - DSWWithPermCount; I++) {
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
}
// Phase 2c: Loop carried dependency with V_PERM, VMEM_READs are
// ultimately used by two DS_WRITE
// Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they
// depend on. Interleave MFMA to keep XDL unit busy throughout.
for (unsigned I = 0; I < DSWWithSharedVMEMCount; ++I) {
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID(), false));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID(), false));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
2, TII, SG->getSGID(), true));
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
4, TII, SG->getSGID(), true));
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID(), false));
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
}
}
static std::unique_ptr<IGLPStrategy>
createIGLPStrategy(IGLPStrategyID ID, ScheduleDAGInstrs *DAG,
const SIInstrInfo *TII) {
switch (ID) {
case MFMASmallGemmOptID:
return std::make_unique<MFMASmallGemmOpt>(DAG, TII);
case MFMASmallGemmSingleWaveOptID:
return std::make_unique<MFMASmallGemmSingleWaveOpt>(DAG, TII);
}
llvm_unreachable("Unknown IGLPStrategyID");
}
class IGroupLPDAGMutation : public ScheduleDAGMutation {
private:
const SIInstrInfo *TII;
ScheduleDAGMI *DAG;
// Organize lists of SchedGroups by their SyncID. SchedGroups /
// SCHED_GROUP_BARRIERs with different SyncIDs will have no edges added
// between then.
DenseMap<int, SmallVector<SchedGroup, 4>> SyncedSchedGroups;
// Used to track instructions that can be mapped to multiple sched groups
DenseMap<int, SUnitsToCandidateSGsMap> SyncedInstrs;
// Add DAG edges that enforce SCHED_BARRIER ordering.
void addSchedBarrierEdges(SUnit &SU);
// Use a SCHED_BARRIER's mask to identify instruction SchedGroups that should
// not be reordered accross the SCHED_BARRIER. This is used for the base
// SCHED_BARRIER, and not SCHED_GROUP_BARRIER. The difference is that
// SCHED_BARRIER will always block all instructions that can be classified
// into a particular SchedClass, whereas SCHED_GROUP_BARRIER has a fixed size
// and may only synchronize with some SchedGroups. Returns the inverse of
// Mask. SCHED_BARRIER's mask describes which instruction types should be
// allowed to be scheduled across it. Invert the mask to get the
// SchedGroupMask of instructions that should be barred.
SchedGroupMask invertSchedBarrierMask(SchedGroupMask Mask) const;
// Create SchedGroups for a SCHED_GROUP_BARRIER.
void initSchedGroupBarrierPipelineStage(
std::vector<SUnit>::reverse_iterator RIter);
void initIGLPOpt(SUnit &SU);
public:
void apply(ScheduleDAGInstrs *DAGInstrs) override;
// The order in which the PipelineSolver should process the candidate
// SchedGroup for a PipelineInstr. BOTTOM_UP will try to add SUs to the last
// created SchedGroup first, and will consider that as the ultimate
// predecessor group when linking. TOP_DOWN instead links and processes the
// first created SchedGroup first.
bool IsBottomUp = 1;
IGroupLPDAGMutation() = default;
};
unsigned SchedGroup::NumSchedGroups = 0;
bool SchedGroup::tryAddEdge(SUnit *A, SUnit *B) {
if (A != B && DAG->canAddEdge(B, A)) {
DAG->addEdge(B, SDep(A, SDep::Artificial));
return true;
}
return false;
}
bool SchedGroup::canAddMI(const MachineInstr &MI) const {
bool Result = false;
if (MI.isMetaInstruction())
Result = false;
else if (((SGMask & SchedGroupMask::ALU) != SchedGroupMask::NONE) &&
(TII->isVALU(MI) || TII->isMFMAorWMMA(MI) || TII->isSALU(MI)))
Result = true;
else if (((SGMask & SchedGroupMask::VALU) != SchedGroupMask::NONE) &&
TII->isVALU(MI) && !TII->isMFMAorWMMA(MI))
Result = true;
else if (((SGMask & SchedGroupMask::SALU) != SchedGroupMask::NONE) &&
TII->isSALU(MI))
Result = true;
else if (((SGMask & SchedGroupMask::MFMA) != SchedGroupMask::NONE) &&
TII->isMFMAorWMMA(MI))
Result = true;
else if (((SGMask & SchedGroupMask::VMEM) != SchedGroupMask::NONE) &&
(TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
Result = true;
else if (((SGMask & SchedGroupMask::VMEM_READ) != SchedGroupMask::NONE) &&
MI.mayLoad() &&
(TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
Result = true;
else if (((SGMask & SchedGroupMask::VMEM_WRITE) != SchedGroupMask::NONE) &&
MI.mayStore() &&
(TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
Result = true;
else if (((SGMask & SchedGroupMask::DS) != SchedGroupMask::NONE) &&
TII->isDS(MI))
Result = true;
else if (((SGMask & SchedGroupMask::DS_READ) != SchedGroupMask::NONE) &&
MI.mayLoad() && TII->isDS(MI))
Result = true;
else if (((SGMask & SchedGroupMask::DS_WRITE) != SchedGroupMask::NONE) &&
MI.mayStore() && TII->isDS(MI))
Result = true;
LLVM_DEBUG(
dbgs() << "For SchedGroup with mask " << format_hex((int)SGMask, 10, true)
<< (Result ? " could classify " : " unable to classify ") << MI);
return Result;
}
int SchedGroup::link(SUnit &SU, bool MakePred,
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) {
int MissedEdges = 0;
for (auto *A : Collection) {
SUnit *B = &SU;
if (A == B || A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
continue;
if (MakePred)
std::swap(A, B);
if (DAG->IsReachable(B, A))
continue;
// tryAddEdge returns false if there is a dependency that makes adding
// the A->B edge impossible, otherwise it returns true;
bool Added = tryAddEdge(A, B);
if (Added)
AddedEdges.push_back(std::pair(A, B));
else
++MissedEdges;
}
return MissedEdges;
}
void SchedGroup::link(SUnit &SU, bool MakePred) {
for (auto *A : Collection) {
SUnit *B = &SU;
if (A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
continue;
if (MakePred)
std::swap(A, B);
tryAddEdge(A, B);
}
}
void SchedGroup::link(SUnit &SU,
function_ref<bool(const SUnit *A, const SUnit *B)> P) {
for (auto *A : Collection) {
SUnit *B = &SU;
if (P(A, B))
std::swap(A, B);
tryAddEdge(A, B);
}
}
void SchedGroup::link(SchedGroup &OtherGroup) {
for (auto *B : OtherGroup.Collection)
link(*B);
}
bool SchedGroup::canAddSU(SUnit &SU) const {
MachineInstr &MI = *SU.getInstr();
if (MI.getOpcode() != TargetOpcode::BUNDLE)
return canAddMI(MI);
// Special case for bundled MIs.
const MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::instr_iterator B = MI.getIterator(), E = ++B;
while (E != MBB->end() && E->isBundledWithPred())
++E;
// Return true if all of the bundled MIs can be added to this group.
return std::all_of(B, E, [this](MachineInstr &MI) { return canAddMI(MI); });
}
void SchedGroup::initSchedGroup() {
for (auto &SU : DAG->SUnits) {
if (isFull())
break;
if (canAddSU(SU))
add(SU);
}
}
void SchedGroup::initSchedGroup(std::vector<SUnit>::reverse_iterator RIter,
SUnitsToCandidateSGsMap &SyncedInstrs) {
SUnit &InitSU = *RIter;
for (auto E = DAG->SUnits.rend(); RIter != E; ++RIter) {
auto &SU = *RIter;
if (isFull())
break;
if (canAddSU(SU))
SyncedInstrs[&SU].push_back(SGID);
}
add(InitSU);
assert(MaxSize);
(*MaxSize)++;
}
void SchedGroup::initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs) {
auto I = DAG->SUnits.rbegin();
auto E = DAG->SUnits.rend();
for (; I != E; ++I) {
auto &SU = *I;
if (isFull())
break;
if (canAddSU(SU))
SyncedInstrs[&SU].push_back(SGID);
}
}
void IGroupLPDAGMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
if (!TSchedModel || DAGInstrs->SUnits.empty())
return;
LLVM_DEBUG(dbgs() << "Applying IGroupLPDAGMutation...\n");
const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
TII = ST.getInstrInfo();
DAG = static_cast<ScheduleDAGMI *>(DAGInstrs);
SyncedSchedGroups.clear();
SyncedInstrs.clear();
bool foundSB = false;
bool foundIGLP = false;
for (auto R = DAG->SUnits.rbegin(), E = DAG->SUnits.rend(); R != E; ++R) {
unsigned Opc = R->getInstr()->getOpcode();
// SCHED_[GROUP_]BARRIER and IGLP are mutually exclusive.
if (Opc == AMDGPU::SCHED_BARRIER) {
addSchedBarrierEdges(*R);
foundSB = true;
} else if (Opc == AMDGPU::SCHED_GROUP_BARRIER) {
initSchedGroupBarrierPipelineStage(R);
foundSB = true;
} else if (Opc == AMDGPU::IGLP_OPT) {
resetEdges(*R, DAG);
if (!foundSB && !foundIGLP)
initIGLPOpt(*R);
foundIGLP = true;
}
}
if (foundSB || foundIGLP) {
PipelineSolver PS(SyncedSchedGroups, SyncedInstrs, DAG, IsBottomUp);
// PipelineSolver performs the mutation by adding the edges it
// determined as the best
PS.solve();
}
}
void IGroupLPDAGMutation::addSchedBarrierEdges(SUnit &SchedBarrier) {
MachineInstr &MI = *SchedBarrier.getInstr();
assert(MI.getOpcode() == AMDGPU::SCHED_BARRIER);
// Remove all existing edges from the SCHED_BARRIER that were added due to the
// instruction having side effects.
resetEdges(SchedBarrier, DAG);
auto InvertedMask =
invertSchedBarrierMask((SchedGroupMask)MI.getOperand(0).getImm());
SchedGroup SG(InvertedMask, std::nullopt, DAG, TII);
SG.initSchedGroup();
// Preserve original instruction ordering relative to the SCHED_BARRIER.
SG.link(
SchedBarrier,
(function_ref<bool(const SUnit *A, const SUnit *B)>)[](
const SUnit *A, const SUnit *B) { return A->NodeNum > B->NodeNum; });
}
SchedGroupMask
IGroupLPDAGMutation::invertSchedBarrierMask(SchedGroupMask Mask) const {
// Invert mask and erase bits for types of instructions that are implied to be
// allowed past the SCHED_BARRIER.
SchedGroupMask InvertedMask = ~Mask;
// ALU implies VALU, SALU, MFMA.
if ((InvertedMask & SchedGroupMask::ALU) == SchedGroupMask::NONE)
InvertedMask &=
~SchedGroupMask::VALU & ~SchedGroupMask::SALU & ~SchedGroupMask::MFMA;
// VALU, SALU, MFMA implies ALU.
else if ((InvertedMask & SchedGroupMask::VALU) == SchedGroupMask::NONE ||
(InvertedMask & SchedGroupMask::SALU) == SchedGroupMask::NONE ||
(InvertedMask & SchedGroupMask::MFMA) == SchedGroupMask::NONE)
InvertedMask &= ~SchedGroupMask::ALU;
// VMEM implies VMEM_READ, VMEM_WRITE.
if ((InvertedMask & SchedGroupMask::VMEM) == SchedGroupMask::NONE)
InvertedMask &= ~SchedGroupMask::VMEM_READ & ~SchedGroupMask::VMEM_WRITE;
// VMEM_READ, VMEM_WRITE implies VMEM.
else if ((InvertedMask & SchedGroupMask::VMEM_READ) == SchedGroupMask::NONE ||
(InvertedMask & SchedGroupMask::VMEM_WRITE) == SchedGroupMask::NONE)
InvertedMask &= ~SchedGroupMask::VMEM;
// DS implies DS_READ, DS_WRITE.
if ((InvertedMask & SchedGroupMask::DS) == SchedGroupMask::NONE)
InvertedMask &= ~SchedGroupMask::DS_READ & ~SchedGroupMask::DS_WRITE;
// DS_READ, DS_WRITE implies DS.
else if ((InvertedMask & SchedGroupMask::DS_READ) == SchedGroupMask::NONE ||
(InvertedMask & SchedGroupMask::DS_WRITE) == SchedGroupMask::NONE)
InvertedMask &= ~SchedGroupMask::DS;
return InvertedMask;
}
void IGroupLPDAGMutation::initSchedGroupBarrierPipelineStage(
std::vector<SUnit>::reverse_iterator RIter) {
// Remove all existing edges from the SCHED_GROUP_BARRIER that were added due
// to the instruction having side effects.
resetEdges(*RIter, DAG);
MachineInstr &SGB = *RIter->getInstr();
assert(SGB.getOpcode() == AMDGPU::SCHED_GROUP_BARRIER);
int32_t SGMask = SGB.getOperand(0).getImm();
int32_t Size = SGB.getOperand(1).getImm();
int32_t SyncID = SGB.getOperand(2).getImm();
auto &SG = SyncedSchedGroups[SyncID].emplace_back((SchedGroupMask)SGMask,
Size, SyncID, DAG, TII);
SG.initSchedGroup(RIter, SyncedInstrs[SG.getSyncID()]);
}
void IGroupLPDAGMutation::initIGLPOpt(SUnit &SU) {
IGLPStrategyID StrategyID =
(IGLPStrategyID)SU.getInstr()->getOperand(0).getImm();
auto S = createIGLPStrategy(StrategyID, DAG, TII);
if (S->shouldApplyStrategy(DAG)) {
IsBottomUp = S->IsBottomUp;
S->applyIGLPStrategy(SyncedInstrs, SyncedSchedGroups);
}
}
} // namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation> createIGroupLPDAGMutation() {
return std::make_unique<IGroupLPDAGMutation>();
}
} // end namespace llvm
|