1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
//===- AMDGPUInsertDelayAlu.cpp - Insert s_delay_alu instructions ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Insert s_delay_alu instructions to avoid stalls on GFX11+.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/SetVector.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-insert-delay-alu"
namespace {
class AMDGPUInsertDelayAlu : public MachineFunctionPass {
public:
static char ID;
const SIInstrInfo *SII;
const TargetRegisterInfo *TRI;
TargetSchedModel SchedModel;
AMDGPUInsertDelayAlu() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
// Return true if MI waits for all outstanding VALU instructions to complete.
static bool instructionWaitsForVALU(const MachineInstr &MI) {
// These instruction types wait for VA_VDST==0 before issuing.
const uint64_t VA_VDST_0 = SIInstrFlags::DS | SIInstrFlags::EXP |
SIInstrFlags::FLAT | SIInstrFlags::MIMG |
SIInstrFlags::MTBUF | SIInstrFlags::MUBUF;
if (MI.getDesc().TSFlags & VA_VDST_0)
return true;
if (MI.getOpcode() == AMDGPU::S_SENDMSG_RTN_B32 ||
MI.getOpcode() == AMDGPU::S_SENDMSG_RTN_B64)
return true;
if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
AMDGPU::DepCtr::decodeFieldVaVdst(MI.getOperand(0).getImm()) == 0)
return true;
return false;
}
// Types of delay that can be encoded in an s_delay_alu instruction.
enum DelayType { VALU, TRANS, SALU, OTHER };
// Get the delay type for an instruction with the specified TSFlags.
static DelayType getDelayType(uint64_t TSFlags) {
if (TSFlags & SIInstrFlags::TRANS)
return TRANS;
if (TSFlags & SIInstrFlags::VALU)
return VALU;
if (TSFlags & SIInstrFlags::SALU)
return SALU;
return OTHER;
}
// Information about the last instruction(s) that wrote to a particular
// regunit. In straight-line code there will only be one such instruction, but
// when control flow converges we merge the delay information from each path
// to represent the union of the worst-case delays of each type.
struct DelayInfo {
// One larger than the maximum number of (non-TRANS) VALU instructions we
// can encode in an s_delay_alu instruction.
static constexpr unsigned VALU_MAX = 5;
// One larger than the maximum number of TRANS instructions we can encode in
// an s_delay_alu instruction.
static constexpr unsigned TRANS_MAX = 4;
// One larger than the maximum number of SALU cycles we can encode in an
// s_delay_alu instruction.
static constexpr unsigned SALU_CYCLES_MAX = 4;
// If it was written by a (non-TRANS) VALU, remember how many clock cycles
// are left until it completes, and how many other (non-TRANS) VALU we have
// seen since it was issued.
uint8_t VALUCycles = 0;
uint8_t VALUNum = VALU_MAX;
// If it was written by a TRANS, remember how many clock cycles are left
// until it completes, and how many other TRANS we have seen since it was
// issued.
uint8_t TRANSCycles = 0;
uint8_t TRANSNum = TRANS_MAX;
// Also remember how many other (non-TRANS) VALU we have seen since it was
// issued. When an instruction depends on both a prior TRANS and a prior
// non-TRANS VALU, this is used to decide whether to encode a wait for just
// one or both of them.
uint8_t TRANSNumVALU = VALU_MAX;
// If it was written by an SALU, remember how many clock cycles are left
// until it completes.
uint8_t SALUCycles = 0;
DelayInfo() = default;
DelayInfo(DelayType Type, unsigned Cycles) {
switch (Type) {
default:
llvm_unreachable("unexpected type");
case VALU:
VALUCycles = Cycles;
VALUNum = 0;
break;
case TRANS:
TRANSCycles = Cycles;
TRANSNum = 0;
TRANSNumVALU = 0;
break;
case SALU:
// Guard against pseudo-instructions like SI_CALL which are marked as
// SALU but with a very high latency.
SALUCycles = std::min(Cycles, SALU_CYCLES_MAX);
break;
}
}
bool operator==(const DelayInfo &RHS) const {
return VALUCycles == RHS.VALUCycles && VALUNum == RHS.VALUNum &&
TRANSCycles == RHS.TRANSCycles && TRANSNum == RHS.TRANSNum &&
TRANSNumVALU == RHS.TRANSNumVALU && SALUCycles == RHS.SALUCycles;
}
bool operator!=(const DelayInfo &RHS) const { return !(*this == RHS); }
// Merge another DelayInfo into this one, to represent the union of the
// worst-case delays of each type.
void merge(const DelayInfo &RHS) {
VALUCycles = std::max(VALUCycles, RHS.VALUCycles);
VALUNum = std::min(VALUNum, RHS.VALUNum);
TRANSCycles = std::max(TRANSCycles, RHS.TRANSCycles);
TRANSNum = std::min(TRANSNum, RHS.TRANSNum);
TRANSNumVALU = std::min(TRANSNumVALU, RHS.TRANSNumVALU);
SALUCycles = std::max(SALUCycles, RHS.SALUCycles);
}
// Update this DelayInfo after issuing an instruction. IsVALU should be 1
// when issuing a (non-TRANS) VALU, else 0. IsTRANS should be 1 when issuing
// a TRANS, else 0. Cycles is the number of cycles it takes to issue the
// instruction. Return true if there is no longer any useful delay info.
bool advance(DelayType Type, unsigned Cycles) {
bool Erase = true;
VALUNum += (Type == VALU);
if (VALUNum >= VALU_MAX || VALUCycles <= Cycles) {
// Forget about the VALU instruction. It was too far back or has
// definitely completed by now.
VALUNum = VALU_MAX;
VALUCycles = 0;
} else {
VALUCycles -= Cycles;
Erase = false;
}
TRANSNum += (Type == TRANS);
TRANSNumVALU += (Type == VALU);
if (TRANSNum >= TRANS_MAX || TRANSCycles <= Cycles) {
// Forget about any TRANS instruction. It was too far back or has
// definitely completed by now.
TRANSNum = TRANS_MAX;
TRANSNumVALU = VALU_MAX;
TRANSCycles = 0;
} else {
TRANSCycles -= Cycles;
Erase = false;
}
if (SALUCycles <= Cycles) {
// Forget about any SALU instruction. It has definitely completed by
// now.
SALUCycles = 0;
} else {
SALUCycles -= Cycles;
Erase = false;
}
return Erase;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump() const {
if (VALUCycles)
dbgs() << " VALUCycles=" << (int)VALUCycles;
if (VALUNum < VALU_MAX)
dbgs() << " VALUNum=" << (int)VALUNum;
if (TRANSCycles)
dbgs() << " TRANSCycles=" << (int)TRANSCycles;
if (TRANSNum < TRANS_MAX)
dbgs() << " TRANSNum=" << (int)TRANSNum;
if (TRANSNumVALU < VALU_MAX)
dbgs() << " TRANSNumVALU=" << (int)TRANSNumVALU;
if (SALUCycles)
dbgs() << " SALUCycles=" << (int)SALUCycles;
}
#endif
};
// A map from regunits to the delay info for that regunit.
struct DelayState : DenseMap<unsigned, DelayInfo> {
// Merge another DelayState into this one by merging the delay info for each
// regunit.
void merge(const DelayState &RHS) {
for (const auto &KV : RHS) {
iterator It;
bool Inserted;
std::tie(It, Inserted) = insert(KV);
if (!Inserted)
It->second.merge(KV.second);
}
}
// Advance the delay info for each regunit, erasing any that are no longer
// useful.
void advance(DelayType Type, unsigned Cycles) {
iterator Next;
for (auto I = begin(), E = end(); I != E; I = Next) {
Next = std::next(I);
if (I->second.advance(Type, Cycles))
erase(I);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump(const TargetRegisterInfo *TRI) const {
if (empty()) {
dbgs() << " empty\n";
return;
}
// Dump DelayInfo for each RegUnit in numerical order.
SmallVector<const_iterator, 8> Order;
Order.reserve(size());
for (const_iterator I = begin(), E = end(); I != E; ++I)
Order.push_back(I);
llvm::sort(Order, [](const const_iterator &A, const const_iterator &B) {
return A->first < B->first;
});
for (const_iterator I : Order) {
dbgs() << " " << printRegUnit(I->first, TRI);
I->second.dump();
dbgs() << "\n";
}
}
#endif
};
// The saved delay state at the end of each basic block.
DenseMap<MachineBasicBlock *, DelayState> BlockState;
// Emit an s_delay_alu instruction if necessary before MI.
MachineInstr *emitDelayAlu(MachineInstr &MI, DelayInfo Delay,
MachineInstr *LastDelayAlu) {
unsigned Imm = 0;
// Wait for a TRANS instruction.
if (Delay.TRANSNum < DelayInfo::TRANS_MAX)
Imm |= 4 + Delay.TRANSNum;
// Wait for a VALU instruction (if it's more recent than any TRANS
// instruction that we're also waiting for).
if (Delay.VALUNum < DelayInfo::VALU_MAX &&
Delay.VALUNum <= Delay.TRANSNumVALU) {
if (Imm & 0xf)
Imm |= Delay.VALUNum << 7;
else
Imm |= Delay.VALUNum;
}
// Wait for an SALU instruction.
if (Delay.SALUCycles) {
assert(Delay.SALUCycles < DelayInfo::SALU_CYCLES_MAX);
if (Imm & 0x780) {
// We have already encoded a VALU and a TRANS delay. There's no room in
// the encoding for an SALU delay as well, so just drop it.
} else if (Imm & 0xf) {
Imm |= (Delay.SALUCycles + 8) << 7;
} else {
Imm |= Delay.SALUCycles + 8;
}
}
// Don't emit the s_delay_alu instruction if there's nothing to wait for.
if (!Imm)
return LastDelayAlu;
// If we only need to wait for one instruction, try encoding it in the last
// s_delay_alu that we emitted.
if (!(Imm & 0x780) && LastDelayAlu) {
unsigned Skip = 0;
for (auto I = MachineBasicBlock::instr_iterator(LastDelayAlu),
E = MachineBasicBlock::instr_iterator(MI);
++I != E;) {
if (!I->isBundle() && !I->isMetaInstruction())
++Skip;
}
if (Skip < 6) {
MachineOperand &Op = LastDelayAlu->getOperand(0);
unsigned LastImm = Op.getImm();
assert((LastImm & ~0xf) == 0 &&
"Remembered an s_delay_alu with no room for another delay!");
LastImm |= Imm << 7 | Skip << 4;
Op.setImm(LastImm);
return nullptr;
}
}
auto &MBB = *MI.getParent();
MachineInstr *DelayAlu =
BuildMI(MBB, MI, DebugLoc(), SII->get(AMDGPU::S_DELAY_ALU)).addImm(Imm);
// Remember the s_delay_alu for next time if there is still room in it to
// encode another delay.
return (Imm & 0x780) ? nullptr : DelayAlu;
}
bool runOnMachineBasicBlock(MachineBasicBlock &MBB, bool Emit) {
DelayState State;
for (auto *Pred : MBB.predecessors())
State.merge(BlockState[Pred]);
LLVM_DEBUG(dbgs() << " State at start of " << printMBBReference(MBB)
<< "\n";
State.dump(TRI););
bool Changed = false;
MachineInstr *LastDelayAlu = nullptr;
// Iterate over the contents of bundles, but don't emit any instructions
// inside a bundle.
for (auto &MI : MBB.instrs()) {
if (MI.isBundle() || MI.isMetaInstruction())
continue;
// Ignore some more instructions that do not generate any code.
switch (MI.getOpcode()) {
case AMDGPU::SI_RETURN_TO_EPILOG:
continue;
}
DelayType Type = getDelayType(MI.getDesc().TSFlags);
if (instructionWaitsForVALU(MI)) {
// Forget about all outstanding VALU delays.
// TODO: This is overkill since it also forgets about SALU delays.
State = DelayState();
} else if (Type != OTHER) {
DelayInfo Delay;
// TODO: Scan implicit uses too?
for (const auto &Op : MI.explicit_uses()) {
if (Op.isReg()) {
// One of the operands of the writelane is also the output operand.
// This creates the insertion of redundant delays. Hence, we have to
// ignore this operand.
if (MI.getOpcode() == AMDGPU::V_WRITELANE_B32 && Op.isTied())
continue;
for (MCRegUnit Unit : TRI->regunits(Op.getReg())) {
auto It = State.find(Unit);
if (It != State.end()) {
Delay.merge(It->second);
State.erase(Unit);
}
}
}
}
if (Emit && !MI.isBundledWithPred()) {
// TODO: For VALU->SALU delays should we use s_delay_alu or s_nop or
// just ignore them?
LastDelayAlu = emitDelayAlu(MI, Delay, LastDelayAlu);
}
}
if (Type != OTHER) {
// TODO: Scan implicit defs too?
for (const auto &Op : MI.defs()) {
unsigned Latency = SchedModel.computeOperandLatency(
&MI, Op.getOperandNo(), nullptr, 0);
for (MCRegUnit Unit : TRI->regunits(Op.getReg()))
State[Unit] = DelayInfo(Type, Latency);
}
}
// Advance by the number of cycles it takes to issue this instruction.
// TODO: Use a more advanced model that accounts for instructions that
// take multiple cycles to issue on a particular pipeline.
unsigned Cycles = SIInstrInfo::getNumWaitStates(MI);
// TODO: In wave64 mode, double the number of cycles for VALU and VMEM
// instructions on the assumption that they will usually have to be issued
// twice?
State.advance(Type, Cycles);
LLVM_DEBUG(dbgs() << " State after " << MI; State.dump(TRI););
}
if (Emit) {
assert(State == BlockState[&MBB] &&
"Basic block state should not have changed on final pass!");
} else if (State != BlockState[&MBB]) {
BlockState[&MBB] = std::move(State);
Changed = true;
}
return Changed;
}
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
LLVM_DEBUG(dbgs() << "AMDGPUInsertDelayAlu running on " << MF.getName()
<< "\n");
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (!ST.hasDelayAlu())
return false;
SII = ST.getInstrInfo();
TRI = ST.getRegisterInfo();
SchedModel.init(&ST);
// Calculate the delay state for each basic block, iterating until we reach
// a fixed point.
SetVector<MachineBasicBlock *> WorkList;
for (auto &MBB : reverse(MF))
WorkList.insert(&MBB);
while (!WorkList.empty()) {
auto &MBB = *WorkList.pop_back_val();
bool Changed = runOnMachineBasicBlock(MBB, false);
if (Changed)
WorkList.insert(MBB.succ_begin(), MBB.succ_end());
}
LLVM_DEBUG(dbgs() << "Final pass over all BBs\n");
// Make one last pass over all basic blocks to emit s_delay_alu
// instructions.
bool Changed = false;
for (auto &MBB : MF)
Changed |= runOnMachineBasicBlock(MBB, true);
return Changed;
}
};
} // namespace
char AMDGPUInsertDelayAlu::ID = 0;
char &llvm::AMDGPUInsertDelayAluID = AMDGPUInsertDelayAlu::ID;
INITIALIZE_PASS(AMDGPUInsertDelayAlu, DEBUG_TYPE, "AMDGPU Insert Delay ALU",
false, false)
|