1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
|
//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates local data store, LDS, uses from non-kernel functions.
// LDS is contiguous memory allocated per kernel execution.
//
// Background.
//
// The programming model is global variables, or equivalently function local
// static variables, accessible from kernels or other functions. For uses from
// kernels this is straightforward - assign an integer to the kernel for the
// memory required by all the variables combined, allocate them within that.
// For uses from functions there are performance tradeoffs to choose between.
//
// This model means the GPU runtime can specify the amount of memory allocated.
// If this is more than the kernel assumed, the excess can be made available
// using a language specific feature, which IR represents as a variable with
// no initializer. This feature is referred to here as "Dynamic LDS" and is
// lowered slightly differently to the normal case.
//
// Consequences of this GPU feature:
// - memory is limited and exceeding it halts compilation
// - a global accessed by one kernel exists independent of other kernels
// - a global exists independent of simultaneous execution of the same kernel
// - the address of the global may be different from different kernels as they
// do not alias, which permits only allocating variables they use
// - if the address is allowed to differ, functions need help to find it
//
// Uses from kernels are implemented here by grouping them in a per-kernel
// struct instance. This duplicates the variables, accurately modelling their
// aliasing properties relative to a single global representation. It also
// permits control over alignment via padding.
//
// Uses from functions are more complicated and the primary purpose of this
// IR pass. Several different lowering are chosen between to meet requirements
// to avoid allocating any LDS where it is not necessary, as that impacts
// occupancy and may fail the compilation, while not imposing overhead on a
// feature whose primary advantage over global memory is performance. The basic
// design goal is to avoid one kernel imposing overhead on another.
//
// Implementation.
//
// LDS variables with constant annotation or non-undef initializer are passed
// through unchanged for simplification or error diagnostics in later passes.
// Non-undef initializers are not yet implemented for LDS.
//
// LDS variables that are always allocated at the same address can be found
// by lookup at that address. Otherwise runtime information/cost is required.
//
// The simplest strategy possible is to group all LDS variables in a single
// struct and allocate that struct in every kernel such that the original
// variables are always at the same address. LDS is however a limited resource
// so this strategy is unusable in practice. It is not implemented here.
//
// Strategy | Precise allocation | Zero runtime cost | General purpose |
// --------+--------------------+-------------------+-----------------+
// Module | No | Yes | Yes |
// Table | Yes | No | Yes |
// Kernel | Yes | Yes | No |
// Hybrid | Yes | Partial | Yes |
//
// "Module" spends LDS memory to save cycles. "Table" spends cycles and global
// memory to save LDS. "Kernel" is as fast as kernel allocation but only works
// for variables that are known reachable from a single kernel. "Hybrid" picks
// between all three. When forced to choose between LDS and cycles we minimise
// LDS use.
// The "module" lowering implemented here finds LDS variables which are used by
// non-kernel functions and creates a new struct with a field for each of those
// LDS variables. Variables that are only used from kernels are excluded.
//
// The "table" lowering implemented here has three components.
// First kernels are assigned a unique integer identifier which is available in
// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
// is passed through a specific SGPR, thus works with indirect calls.
// Second, each kernel allocates LDS variables independent of other kernels and
// writes the addresses it chose for each variable into an array in consistent
// order. If the kernel does not allocate a given variable, it writes undef to
// the corresponding array location. These arrays are written to a constant
// table in the order matching the kernel unique integer identifier.
// Third, uses from non-kernel functions are replaced with a table lookup using
// the intrinsic function to find the address of the variable.
//
// "Kernel" lowering is only applicable for variables that are unambiguously
// reachable from exactly one kernel. For those cases, accesses to the variable
// can be lowered to ConstantExpr address of a struct instance specific to that
// one kernel. This is zero cost in space and in compute. It will raise a fatal
// error on any variable that might be reachable from multiple kernels and is
// thus most easily used as part of the hybrid lowering strategy.
//
// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
// lowering where it can. It lowers the variable accessed by the greatest
// number of kernels using the module strategy as that is free for the first
// variable. Any futher variables that can be lowered with the module strategy
// without incurring LDS memory overhead are. The remaining ones are lowered
// via table.
//
// Consequences
// - No heuristics or user controlled magic numbers, hybrid is the right choice
// - Kernels that don't use functions (or have had them all inlined) are not
// affected by any lowering for kernels that do.
// - Kernels that don't make indirect function calls are not affected by those
// that do.
// - Variables which are used by lots of kernels, e.g. those injected by a
// language runtime in most kernels, are expected to have no overhead
// - Implementations that instantiate templates per-kernel where those templates
// use LDS are expected to hit the "Kernel" lowering strategy
// - The runtime properties impose a cost in compiler implementation complexity
//
// Dynamic LDS implementation
// Dynamic LDS is lowered similarly to the "table" strategy above and uses the
// same intrinsic to identify which kernel is at the root of the dynamic call
// graph. This relies on the specified behaviour that all dynamic LDS variables
// alias one another, i.e. are at the same address, with respect to a given
// kernel. Therefore this pass creates new dynamic LDS variables for each kernel
// that allocates any dynamic LDS and builds a table of addresses out of those.
// The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
// The corresponding optimisation for "kernel" lowering where the table lookup
// is elided is not implemented.
//
//
// Implementation notes / limitations
// A single LDS global variable represents an instance per kernel that can reach
// said variables. This pass essentially specialises said variables per kernel.
// Handling ConstantExpr during the pass complicated this significantly so now
// all ConstantExpr uses of LDS variables are expanded to instructions. This
// may need amending when implementing non-undef initialisers.
//
// Lowering is split between this IR pass and the back end. This pass chooses
// where given variables should be allocated and marks them with metadata,
// MD_absolute_symbol. The backend places the variables in coincidentally the
// same location and raises a fatal error if something has gone awry. This works
// in practice because the only pass between this one and the backend that
// changes LDS is PromoteAlloca and the changes it makes do not conflict.
//
// Addresses are written to constant global arrays based on the same metadata.
//
// The backend lowers LDS variables in the order of traversal of the function.
// This is at odds with the deterministic layout required. The workaround is to
// allocate the fixed-address variables immediately upon starting the function
// where they can be placed as intended. This requires a means of mapping from
// the function to the variables that it allocates. For the module scope lds,
// this is via metadata indicating whether the variable is not required. If a
// pass deletes that metadata, a fatal error on disagreement with the absolute
// symbol metadata will occur. For kernel scope and dynamic, this is by _name_
// correspondence between the function and the variable. It requires the
// kernel to have a name (which is only a limitation for tests in practice) and
// for nothing to rename the corresponding symbols. This is a hazard if the pass
// is run multiple times during debugging. Alternative schemes considered all
// involve bespoke metadata.
//
// If the name correspondence can be replaced, multiple distinct kernels that
// have the same memory layout can map to the same kernel id (as the address
// itself is handled by the absolute symbol metadata) and that will allow more
// uses of the "kernel" style faster lowering and reduce the size of the lookup
// tables.
//
// There is a test that checks this does not fire for a graphics shader. This
// lowering is expected to work for graphics if the isKernel test is changed.
//
// The current markUsedByKernel is sufficient for PromoteAlloca but is elided
// before codegen. Replacing this with an equivalent intrinsic which lasts until
// shortly after the machine function lowering of LDS would help break the name
// mapping. The other part needed is probably to amend PromoteAlloca to embed
// the LDS variables it creates in the same struct created here. That avoids the
// current hazard where a PromoteAlloca LDS variable might be allocated before
// the kernel scope (and thus error on the address check). Given a new invariant
// that no LDS variables exist outside of the structs managed here, and an
// intrinsic that lasts until after the LDS frame lowering, it should be
// possible to drop the name mapping and fold equivalent memory layouts.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "Utils/AMDGPUMemoryUtils.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/OptimizedStructLayout.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <tuple>
#include <vector>
#include <cstdio>
#define DEBUG_TYPE "amdgpu-lower-module-lds"
using namespace llvm;
namespace {
cl::opt<bool> SuperAlignLDSGlobals(
"amdgpu-super-align-lds-globals",
cl::desc("Increase alignment of LDS if it is not on align boundary"),
cl::init(true), cl::Hidden);
enum class LoweringKind { module, table, kernel, hybrid };
cl::opt<LoweringKind> LoweringKindLoc(
"amdgpu-lower-module-lds-strategy",
cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
cl::init(LoweringKind::hybrid),
cl::values(
clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
clEnumValN(
LoweringKind::kernel, "kernel",
"Lower variables reachable from one kernel, otherwise abort"),
clEnumValN(LoweringKind::hybrid, "hybrid",
"Lower via mixture of above strategies")));
bool isKernelLDS(const Function *F) {
// Some weirdness here. AMDGPU::isKernelCC does not call into
// AMDGPU::isKernel with the calling conv, it instead calls into
// isModuleEntryFunction which returns true for more calling conventions
// than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
// There's also a test that checks that the LDS lowering does not hit on
// a graphics shader, denoted amdgpu_ps, so stay with the limited case.
// Putting LDS in the name of the function to draw attention to this.
return AMDGPU::isKernel(F->getCallingConv());
}
template <typename T> std::vector<T> sortByName(std::vector<T> &&V) {
llvm::sort(V.begin(), V.end(), [](const auto *L, const auto *R) {
return L->getName() < R->getName();
});
return {std::move(V)};
}
class AMDGPULowerModuleLDS : public ModulePass {
static void
removeLocalVarsFromUsedLists(Module &M,
const DenseSet<GlobalVariable *> &LocalVars) {
// The verifier rejects used lists containing an inttoptr of a constant
// so remove the variables from these lists before replaceAllUsesWith
SmallPtrSet<Constant *, 8> LocalVarsSet;
for (GlobalVariable *LocalVar : LocalVars)
LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
removeFromUsedLists(
M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
for (GlobalVariable *LocalVar : LocalVars)
LocalVar->removeDeadConstantUsers();
}
static void markUsedByKernel(Function *Func, GlobalVariable *SGV) {
// The llvm.amdgcn.module.lds instance is implicitly used by all kernels
// that might call a function which accesses a field within it. This is
// presently approximated to 'all kernels' if there are any such functions
// in the module. This implicit use is redefined as an explicit use here so
// that later passes, specifically PromoteAlloca, account for the required
// memory without any knowledge of this transform.
// An operand bundle on llvm.donothing works because the call instruction
// survives until after the last pass that needs to account for LDS. It is
// better than inline asm as the latter survives until the end of codegen. A
// totally robust solution would be a function with the same semantics as
// llvm.donothing that takes a pointer to the instance and is lowered to a
// no-op after LDS is allocated, but that is not presently necessary.
// This intrinsic is eliminated shortly before instruction selection. It
// does not suffice to indicate to ISel that a given global which is not
// immediately used by the kernel must still be allocated by it. An
// equivalent target specific intrinsic which lasts until immediately after
// codegen would suffice for that, but one would still need to ensure that
// the variables are allocated in the anticpated order.
IRBuilder<> Builder(Func->getEntryBlock().getFirstNonPHI());
Function *Decl =
Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
Value *UseInstance[1] = {
Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)};
Builder.CreateCall(
Decl, {}, {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)});
}
static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
// Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
// global may have uses from multiple different functions as a result.
// This pass specialises LDS variables with respect to the kernel that
// allocates them.
// This is semantically equivalent to (the unimplemented as slow):
// for (auto &F : M.functions())
// for (auto &BB : F)
// for (auto &I : BB)
// for (Use &Op : I.operands())
// if (constantExprUsesLDS(Op))
// replaceConstantExprInFunction(I, Op);
SmallVector<Constant *> LDSGlobals;
for (auto &GV : M.globals())
if (AMDGPU::isLDSVariableToLower(GV))
LDSGlobals.push_back(&GV);
return convertUsersOfConstantsToInstructions(LDSGlobals);
}
public:
static char ID;
AMDGPULowerModuleLDS() : ModulePass(ID) {
initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
}
using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
FunctionVariableMap &kernels,
FunctionVariableMap &functions) {
// Get uses from the current function, excluding uses by called functions
// Two output variables to avoid walking the globals list twice
for (auto &GV : M.globals()) {
if (!AMDGPU::isLDSVariableToLower(GV)) {
continue;
}
if (GV.isAbsoluteSymbolRef()) {
report_fatal_error(
"LDS variables with absolute addresses are unimplemented.");
}
for (User *V : GV.users()) {
if (auto *I = dyn_cast<Instruction>(V)) {
Function *F = I->getFunction();
if (isKernelLDS(F)) {
kernels[F].insert(&GV);
} else {
functions[F].insert(&GV);
}
}
}
}
}
struct LDSUsesInfoTy {
FunctionVariableMap direct_access;
FunctionVariableMap indirect_access;
};
static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
FunctionVariableMap direct_map_kernel;
FunctionVariableMap direct_map_function;
getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
// Collect variables that are used by functions whose address has escaped
DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
for (Function &F : M.functions()) {
if (!isKernelLDS(&F))
if (F.hasAddressTaken(nullptr,
/* IgnoreCallbackUses */ false,
/* IgnoreAssumeLikeCalls */ false,
/* IgnoreLLVMUsed */ true,
/* IgnoreArcAttachedCall */ false)) {
set_union(VariablesReachableThroughFunctionPointer,
direct_map_function[&F]);
}
}
auto functionMakesUnknownCall = [&](const Function *F) -> bool {
assert(!F->isDeclaration());
for (const CallGraphNode::CallRecord &R : *CG[F]) {
if (!R.second->getFunction()) {
return true;
}
}
return false;
};
// Work out which variables are reachable through function calls
FunctionVariableMap transitive_map_function = direct_map_function;
// If the function makes any unknown call, assume the worst case that it can
// access all variables accessed by functions whose address escaped
for (Function &F : M.functions()) {
if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
if (!isKernelLDS(&F)) {
set_union(transitive_map_function[&F],
VariablesReachableThroughFunctionPointer);
}
}
}
// Direct implementation of collecting all variables reachable from each
// function
for (Function &Func : M.functions()) {
if (Func.isDeclaration() || isKernelLDS(&Func))
continue;
DenseSet<Function *> seen; // catches cycles
SmallVector<Function *, 4> wip{&Func};
while (!wip.empty()) {
Function *F = wip.pop_back_val();
// Can accelerate this by referring to transitive map for functions that
// have already been computed, with more care than this
set_union(transitive_map_function[&Func], direct_map_function[F]);
for (const CallGraphNode::CallRecord &R : *CG[F]) {
Function *ith = R.second->getFunction();
if (ith) {
if (!seen.contains(ith)) {
seen.insert(ith);
wip.push_back(ith);
}
}
}
}
}
// direct_map_kernel lists which variables are used by the kernel
// find the variables which are used through a function call
FunctionVariableMap indirect_map_kernel;
for (Function &Func : M.functions()) {
if (Func.isDeclaration() || !isKernelLDS(&Func))
continue;
for (const CallGraphNode::CallRecord &R : *CG[&Func]) {
Function *ith = R.second->getFunction();
if (ith) {
set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
} else {
set_union(indirect_map_kernel[&Func],
VariablesReachableThroughFunctionPointer);
}
}
}
return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
}
struct LDSVariableReplacement {
GlobalVariable *SGV = nullptr;
DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
};
// remap from lds global to a constantexpr gep to where it has been moved to
// for each kernel
// an array with an element for each kernel containing where the corresponding
// variable was remapped to
static Constant *getAddressesOfVariablesInKernel(
LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
// Create a ConstantArray containing the address of each Variable within the
// kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
// does not allocate it
// TODO: Drop the ptrtoint conversion
Type *I32 = Type::getInt32Ty(Ctx);
ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
SmallVector<Constant *> Elements;
for (size_t i = 0; i < Variables.size(); i++) {
GlobalVariable *GV = Variables[i];
auto ConstantGepIt = LDSVarsToConstantGEP.find(GV);
if (ConstantGepIt != LDSVarsToConstantGEP.end()) {
auto elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32);
Elements.push_back(elt);
} else {
Elements.push_back(PoisonValue::get(I32));
}
}
return ConstantArray::get(KernelOffsetsType, Elements);
}
static GlobalVariable *buildLookupTable(
Module &M, ArrayRef<GlobalVariable *> Variables,
ArrayRef<Function *> kernels,
DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
if (Variables.empty()) {
return nullptr;
}
LLVMContext &Ctx = M.getContext();
const size_t NumberVariables = Variables.size();
const size_t NumberKernels = kernels.size();
ArrayType *KernelOffsetsType =
ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
ArrayType *AllKernelsOffsetsType =
ArrayType::get(KernelOffsetsType, NumberKernels);
Constant *Missing = PoisonValue::get(KernelOffsetsType);
std::vector<Constant *> overallConstantExprElts(NumberKernels);
for (size_t i = 0; i < NumberKernels; i++) {
auto Replacement = KernelToReplacement.find(kernels[i]);
overallConstantExprElts[i] =
(Replacement == KernelToReplacement.end())
? Missing
: getAddressesOfVariablesInKernel(
Ctx, Variables, Replacement->second.LDSVarsToConstantGEP);
}
Constant *init =
ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
return new GlobalVariable(
M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
"llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
AMDGPUAS::CONSTANT_ADDRESS);
}
void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder,
GlobalVariable *LookupTable,
GlobalVariable *GV, Use &U,
Value *OptionalIndex) {
// Table is a constant array of the same length as OrderedKernels
LLVMContext &Ctx = M.getContext();
Type *I32 = Type::getInt32Ty(Ctx);
auto *I = cast<Instruction>(U.getUser());
Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction());
if (auto *Phi = dyn_cast<PHINode>(I)) {
BasicBlock *BB = Phi->getIncomingBlock(U);
Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
} else {
Builder.SetInsertPoint(I);
}
SmallVector<Value *, 3> GEPIdx = {
ConstantInt::get(I32, 0),
tableKernelIndex,
};
if (OptionalIndex)
GEPIdx.push_back(OptionalIndex);
Value *Address = Builder.CreateInBoundsGEP(
LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
Value *loaded = Builder.CreateLoad(I32, Address);
Value *replacement =
Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
U.set(replacement);
}
void replaceUsesInInstructionsWithTableLookup(
Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
GlobalVariable *LookupTable) {
LLVMContext &Ctx = M.getContext();
IRBuilder<> Builder(Ctx);
Type *I32 = Type::getInt32Ty(Ctx);
for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
auto *GV = ModuleScopeVariables[Index];
for (Use &U : make_early_inc_range(GV->uses())) {
auto *I = dyn_cast<Instruction>(U.getUser());
if (!I)
continue;
replaceUseWithTableLookup(M, Builder, LookupTable, GV, U,
ConstantInt::get(I32, Index));
}
}
}
static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
Module &M, LDSUsesInfoTy &LDSUsesInfo,
DenseSet<GlobalVariable *> const &VariableSet) {
DenseSet<Function *> KernelSet;
if (VariableSet.empty())
return KernelSet;
for (Function &Func : M.functions()) {
if (Func.isDeclaration() || !isKernelLDS(&Func))
continue;
for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
if (VariableSet.contains(GV)) {
KernelSet.insert(&Func);
break;
}
}
}
return KernelSet;
}
static GlobalVariable *
chooseBestVariableForModuleStrategy(const DataLayout &DL,
VariableFunctionMap &LDSVars) {
// Find the global variable with the most indirect uses from kernels
struct CandidateTy {
GlobalVariable *GV = nullptr;
size_t UserCount = 0;
size_t Size = 0;
CandidateTy() = default;
CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
: GV(GV), UserCount(UserCount), Size(AllocSize) {}
bool operator<(const CandidateTy &Other) const {
// Fewer users makes module scope variable less attractive
if (UserCount < Other.UserCount) {
return true;
}
if (UserCount > Other.UserCount) {
return false;
}
// Bigger makes module scope variable less attractive
if (Size < Other.Size) {
return false;
}
if (Size > Other.Size) {
return true;
}
// Arbitrary but consistent
return GV->getName() < Other.GV->getName();
}
};
CandidateTy MostUsed;
for (auto &K : LDSVars) {
GlobalVariable *GV = K.first;
if (K.second.size() <= 1) {
// A variable reachable by only one kernel is best lowered with kernel
// strategy
continue;
}
CandidateTy Candidate(
GV, K.second.size(),
DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
if (MostUsed < Candidate)
MostUsed = Candidate;
}
return MostUsed.GV;
}
static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
uint32_t Address) {
// Write the specified address into metadata where it can be retrieved by
// the assembler. Format is a half open range, [Address Address+1)
LLVMContext &Ctx = M->getContext();
auto *IntTy =
M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
GV->setMetadata(LLVMContext::MD_absolute_symbol,
MDNode::get(Ctx, {MinC, MaxC}));
}
DenseMap<Function *, Value *> tableKernelIndexCache;
Value *getTableLookupKernelIndex(Module &M, Function *F) {
// Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
// lowers to a read from a live in register. Emit it once in the entry
// block to spare deduplicating it later.
auto [It, Inserted] = tableKernelIndexCache.try_emplace(F);
if (Inserted) {
Function *Decl =
Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
IRBuilder<> Builder(&*InsertAt);
It->second = Builder.CreateCall(Decl, {});
}
return It->second;
}
static std::vector<Function *> assignLDSKernelIDToEachKernel(
Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS,
DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) {
// Associate kernels in the set with an arbirary but reproducible order and
// annotate them with that order in metadata. This metadata is recognised by
// the backend and lowered to a SGPR which can be read from using
// amdgcn_lds_kernel_id.
std::vector<Function *> OrderedKernels;
if (!KernelsThatAllocateTableLDS.empty() ||
!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
for (Function &Func : M->functions()) {
if (Func.isDeclaration())
continue;
if (!isKernelLDS(&Func))
continue;
if (KernelsThatAllocateTableLDS.contains(&Func) ||
KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) {
assert(Func.hasName()); // else fatal error earlier
OrderedKernels.push_back(&Func);
}
}
// Put them in an arbitrary but reproducible order
OrderedKernels = sortByName(std::move(OrderedKernels));
// Annotate the kernels with their order in this vector
LLVMContext &Ctx = M->getContext();
IRBuilder<> Builder(Ctx);
if (OrderedKernels.size() > UINT32_MAX) {
// 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
}
for (size_t i = 0; i < OrderedKernels.size(); i++) {
Metadata *AttrMDArgs[1] = {
ConstantAsMetadata::get(Builder.getInt32(i)),
};
OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
MDNode::get(Ctx, AttrMDArgs));
}
}
return OrderedKernels;
}
static void partitionVariablesIntoIndirectStrategies(
Module &M, LDSUsesInfoTy const &LDSUsesInfo,
VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly,
DenseSet<GlobalVariable *> &ModuleScopeVariables,
DenseSet<GlobalVariable *> &TableLookupVariables,
DenseSet<GlobalVariable *> &KernelAccessVariables,
DenseSet<GlobalVariable *> &DynamicVariables) {
GlobalVariable *HybridModuleRoot =
LoweringKindLoc != LoweringKind::hybrid
? nullptr
: chooseBestVariableForModuleStrategy(
M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly);
DenseSet<Function *> const EmptySet;
DenseSet<Function *> const &HybridModuleRootKernels =
HybridModuleRoot
? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
: EmptySet;
for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
// Each iteration of this loop assigns exactly one global variable to
// exactly one of the implementation strategies.
GlobalVariable *GV = K.first;
assert(AMDGPU::isLDSVariableToLower(*GV));
assert(K.second.size() != 0);
if (AMDGPU::isDynamicLDS(*GV)) {
DynamicVariables.insert(GV);
continue;
}
switch (LoweringKindLoc) {
case LoweringKind::module:
ModuleScopeVariables.insert(GV);
break;
case LoweringKind::table:
TableLookupVariables.insert(GV);
break;
case LoweringKind::kernel:
if (K.second.size() == 1) {
KernelAccessVariables.insert(GV);
} else {
report_fatal_error(
"cannot lower LDS '" + GV->getName() +
"' to kernel access as it is reachable from multiple kernels");
}
break;
case LoweringKind::hybrid: {
if (GV == HybridModuleRoot) {
assert(K.second.size() != 1);
ModuleScopeVariables.insert(GV);
} else if (K.second.size() == 1) {
KernelAccessVariables.insert(GV);
} else if (set_is_subset(K.second, HybridModuleRootKernels)) {
ModuleScopeVariables.insert(GV);
} else {
TableLookupVariables.insert(GV);
}
break;
}
}
}
// All LDS variables accessed indirectly have now been partitioned into
// the distinct lowering strategies.
assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
KernelAccessVariables.size() + DynamicVariables.size() ==
LDSToKernelsThatNeedToAccessItIndirectly.size());
}
static GlobalVariable *lowerModuleScopeStructVariables(
Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables,
DenseSet<Function *> const &KernelsThatAllocateModuleLDS) {
// Create a struct to hold the ModuleScopeVariables
// Replace all uses of those variables from non-kernel functions with the
// new struct instance Replace only the uses from kernel functions that will
// allocate this instance. That is a space optimisation - kernels that use a
// subset of the module scope struct and do not need to allocate it for
// indirect calls will only allocate the subset they use (they do so as part
// of the per-kernel lowering).
if (ModuleScopeVariables.empty()) {
return nullptr;
}
LLVMContext &Ctx = M.getContext();
LDSVariableReplacement ModuleScopeReplacement =
createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
ModuleScopeVariables);
appendToCompilerUsed(M, {static_cast<GlobalValue *>(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(
cast<Constant>(ModuleScopeReplacement.SGV),
Type::getInt8PtrTy(Ctx)))});
// module.lds will be allocated at zero in any kernel that allocates it
recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
// historic
removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
// Replace all uses of module scope variable from non-kernel functions
replaceLDSVariablesWithStruct(
M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
Instruction *I = dyn_cast<Instruction>(U.getUser());
if (!I) {
return false;
}
Function *F = I->getFunction();
return !isKernelLDS(F);
});
// Replace uses of module scope variable from kernel functions that
// allocate the module scope variable, otherwise leave them unchanged
// Record on each kernel whether the module scope global is used by it
for (Function &Func : M.functions()) {
if (Func.isDeclaration() || !isKernelLDS(&Func))
continue;
if (KernelsThatAllocateModuleLDS.contains(&Func)) {
replaceLDSVariablesWithStruct(
M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
Instruction *I = dyn_cast<Instruction>(U.getUser());
if (!I) {
return false;
}
Function *F = I->getFunction();
return F == &Func;
});
markUsedByKernel(&Func, ModuleScopeReplacement.SGV);
}
}
return ModuleScopeReplacement.SGV;
}
static DenseMap<Function *, LDSVariableReplacement>
lowerKernelScopeStructVariables(
Module &M, LDSUsesInfoTy &LDSUsesInfo,
DenseSet<GlobalVariable *> const &ModuleScopeVariables,
DenseSet<Function *> const &KernelsThatAllocateModuleLDS,
GlobalVariable *MaybeModuleScopeStruct) {
// Create a struct for each kernel for the non-module-scope variables.
DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
for (Function &Func : M.functions()) {
if (Func.isDeclaration() || !isKernelLDS(&Func))
continue;
DenseSet<GlobalVariable *> KernelUsedVariables;
// Allocating variables that are used directly in this struct to get
// alignment aware allocation and predictable frame size.
for (auto &v : LDSUsesInfo.direct_access[&Func]) {
if (!AMDGPU::isDynamicLDS(*v)) {
KernelUsedVariables.insert(v);
}
}
// Allocating variables that are accessed indirectly so that a lookup of
// this struct instance can find them from nested functions.
for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
if (!AMDGPU::isDynamicLDS(*v)) {
KernelUsedVariables.insert(v);
}
}
// Variables allocated in module lds must all resolve to that struct,
// not to the per-kernel instance.
if (KernelsThatAllocateModuleLDS.contains(&Func)) {
for (GlobalVariable *v : ModuleScopeVariables) {
KernelUsedVariables.erase(v);
}
}
if (KernelUsedVariables.empty()) {
// Either used no LDS, or the LDS it used was all in the module struct
// or dynamically sized
continue;
}
// The association between kernel function and LDS struct is done by
// symbol name, which only works if the function in question has a
// name This is not expected to be a problem in practice as kernels
// are called by name making anonymous ones (which are named by the
// backend) difficult to use. This does mean that llvm test cases need
// to name the kernels.
if (!Func.hasName()) {
report_fatal_error("Anonymous kernels cannot use LDS variables");
}
std::string VarName =
(Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
auto Replacement =
createLDSVariableReplacement(M, VarName, KernelUsedVariables);
// If any indirect uses, create a direct use to ensure allocation
// TODO: Simpler to unconditionally mark used but that regresses
// codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
auto Accesses = LDSUsesInfo.indirect_access.find(&Func);
if ((Accesses != LDSUsesInfo.indirect_access.end()) &&
!Accesses->second.empty())
markUsedByKernel(&Func, Replacement.SGV);
// remove preserves existing codegen
removeLocalVarsFromUsedLists(M, KernelUsedVariables);
KernelToReplacement[&Func] = Replacement;
// Rewrite uses within kernel to the new struct
replaceLDSVariablesWithStruct(
M, KernelUsedVariables, Replacement, [&Func](Use &U) {
Instruction *I = dyn_cast<Instruction>(U.getUser());
return I && I->getFunction() == &Func;
});
}
return KernelToReplacement;
}
static GlobalVariable *
buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo,
Function *func) {
// Create a dynamic lds variable with a name associated with the passed
// function that has the maximum alignment of any dynamic lds variable
// reachable from this kernel. Dynamic LDS is allocated after the static LDS
// allocation, possibly after alignment padding. The representative variable
// created here has the maximum alignment of any other dynamic variable
// reachable by that kernel. All dynamic LDS variables are allocated at the
// same address in each kernel in order to provide the documented aliasing
// semantics. Setting the alignment here allows this IR pass to accurately
// predict the exact constant at which it will be allocated.
assert(isKernelLDS(func));
LLVMContext &Ctx = M.getContext();
const DataLayout &DL = M.getDataLayout();
Align MaxDynamicAlignment(1);
auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) {
if (AMDGPU::isDynamicLDS(*GV)) {
MaxDynamicAlignment =
std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV));
}
};
for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) {
UpdateMaxAlignment(GV);
}
for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) {
UpdateMaxAlignment(GV);
}
assert(func->hasName()); // Checked by caller
auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
GlobalVariable *N = new GlobalVariable(
M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
false);
N->setAlignment(MaxDynamicAlignment);
assert(AMDGPU::isDynamicLDS(*N));
return N;
}
DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables(
Module &M, LDSUsesInfoTy &LDSUsesInfo,
DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS,
DenseSet<GlobalVariable *> const &DynamicVariables,
std::vector<Function *> const &OrderedKernels) {
DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS;
if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
LLVMContext &Ctx = M.getContext();
IRBuilder<> Builder(Ctx);
Type *I32 = Type::getInt32Ty(Ctx);
std::vector<Constant *> newDynamicLDS;
// Table is built in the same order as OrderedKernels
for (auto &func : OrderedKernels) {
if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) {
assert(isKernelLDS(func));
if (!func->hasName()) {
report_fatal_error("Anonymous kernels cannot use LDS variables");
}
GlobalVariable *N =
buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func);
KernelToCreatedDynamicLDS[func] = N;
markUsedByKernel(func, N);
auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
auto GEP = ConstantExpr::getGetElementPtr(
emptyCharArray, N, ConstantInt::get(I32, 0), true);
newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32));
} else {
newDynamicLDS.push_back(PoisonValue::get(I32));
}
}
assert(OrderedKernels.size() == newDynamicLDS.size());
ArrayType *t = ArrayType::get(I32, newDynamicLDS.size());
Constant *init = ConstantArray::get(t, newDynamicLDS);
GlobalVariable *table = new GlobalVariable(
M, t, true, GlobalValue::InternalLinkage, init,
"llvm.amdgcn.dynlds.offset.table", nullptr,
GlobalValue::NotThreadLocal, AMDGPUAS::CONSTANT_ADDRESS);
for (GlobalVariable *GV : DynamicVariables) {
for (Use &U : make_early_inc_range(GV->uses())) {
auto *I = dyn_cast<Instruction>(U.getUser());
if (!I)
continue;
if (isKernelLDS(I->getFunction()))
continue;
replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr);
}
}
}
return KernelToCreatedDynamicLDS;
}
bool runOnModule(Module &M) override {
CallGraph CG = CallGraph(M);
bool Changed = superAlignLDSGlobals(M);
Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
Changed = true; // todo: narrow this down
// For each kernel, what variables does it access directly or through
// callees
LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
// For each variable accessed through callees, which kernels access it
VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
for (auto &K : LDSUsesInfo.indirect_access) {
Function *F = K.first;
assert(isKernelLDS(F));
for (GlobalVariable *GV : K.second) {
LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
}
}
// Partition variables accessed indirectly into the different strategies
DenseSet<GlobalVariable *> ModuleScopeVariables;
DenseSet<GlobalVariable *> TableLookupVariables;
DenseSet<GlobalVariable *> KernelAccessVariables;
DenseSet<GlobalVariable *> DynamicVariables;
partitionVariablesIntoIndirectStrategies(
M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly,
ModuleScopeVariables, TableLookupVariables, KernelAccessVariables,
DynamicVariables);
// If the kernel accesses a variable that is going to be stored in the
// module instance through a call then that kernel needs to allocate the
// module instance
const DenseSet<Function *> KernelsThatAllocateModuleLDS =
kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
ModuleScopeVariables);
const DenseSet<Function *> KernelsThatAllocateTableLDS =
kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
TableLookupVariables);
const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS =
kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
DynamicVariables);
GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables(
M, ModuleScopeVariables, KernelsThatAllocateModuleLDS);
DenseMap<Function *, LDSVariableReplacement> KernelToReplacement =
lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables,
KernelsThatAllocateModuleLDS,
MaybeModuleScopeStruct);
// Lower zero cost accesses to the kernel instances just created
for (auto &GV : KernelAccessVariables) {
auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
assert(funcs.size() == 1); // Only one kernel can access it
LDSVariableReplacement Replacement =
KernelToReplacement[*(funcs.begin())];
DenseSet<GlobalVariable *> Vec;
Vec.insert(GV);
replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
return isa<Instruction>(U.getUser());
});
}
// The ith element of this vector is kernel id i
std::vector<Function *> OrderedKernels =
assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS,
KernelsThatIndirectlyAllocateDynamicLDS);
if (!KernelsThatAllocateTableLDS.empty()) {
LLVMContext &Ctx = M.getContext();
IRBuilder<> Builder(Ctx);
// The order must be consistent between lookup table and accesses to
// lookup table
auto TableLookupVariablesOrdered =
sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(),
TableLookupVariables.end()));
GlobalVariable *LookupTable = buildLookupTable(
M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
LookupTable);
}
DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS =
lowerDynamicLDSVariables(M, LDSUsesInfo,
KernelsThatIndirectlyAllocateDynamicLDS,
DynamicVariables, OrderedKernels);
// All kernel frames have been allocated. Calculate and record the
// addresses.
{
const DataLayout &DL = M.getDataLayout();
for (Function &Func : M.functions()) {
if (Func.isDeclaration() || !isKernelLDS(&Func))
continue;
// All three of these are optional. The first variable is allocated at
// zero. They are allocated by AMDGPUMachineFunction as one block.
// Layout:
//{
// module.lds
// alignment padding
// kernel instance
// alignment padding
// dynamic lds variables
//}
const bool AllocateModuleScopeStruct =
MaybeModuleScopeStruct &&
KernelsThatAllocateModuleLDS.contains(&Func);
auto Replacement = KernelToReplacement.find(&Func);
const bool AllocateKernelScopeStruct =
Replacement != KernelToReplacement.end();
const bool AllocateDynamicVariable =
KernelToCreatedDynamicLDS.contains(&Func);
uint32_t Offset = 0;
if (AllocateModuleScopeStruct) {
// Allocated at zero, recorded once on construction, not once per
// kernel
Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType());
}
if (AllocateKernelScopeStruct) {
GlobalVariable *KernelStruct = Replacement->second.SGV;
Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct));
recordLDSAbsoluteAddress(&M, KernelStruct, Offset);
Offset += DL.getTypeAllocSize(KernelStruct->getValueType());
}
// If there is dynamic allocation, the alignment needed is included in
// the static frame size. There may be no reference to the dynamic
// variable in the kernel itself, so without including it here, that
// alignment padding could be missed.
if (AllocateDynamicVariable) {
GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func];
Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable));
recordLDSAbsoluteAddress(&M, DynamicVariable, Offset);
}
if (Offset != 0) {
std::string Buffer;
raw_string_ostream SS{Buffer};
SS << format("%u", Offset);
// Instead of explictly marking kernels that access dynamic variables
// using special case metadata, annotate with min-lds == max-lds, i.e.
// that there is no more space available for allocating more static
// LDS variables. That is the right condition to prevent allocating
// more variables which would collide with the addresses assigned to
// dynamic variables.
if (AllocateDynamicVariable)
SS << format(",%u", Offset);
Func.addFnAttr("amdgpu-lds-size", Buffer);
}
}
}
for (auto &GV : make_early_inc_range(M.globals()))
if (AMDGPU::isLDSVariableToLower(GV)) {
// probably want to remove from used lists
GV.removeDeadConstantUsers();
if (GV.use_empty())
GV.eraseFromParent();
}
return Changed;
}
private:
// Increase the alignment of LDS globals if necessary to maximise the chance
// that we can use aligned LDS instructions to access them.
static bool superAlignLDSGlobals(Module &M) {
const DataLayout &DL = M.getDataLayout();
bool Changed = false;
if (!SuperAlignLDSGlobals) {
return Changed;
}
for (auto &GV : M.globals()) {
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
// Only changing alignment of LDS variables
continue;
}
if (!GV.hasInitializer()) {
// cuda/hip extern __shared__ variable, leave alignment alone
continue;
}
Align Alignment = AMDGPU::getAlign(DL, &GV);
TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
if (GVSize > 8) {
// We might want to use a b96 or b128 load/store
Alignment = std::max(Alignment, Align(16));
} else if (GVSize > 4) {
// We might want to use a b64 load/store
Alignment = std::max(Alignment, Align(8));
} else if (GVSize > 2) {
// We might want to use a b32 load/store
Alignment = std::max(Alignment, Align(4));
} else if (GVSize > 1) {
// We might want to use a b16 load/store
Alignment = std::max(Alignment, Align(2));
}
if (Alignment != AMDGPU::getAlign(DL, &GV)) {
Changed = true;
GV.setAlignment(Alignment);
}
}
return Changed;
}
static LDSVariableReplacement createLDSVariableReplacement(
Module &M, std::string VarName,
DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
// Create a struct instance containing LDSVarsToTransform and map from those
// variables to ConstantExprGEP
// Variables may be introduced to meet alignment requirements. No aliasing
// metadata is useful for these as they have no uses. Erased before return.
LLVMContext &Ctx = M.getContext();
const DataLayout &DL = M.getDataLayout();
assert(!LDSVarsToTransform.empty());
SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
LayoutFields.reserve(LDSVarsToTransform.size());
{
// The order of fields in this struct depends on the order of
// varables in the argument which varies when changing how they
// are identified, leading to spurious test breakage.
auto Sorted = sortByName(std::vector<GlobalVariable *>(
LDSVarsToTransform.begin(), LDSVarsToTransform.end()));
for (GlobalVariable *GV : Sorted) {
OptimizedStructLayoutField F(GV,
DL.getTypeAllocSize(GV->getValueType()),
AMDGPU::getAlign(DL, GV));
LayoutFields.emplace_back(F);
}
}
performOptimizedStructLayout(LayoutFields);
std::vector<GlobalVariable *> LocalVars;
BitVector IsPaddingField;
LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
IsPaddingField.reserve(LDSVarsToTransform.size());
{
uint64_t CurrentOffset = 0;
for (size_t I = 0; I < LayoutFields.size(); I++) {
GlobalVariable *FGV = static_cast<GlobalVariable *>(
const_cast<void *>(LayoutFields[I].Id));
Align DataAlign = LayoutFields[I].Alignment;
uint64_t DataAlignV = DataAlign.value();
if (uint64_t Rem = CurrentOffset % DataAlignV) {
uint64_t Padding = DataAlignV - Rem;
// Append an array of padding bytes to meet alignment requested
// Note (o + (a - (o % a)) ) % a == 0
// (offset + Padding ) % align == 0
Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
LocalVars.push_back(new GlobalVariable(
M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
"", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
false));
IsPaddingField.push_back(true);
CurrentOffset += Padding;
}
LocalVars.push_back(FGV);
IsPaddingField.push_back(false);
CurrentOffset += LayoutFields[I].Size;
}
}
std::vector<Type *> LocalVarTypes;
LocalVarTypes.reserve(LocalVars.size());
std::transform(
LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
[](const GlobalVariable *V) -> Type * { return V->getValueType(); });
StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
GlobalVariable *SGV = new GlobalVariable(
M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
false);
SGV->setAlignment(StructAlign);
DenseMap<GlobalVariable *, Constant *> Map;
Type *I32 = Type::getInt32Ty(Ctx);
for (size_t I = 0; I < LocalVars.size(); I++) {
GlobalVariable *GV = LocalVars[I];
Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
if (IsPaddingField[I]) {
assert(GV->use_empty());
GV->eraseFromParent();
} else {
Map[GV] = GEP;
}
}
assert(Map.size() == LDSVarsToTransform.size());
return {SGV, std::move(Map)};
}
template <typename PredicateTy>
static void replaceLDSVariablesWithStruct(
Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
const LDSVariableReplacement &Replacement, PredicateTy Predicate) {
LLVMContext &Ctx = M.getContext();
const DataLayout &DL = M.getDataLayout();
// A hack... we need to insert the aliasing info in a predictable order for
// lit tests. Would like to have them in a stable order already, ideally the
// same order they get allocated, which might mean an ordered set container
auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>(
LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()));
// Create alias.scope and their lists. Each field in the new structure
// does not alias with all other fields.
SmallVector<MDNode *> AliasScopes;
SmallVector<Metadata *> NoAliasList;
const size_t NumberVars = LDSVarsToTransform.size();
if (NumberVars > 1) {
MDBuilder MDB(Ctx);
AliasScopes.reserve(NumberVars);
MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
for (size_t I = 0; I < NumberVars; I++) {
MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
AliasScopes.push_back(Scope);
}
NoAliasList.append(&AliasScopes[1], AliasScopes.end());
}
// Replace uses of ith variable with a constantexpr to the corresponding
// field of the instance that will be allocated by AMDGPUMachineFunction
for (size_t I = 0; I < NumberVars; I++) {
GlobalVariable *GV = LDSVarsToTransform[I];
Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV);
GV->replaceUsesWithIf(GEP, Predicate);
APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
uint64_t Offset = APOff.getZExtValue();
Align A =
commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
if (I)
NoAliasList[I - 1] = AliasScopes[I - 1];
MDNode *NoAlias =
NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
MDNode *AliasScope =
AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
}
}
static void refineUsesAlignmentAndAA(Value *Ptr, Align A,
const DataLayout &DL, MDNode *AliasScope,
MDNode *NoAlias, unsigned MaxDepth = 5) {
if (!MaxDepth || (A == 1 && !AliasScope))
return;
for (User *U : Ptr->users()) {
if (auto *I = dyn_cast<Instruction>(U)) {
if (AliasScope && I->mayReadOrWriteMemory()) {
MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
: AliasScope);
I->setMetadata(LLVMContext::MD_alias_scope, AS);
MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
I->setMetadata(LLVMContext::MD_noalias, NA);
}
}
if (auto *LI = dyn_cast<LoadInst>(U)) {
LI->setAlignment(std::max(A, LI->getAlign()));
continue;
}
if (auto *SI = dyn_cast<StoreInst>(U)) {
if (SI->getPointerOperand() == Ptr)
SI->setAlignment(std::max(A, SI->getAlign()));
continue;
}
if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
// None of atomicrmw operations can work on pointers, but let's
// check it anyway in case it will or we will process ConstantExpr.
if (AI->getPointerOperand() == Ptr)
AI->setAlignment(std::max(A, AI->getAlign()));
continue;
}
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
if (AI->getPointerOperand() == Ptr)
AI->setAlignment(std::max(A, AI->getAlign()));
continue;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
APInt Off(BitWidth, 0);
if (GEP->getPointerOperand() == Ptr) {
Align GA;
if (GEP->accumulateConstantOffset(DL, Off))
GA = commonAlignment(A, Off.getLimitedValue());
refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
MaxDepth - 1);
}
continue;
}
if (auto *I = dyn_cast<Instruction>(U)) {
if (I->getOpcode() == Instruction::BitCast ||
I->getOpcode() == Instruction::AddrSpaceCast)
refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
}
}
}
};
} // namespace
char AMDGPULowerModuleLDS::ID = 0;
char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
"Lower uses of LDS variables from non-kernel functions", false,
false)
ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
return new AMDGPULowerModuleLDS();
}
PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
ModuleAnalysisManager &) {
return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
|