1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
|
//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Eliminates allocas by either converting them into vectors or by migrating
// them to local address space.
//
// Two passes are exposed by this file:
// - "promote-alloca-to-vector", which runs early in the pipeline and only
// promotes to vector. Promotion to vector is almost always profitable
// except when the alloca is too big and the promotion would result in
// very high register pressure.
// - "promote-alloca", which does both promotion to vector and LDS and runs
// much later in the pipeline. This runs after SROA because promoting to
// LDS is of course less profitable than getting rid of the alloca or
// vectorizing it, thus we only want to do it when the only alternative is
// lowering the alloca to stack.
//
// Note that both of them exist for the old and new PMs. The new PM passes are
// declared in AMDGPU.h and the legacy PM ones are declared here.s
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstSimplifyFolder.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#define DEBUG_TYPE "amdgpu-promote-alloca"
using namespace llvm;
namespace {
static cl::opt<bool>
DisablePromoteAllocaToVector("disable-promote-alloca-to-vector",
cl::desc("Disable promote alloca to vector"),
cl::init(false));
static cl::opt<bool>
DisablePromoteAllocaToLDS("disable-promote-alloca-to-lds",
cl::desc("Disable promote alloca to LDS"),
cl::init(false));
static cl::opt<unsigned> PromoteAllocaToVectorLimit(
"amdgpu-promote-alloca-to-vector-limit",
cl::desc("Maximum byte size to consider promote alloca to vector"),
cl::init(0));
// Shared implementation which can do both promotion to vector and to LDS.
class AMDGPUPromoteAllocaImpl {
private:
const TargetMachine &TM;
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
// FIXME: This should be per-kernel.
uint32_t LocalMemLimit = 0;
uint32_t CurrentLocalMemUsage = 0;
unsigned MaxVGPRs;
bool IsAMDGCN = false;
bool IsAMDHSA = false;
std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
/// BaseAlloca is the alloca root the search started from.
/// Val may be that alloca or a recursive user of it.
bool collectUsesWithPtrTypes(Value *BaseAlloca, Value *Val,
std::vector<Value *> &WorkList) const;
/// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
/// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
/// Returns true if both operands are derived from the same alloca. Val should
/// be the same value as one of the input operands of UseInst.
bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
Instruction *UseInst, int OpIdx0,
int OpIdx1) const;
/// Check whether we have enough local memory for promotion.
bool hasSufficientLocalMem(const Function &F);
bool tryPromoteAllocaToVector(AllocaInst &I);
bool tryPromoteAllocaToLDS(AllocaInst &I, bool SufficientLDS);
public:
AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {
const Triple &TT = TM.getTargetTriple();
IsAMDGCN = TT.getArch() == Triple::amdgcn;
IsAMDHSA = TT.getOS() == Triple::AMDHSA;
}
bool run(Function &F, bool PromoteToLDS);
};
// FIXME: This can create globals so should be a module pass.
class AMDGPUPromoteAlloca : public FunctionPass {
public:
static char ID;
AMDGPUPromoteAlloca() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>())
.run(F, /*PromoteToLDS*/ true);
return false;
}
StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
FunctionPass::getAnalysisUsage(AU);
}
};
class AMDGPUPromoteAllocaToVector : public FunctionPass {
public:
static char ID;
AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>())
.run(F, /*PromoteToLDS*/ false);
return false;
}
StringRef getPassName() const override {
return "AMDGPU Promote Alloca to vector";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
FunctionPass::getAnalysisUsage(AU);
}
};
unsigned getMaxVGPRs(const TargetMachine &TM, const Function &F) {
if (!TM.getTargetTriple().isAMDGCN())
return 128;
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
unsigned MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
// A non-entry function has only 32 caller preserved registers.
// Do not promote alloca which will force spilling unless we know the function
// will be inlined.
if (!F.hasFnAttribute(Attribute::AlwaysInline) &&
!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
MaxVGPRs = std::min(MaxVGPRs, 32u);
return MaxVGPRs;
}
} // end anonymous namespace
char AMDGPUPromoteAlloca::ID = 0;
char AMDGPUPromoteAllocaToVector::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
"AMDGPU promote alloca to vector or LDS", false, false)
// Move LDS uses from functions to kernels before promote alloca for accurate
// estimation of LDS available
INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)
INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
"AMDGPU promote alloca to vector or LDS", false, false)
INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
"AMDGPU promote alloca to vector", false, false)
char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
FunctionAnalysisManager &AM) {
bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ true);
if (Changed) {
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
return PreservedAnalyses::all();
}
PreservedAnalyses
AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F, /*PromoteToLDS*/ false);
if (Changed) {
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
return PreservedAnalyses::all();
}
FunctionPass *llvm::createAMDGPUPromoteAlloca() {
return new AMDGPUPromoteAlloca();
}
FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
return new AMDGPUPromoteAllocaToVector();
}
bool AMDGPUPromoteAllocaImpl::run(Function &F, bool PromoteToLDS) {
Mod = F.getParent();
DL = &Mod->getDataLayout();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
if (!ST.isPromoteAllocaEnabled())
return false;
MaxVGPRs = getMaxVGPRs(TM, F);
bool SufficientLDS = PromoteToLDS ? hasSufficientLocalMem(F) : false;
SmallVector<AllocaInst *, 16> Allocas;
for (Instruction &I : F.getEntryBlock()) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
// Array allocations are probably not worth handling, since an allocation
// of the array type is the canonical form.
if (!AI->isStaticAlloca() || AI->isArrayAllocation())
continue;
Allocas.push_back(AI);
}
}
bool Changed = false;
for (AllocaInst *AI : Allocas) {
if (tryPromoteAllocaToVector(*AI))
Changed = true;
else if (PromoteToLDS && tryPromoteAllocaToLDS(*AI, SufficientLDS))
Changed = true;
}
// NOTE: tryPromoteAllocaToVector removes the alloca, so Allocas contains
// dangling pointers. If we want to reuse it past this point, the loop above
// would need to be updated to remove successfully promoted allocas.
return Changed;
}
struct MemTransferInfo {
ConstantInt *SrcIndex = nullptr;
ConstantInt *DestIndex = nullptr;
};
// Checks if the instruction I is a memset user of the alloca AI that we can
// deal with. Currently, only non-volatile memsets that affect the whole alloca
// are handled.
static bool isSupportedMemset(MemSetInst *I, AllocaInst *AI,
const DataLayout &DL) {
using namespace PatternMatch;
// For now we only care about non-volatile memsets that affect the whole type
// (start at index 0 and fill the whole alloca).
//
// TODO: Now that we moved to PromoteAlloca we could handle any memsets
// (except maybe volatile ones?) - we just need to use shufflevector if it
// only affects a subset of the vector.
const unsigned Size = DL.getTypeStoreSize(AI->getAllocatedType());
return I->getOperand(0) == AI &&
match(I->getOperand(2), m_SpecificInt(Size)) && !I->isVolatile();
}
static Value *
calculateVectorIndex(Value *Ptr,
const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
auto *GEP = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts());
if (!GEP)
return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext()));
auto I = GEPIdx.find(GEP);
assert(I != GEPIdx.end() && "Must have entry for GEP!");
return I->second;
}
static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca,
Type *VecElemTy, const DataLayout &DL) {
// TODO: Extracting a "multiple of X" from a GEP might be a useful generic
// helper.
unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType());
MapVector<Value *, APInt> VarOffsets;
APInt ConstOffset(BW, 0);
if (GEP->getPointerOperand()->stripPointerCasts() != Alloca ||
!GEP->collectOffset(DL, BW, VarOffsets, ConstOffset))
return nullptr;
unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy);
if (VarOffsets.size() > 1)
return nullptr;
if (VarOffsets.size() == 1) {
// Only handle cases where we don't need to insert extra arithmetic
// instructions.
const auto &VarOffset = VarOffsets.front();
if (!ConstOffset.isZero() || VarOffset.second != VecElemSize)
return nullptr;
return VarOffset.first;
}
APInt Quot;
uint64_t Rem;
APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem);
if (Rem != 0)
return nullptr;
return ConstantInt::get(GEP->getContext(), Quot);
}
/// Promotes a single user of the alloca to a vector form.
///
/// \param Inst Instruction to be promoted.
/// \param DL Module Data Layout.
/// \param VectorTy Vectorized Type.
/// \param VecStoreSize Size of \p VectorTy in bytes.
/// \param ElementSize Size of \p VectorTy element type in bytes.
/// \param TransferInfo MemTransferInst info map.
/// \param GEPVectorIdx GEP -> VectorIdx cache.
/// \param CurVal Current value of the vector (e.g. last stored value)
/// \param[out] DeferredLoads \p Inst is added to this vector if it can't
/// be promoted now. This happens when promoting requires \p
/// CurVal, but \p CurVal is nullptr.
/// \return the stored value if \p Inst would have written to the alloca, or
/// nullptr otherwise.
static Value *promoteAllocaUserToVector(
Instruction *Inst, const DataLayout &DL, FixedVectorType *VectorTy,
unsigned VecStoreSize, unsigned ElementSize,
DenseMap<MemTransferInst *, MemTransferInfo> &TransferInfo,
std::map<GetElementPtrInst *, Value *> &GEPVectorIdx, Value *CurVal,
SmallVectorImpl<LoadInst *> &DeferredLoads) {
// Note: we use InstSimplifyFolder because it can leverage the DataLayout
// to do more folding, especially in the case of vector splats.
IRBuilder<InstSimplifyFolder> Builder(Inst->getContext(),
InstSimplifyFolder(DL));
Builder.SetInsertPoint(Inst);
const auto GetOrLoadCurrentVectorValue = [&]() -> Value * {
if (CurVal)
return CurVal;
// If the current value is not known, insert a dummy load and lower it on
// the second pass.
LoadInst *Dummy =
Builder.CreateLoad(VectorTy, PoisonValue::get(Builder.getPtrTy()),
"promotealloca.dummyload");
DeferredLoads.push_back(Dummy);
return Dummy;
};
const auto CreateTempPtrIntCast = [&Builder, DL](Value *Val,
Type *PtrTy) -> Value * {
assert(DL.getTypeStoreSize(Val->getType()) == DL.getTypeStoreSize(PtrTy));
const unsigned Size = DL.getTypeStoreSizeInBits(PtrTy);
if (!PtrTy->isVectorTy())
return Builder.CreateBitOrPointerCast(Val, Builder.getIntNTy(Size));
const unsigned NumPtrElts = cast<FixedVectorType>(PtrTy)->getNumElements();
// If we want to cast to cast, e.g. a <2 x ptr> into a <4 x i32>, we need to
// first cast the ptr vector to <2 x i64>.
assert((Size % NumPtrElts == 0) && "Vector size not divisble");
Type *EltTy = Builder.getIntNTy(Size / NumPtrElts);
return Builder.CreateBitOrPointerCast(
Val, FixedVectorType::get(EltTy, NumPtrElts));
};
Type *VecEltTy = VectorTy->getElementType();
const unsigned NumVecElts = VectorTy->getNumElements();
switch (Inst->getOpcode()) {
case Instruction::Load: {
// Loads can only be lowered if the value is known.
if (!CurVal) {
DeferredLoads.push_back(cast<LoadInst>(Inst));
return nullptr;
}
Value *Index = calculateVectorIndex(
cast<LoadInst>(Inst)->getPointerOperand(), GEPVectorIdx);
// We're loading the full vector.
Type *AccessTy = Inst->getType();
TypeSize AccessSize = DL.getTypeStoreSize(AccessTy);
if (AccessSize == VecStoreSize && cast<Constant>(Index)->isZeroValue()) {
if (AccessTy->isPtrOrPtrVectorTy())
CurVal = CreateTempPtrIntCast(CurVal, AccessTy);
else if (CurVal->getType()->isPtrOrPtrVectorTy())
CurVal = CreateTempPtrIntCast(CurVal, CurVal->getType());
Value *NewVal = Builder.CreateBitOrPointerCast(CurVal, AccessTy);
Inst->replaceAllUsesWith(NewVal);
return nullptr;
}
// Loading a subvector.
if (isa<FixedVectorType>(AccessTy)) {
assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy)));
const unsigned NumLoadedElts = AccessSize / DL.getTypeStoreSize(VecEltTy);
auto *SubVecTy = FixedVectorType::get(VecEltTy, NumLoadedElts);
assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy));
unsigned IndexVal = cast<ConstantInt>(Index)->getZExtValue();
Value *SubVec = PoisonValue::get(SubVecTy);
for (unsigned K = 0; K < NumLoadedElts; ++K) {
SubVec = Builder.CreateInsertElement(
SubVec, Builder.CreateExtractElement(CurVal, IndexVal + K), K);
}
if (AccessTy->isPtrOrPtrVectorTy())
SubVec = CreateTempPtrIntCast(SubVec, AccessTy);
else if (SubVecTy->isPtrOrPtrVectorTy())
SubVec = CreateTempPtrIntCast(SubVec, SubVecTy);
SubVec = Builder.CreateBitOrPointerCast(SubVec, AccessTy);
Inst->replaceAllUsesWith(SubVec);
return nullptr;
}
// We're loading one element.
Value *ExtractElement = Builder.CreateExtractElement(CurVal, Index);
if (AccessTy != VecEltTy)
ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, AccessTy);
Inst->replaceAllUsesWith(ExtractElement);
return nullptr;
}
case Instruction::Store: {
// For stores, it's a bit trickier and it depends on whether we're storing
// the full vector or not. If we're storing the full vector, we don't need
// to know the current value. If this is a store of a single element, we
// need to know the value.
StoreInst *SI = cast<StoreInst>(Inst);
Value *Index = calculateVectorIndex(SI->getPointerOperand(), GEPVectorIdx);
Value *Val = SI->getValueOperand();
// We're storing the full vector, we can handle this without knowing CurVal.
Type *AccessTy = Val->getType();
TypeSize AccessSize = DL.getTypeStoreSize(AccessTy);
if (AccessSize == VecStoreSize && cast<Constant>(Index)->isZeroValue()) {
if (AccessTy->isPtrOrPtrVectorTy())
Val = CreateTempPtrIntCast(Val, AccessTy);
else if (VectorTy->isPtrOrPtrVectorTy())
Val = CreateTempPtrIntCast(Val, VectorTy);
return Builder.CreateBitOrPointerCast(Val, VectorTy);
}
// Storing a subvector.
if (isa<FixedVectorType>(AccessTy)) {
assert(AccessSize.isKnownMultipleOf(DL.getTypeStoreSize(VecEltTy)));
const unsigned NumWrittenElts =
AccessSize / DL.getTypeStoreSize(VecEltTy);
auto *SubVecTy = FixedVectorType::get(VecEltTy, NumWrittenElts);
assert(DL.getTypeStoreSize(SubVecTy) == DL.getTypeStoreSize(AccessTy));
if (SubVecTy->isPtrOrPtrVectorTy())
Val = CreateTempPtrIntCast(Val, SubVecTy);
else if (AccessTy->isPtrOrPtrVectorTy())
Val = CreateTempPtrIntCast(Val, AccessTy);
Val = Builder.CreateBitOrPointerCast(Val, SubVecTy);
unsigned IndexVal = cast<ConstantInt>(Index)->getZExtValue();
Value *CurVec = GetOrLoadCurrentVectorValue();
for (unsigned K = 0; K < NumWrittenElts && ((IndexVal + K) < NumVecElts);
++K) {
CurVec = Builder.CreateInsertElement(
CurVec, Builder.CreateExtractElement(Val, K), IndexVal + K);
}
return CurVec;
}
if (Val->getType() != VecEltTy)
Val = Builder.CreateBitOrPointerCast(Val, VecEltTy);
return Builder.CreateInsertElement(GetOrLoadCurrentVectorValue(), Val,
Index);
}
case Instruction::Call: {
if (auto *MTI = dyn_cast<MemTransferInst>(Inst)) {
// For memcpy, we need to know curval.
ConstantInt *Length = cast<ConstantInt>(MTI->getLength());
unsigned NumCopied = Length->getZExtValue() / ElementSize;
MemTransferInfo *TI = &TransferInfo[MTI];
unsigned SrcBegin = TI->SrcIndex->getZExtValue();
unsigned DestBegin = TI->DestIndex->getZExtValue();
SmallVector<int> Mask;
for (unsigned Idx = 0; Idx < VectorTy->getNumElements(); ++Idx) {
if (Idx >= DestBegin && Idx < DestBegin + NumCopied) {
Mask.push_back(SrcBegin++);
} else {
Mask.push_back(Idx);
}
}
return Builder.CreateShuffleVector(GetOrLoadCurrentVectorValue(), Mask);
}
if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
// For memset, we don't need to know the previous value because we
// currently only allow memsets that cover the whole alloca.
Value *Elt = MSI->getOperand(1);
if (DL.getTypeStoreSize(VecEltTy) > 1) {
Value *EltBytes =
Builder.CreateVectorSplat(DL.getTypeStoreSize(VecEltTy), Elt);
Elt = Builder.CreateBitCast(EltBytes, VecEltTy);
}
return Builder.CreateVectorSplat(VectorTy->getElementCount(), Elt);
}
llvm_unreachable("Unsupported call when promoting alloca to vector");
}
default:
llvm_unreachable("Inconsistency in instructions promotable to vector");
}
llvm_unreachable("Did not return after promoting instruction!");
}
static bool isSupportedAccessType(FixedVectorType *VecTy, Type *AccessTy,
const DataLayout &DL) {
// Access as a vector type can work if the size of the access vector is a
// multiple of the size of the alloca's vector element type.
//
// Examples:
// - VecTy = <8 x float>, AccessTy = <4 x float> -> OK
// - VecTy = <4 x double>, AccessTy = <2 x float> -> OK
// - VecTy = <4 x double>, AccessTy = <3 x float> -> NOT OK
// - 3*32 is not a multiple of 64
//
// We could handle more complicated cases, but it'd make things a lot more
// complicated.
if (isa<FixedVectorType>(AccessTy)) {
TypeSize AccTS = DL.getTypeStoreSize(AccessTy);
TypeSize VecTS = DL.getTypeStoreSize(VecTy->getElementType());
return AccTS.isKnownMultipleOf(VecTS);
}
return CastInst::isBitOrNoopPointerCastable(VecTy->getElementType(), AccessTy,
DL);
}
/// Iterates over an instruction worklist that may contain multiple instructions
/// from the same basic block, but in a different order.
template <typename InstContainer>
static void forEachWorkListItem(const InstContainer &WorkList,
std::function<void(Instruction *)> Fn) {
// Bucket up uses of the alloca by the block they occur in.
// This is important because we have to handle multiple defs/uses in a block
// ourselves: SSAUpdater is purely for cross-block references.
DenseMap<BasicBlock *, SmallDenseSet<Instruction *>> UsesByBlock;
for (Instruction *User : WorkList)
UsesByBlock[User->getParent()].insert(User);
for (Instruction *User : WorkList) {
BasicBlock *BB = User->getParent();
auto &BlockUses = UsesByBlock[BB];
// Already processed, skip.
if (BlockUses.empty())
continue;
// Only user in the block, directly process it.
if (BlockUses.size() == 1) {
Fn(User);
continue;
}
// Multiple users in the block, do a linear scan to see users in order.
for (Instruction &Inst : *BB) {
if (!BlockUses.contains(&Inst))
continue;
Fn(&Inst);
}
// Clear the block so we know it's been processed.
BlockUses.clear();
}
}
// FIXME: Should try to pick the most likely to be profitable allocas first.
bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToVector(AllocaInst &Alloca) {
LLVM_DEBUG(dbgs() << "Trying to promote to vector: " << Alloca << '\n');
if (DisablePromoteAllocaToVector) {
LLVM_DEBUG(dbgs() << " Promote alloca to vector is disabled\n");
return false;
}
Type *AllocaTy = Alloca.getAllocatedType();
auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
ArrayTy->getNumElements() > 0)
VectorTy = FixedVectorType::get(ArrayTy->getElementType(),
ArrayTy->getNumElements());
}
// Use up to 1/4 of available register budget for vectorization.
unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
: (MaxVGPRs * 32);
if (DL->getTypeSizeInBits(AllocaTy) * 4 > Limit) {
LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " << MaxVGPRs
<< " registers available\n");
return false;
}
// FIXME: There is no reason why we can't support larger arrays, we
// are just being conservative for now.
// FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or
// equivalent. Potentially these could also be promoted but we don't currently
// handle this case
if (!VectorTy) {
LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n");
return false;
}
if (VectorTy->getNumElements() > 16 || VectorTy->getNumElements() < 2) {
LLVM_DEBUG(dbgs() << " " << *VectorTy
<< " has an unsupported number of elements\n");
return false;
}
std::map<GetElementPtrInst *, Value *> GEPVectorIdx;
SmallVector<Instruction *> WorkList;
SmallVector<Instruction *> UsersToRemove;
SmallVector<Instruction *> DeferredInsts;
SmallVector<Use *, 8> Uses;
DenseMap<MemTransferInst *, MemTransferInfo> TransferInfo;
const auto RejectUser = [&](Instruction *Inst, Twine Msg) {
LLVM_DEBUG(dbgs() << " Cannot promote alloca to vector: " << Msg << "\n"
<< " " << *Inst << "\n");
return false;
};
for (Use &U : Alloca.uses())
Uses.push_back(&U);
LLVM_DEBUG(dbgs() << " Attempting promotion to: " << *VectorTy << "\n");
Type *VecEltTy = VectorTy->getElementType();
unsigned ElementSize = DL->getTypeSizeInBits(VecEltTy) / 8;
while (!Uses.empty()) {
Use *U = Uses.pop_back_val();
Instruction *Inst = cast<Instruction>(U->getUser());
if (Value *Ptr = getLoadStorePointerOperand(Inst)) {
// This is a store of the pointer, not to the pointer.
if (isa<StoreInst>(Inst) &&
U->getOperandNo() != StoreInst::getPointerOperandIndex())
return RejectUser(Inst, "pointer is being stored");
Type *AccessTy = getLoadStoreType(Inst);
if (AccessTy->isAggregateType())
return RejectUser(Inst, "unsupported load/store as aggregate");
assert(!AccessTy->isAggregateType() || AccessTy->isArrayTy());
Ptr = Ptr->stripPointerCasts();
// Alloca already accessed as vector.
if (Ptr == &Alloca && DL->getTypeStoreSize(Alloca.getAllocatedType()) ==
DL->getTypeStoreSize(AccessTy)) {
WorkList.push_back(Inst);
continue;
}
// Check that this is a simple access of a vector element.
bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple()
: cast<StoreInst>(Inst)->isSimple();
if (!IsSimple)
return RejectUser(Inst, "not a simple load or store");
if (!isSupportedAccessType(VectorTy, AccessTy, *DL))
return RejectUser(Inst, "not a supported access type");
WorkList.push_back(Inst);
continue;
}
if (isa<BitCastInst>(Inst)) {
// Look through bitcasts.
for (Use &U : Inst->uses())
Uses.push_back(&U);
UsersToRemove.push_back(Inst);
continue;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
// If we can't compute a vector index from this GEP, then we can't
// promote this alloca to vector.
Value *Index = GEPToVectorIndex(GEP, &Alloca, VecEltTy, *DL);
if (!Index)
return RejectUser(Inst, "cannot compute vector index for GEP");
GEPVectorIdx[GEP] = Index;
for (Use &U : Inst->uses())
Uses.push_back(&U);
UsersToRemove.push_back(Inst);
continue;
}
if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst);
MSI && isSupportedMemset(MSI, &Alloca, *DL)) {
WorkList.push_back(Inst);
continue;
}
if (MemTransferInst *TransferInst = dyn_cast<MemTransferInst>(Inst)) {
if (TransferInst->isVolatile())
return RejectUser(Inst, "mem transfer inst is volatile");
ConstantInt *Len = dyn_cast<ConstantInt>(TransferInst->getLength());
if (!Len || (Len->getZExtValue() % ElementSize))
return RejectUser(Inst, "mem transfer inst length is non-constant or "
"not a multiple of the vector element size");
if (!TransferInfo.count(TransferInst)) {
DeferredInsts.push_back(Inst);
WorkList.push_back(Inst);
TransferInfo[TransferInst] = MemTransferInfo();
}
auto getPointerIndexOfAlloca = [&](Value *Ptr) -> ConstantInt * {
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
if (Ptr != &Alloca && !GEPVectorIdx.count(GEP))
return nullptr;
return dyn_cast<ConstantInt>(calculateVectorIndex(Ptr, GEPVectorIdx));
};
unsigned OpNum = U->getOperandNo();
MemTransferInfo *TI = &TransferInfo[TransferInst];
if (OpNum == 0) {
Value *Dest = TransferInst->getDest();
ConstantInt *Index = getPointerIndexOfAlloca(Dest);
if (!Index)
return RejectUser(Inst, "could not calculate constant dest index");
TI->DestIndex = Index;
} else {
assert(OpNum == 1);
Value *Src = TransferInst->getSource();
ConstantInt *Index = getPointerIndexOfAlloca(Src);
if (!Index)
return RejectUser(Inst, "could not calculate constant src index");
TI->SrcIndex = Index;
}
continue;
}
// Ignore assume-like intrinsics and comparisons used in assumes.
if (isAssumeLikeIntrinsic(Inst)) {
UsersToRemove.push_back(Inst);
continue;
}
if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) {
return isAssumeLikeIntrinsic(cast<Instruction>(U));
})) {
UsersToRemove.push_back(Inst);
continue;
}
return RejectUser(Inst, "unhandled alloca user");
}
while (!DeferredInsts.empty()) {
Instruction *Inst = DeferredInsts.pop_back_val();
MemTransferInst *TransferInst = cast<MemTransferInst>(Inst);
// TODO: Support the case if the pointers are from different alloca or
// from different address spaces.
MemTransferInfo &Info = TransferInfo[TransferInst];
if (!Info.SrcIndex || !Info.DestIndex)
return RejectUser(
Inst, "mem transfer inst is missing constant src and/or dst index");
}
LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "
<< *VectorTy << '\n');
const unsigned VecStoreSize = DL->getTypeStoreSize(VectorTy);
// Alloca is uninitialized memory. Imitate that by making the first value
// undef.
SSAUpdater Updater;
Updater.Initialize(VectorTy, "promotealloca");
Updater.AddAvailableValue(Alloca.getParent(), UndefValue::get(VectorTy));
// First handle the initial worklist.
SmallVector<LoadInst *, 4> DeferredLoads;
forEachWorkListItem(WorkList, [&](Instruction *I) {
BasicBlock *BB = I->getParent();
// On the first pass, we only take values that are trivially known, i.e.
// where AddAvailableValue was already called in this block.
Value *Result = promoteAllocaUserToVector(
I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx,
Updater.FindValueForBlock(BB), DeferredLoads);
if (Result)
Updater.AddAvailableValue(BB, Result);
});
// Then handle deferred loads.
forEachWorkListItem(DeferredLoads, [&](Instruction *I) {
SmallVector<LoadInst *, 0> NewDLs;
BasicBlock *BB = I->getParent();
// On the second pass, we use GetValueInMiddleOfBlock to guarantee we always
// get a value, inserting PHIs as needed.
Value *Result = promoteAllocaUserToVector(
I, *DL, VectorTy, VecStoreSize, ElementSize, TransferInfo, GEPVectorIdx,
Updater.GetValueInMiddleOfBlock(I->getParent()), NewDLs);
if (Result)
Updater.AddAvailableValue(BB, Result);
assert(NewDLs.empty() && "No more deferred loads should be queued!");
});
// Delete all instructions. On the first pass, new dummy loads may have been
// added so we need to collect them too.
DenseSet<Instruction *> InstsToDelete(WorkList.begin(), WorkList.end());
InstsToDelete.insert(DeferredLoads.begin(), DeferredLoads.end());
for (Instruction *I : InstsToDelete) {
assert(I->use_empty());
I->eraseFromParent();
}
// Delete all the users that are known to be removeable.
for (Instruction *I : reverse(UsersToRemove)) {
I->dropDroppableUses();
assert(I->use_empty());
I->eraseFromParent();
}
// Alloca should now be dead too.
assert(Alloca.use_empty());
Alloca.eraseFromParent();
return true;
}
std::pair<Value *, Value *>
AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
Function &F = *Builder.GetInsertBlock()->getParent();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
if (!IsAMDHSA) {
Function *LocalSizeYFn =
Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
Function *LocalSizeZFn =
Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
ST.makeLIDRangeMetadata(LocalSizeY);
ST.makeLIDRangeMetadata(LocalSizeZ);
return std::pair(LocalSizeY, LocalSizeZ);
}
// We must read the size out of the dispatch pointer.
assert(IsAMDGCN);
// We are indexing into this struct, and want to extract the workgroup_size_*
// fields.
//
// typedef struct hsa_kernel_dispatch_packet_s {
// uint16_t header;
// uint16_t setup;
// uint16_t workgroup_size_x ;
// uint16_t workgroup_size_y;
// uint16_t workgroup_size_z;
// uint16_t reserved0;
// uint32_t grid_size_x ;
// uint32_t grid_size_y ;
// uint32_t grid_size_z;
//
// uint32_t private_segment_size;
// uint32_t group_segment_size;
// uint64_t kernel_object;
//
// #ifdef HSA_LARGE_MODEL
// void *kernarg_address;
// #elif defined HSA_LITTLE_ENDIAN
// void *kernarg_address;
// uint32_t reserved1;
// #else
// uint32_t reserved1;
// void *kernarg_address;
// #endif
// uint64_t reserved2;
// hsa_signal_t completion_signal; // uint64_t wrapper
// } hsa_kernel_dispatch_packet_t
//
Function *DispatchPtrFn =
Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
DispatchPtr->addRetAttr(Attribute::NoAlias);
DispatchPtr->addRetAttr(Attribute::NonNull);
F.removeFnAttr("amdgpu-no-dispatch-ptr");
// Size of the dispatch packet struct.
DispatchPtr->addDereferenceableRetAttr(64);
Type *I32Ty = Type::getInt32Ty(Mod->getContext());
Value *CastDispatchPtr = Builder.CreateBitCast(
DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
// We could do a single 64-bit load here, but it's likely that the basic
// 32-bit and extract sequence is already present, and it is probably easier
// to CSE this. The loads should be mergeable later anyway.
Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt);
LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
ST.makeLIDRangeMetadata(LoadZU);
// Extract y component. Upper half of LoadZU should be zero already.
Value *Y = Builder.CreateLShr(LoadXY, 16);
return std::pair(Y, LoadZU);
}
Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
unsigned N) {
Function *F = Builder.GetInsertBlock()->getParent();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F);
Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
StringRef AttrName;
switch (N) {
case 0:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
: (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
AttrName = "amdgpu-no-workitem-id-x";
break;
case 1:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
: (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
AttrName = "amdgpu-no-workitem-id-y";
break;
case 2:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
: (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
AttrName = "amdgpu-no-workitem-id-z";
break;
default:
llvm_unreachable("invalid dimension");
}
Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
CallInst *CI = Builder.CreateCall(WorkitemIdFn);
ST.makeLIDRangeMetadata(CI);
F->removeFnAttr(AttrName);
return CI;
}
static bool isCallPromotable(CallInst *CI) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
if (!II)
return false;
switch (II->getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::objectsize:
return true;
default:
return false;
}
}
bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
int OpIdx1) const {
// Figure out which operand is the one we might not be promoting.
Value *OtherOp = Inst->getOperand(OpIdx0);
if (Val == OtherOp)
OtherOp = Inst->getOperand(OpIdx1);
if (isa<ConstantPointerNull>(OtherOp))
return true;
Value *OtherObj = getUnderlyingObject(OtherOp);
if (!isa<AllocaInst>(OtherObj))
return false;
// TODO: We should be able to replace undefs with the right pointer type.
// TODO: If we know the other base object is another promotable
// alloca, not necessarily this alloca, we can do this. The
// important part is both must have the same address space at
// the end.
if (OtherObj != BaseAlloca) {
LLVM_DEBUG(
dbgs() << "Found a binary instruction with another alloca object\n");
return false;
}
return true;
}
bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
for (User *User : Val->users()) {
if (is_contained(WorkList, User))
continue;
if (CallInst *CI = dyn_cast<CallInst>(User)) {
if (!isCallPromotable(CI))
return false;
WorkList.push_back(User);
continue;
}
Instruction *UseInst = cast<Instruction>(User);
if (UseInst->getOpcode() == Instruction::PtrToInt)
return false;
if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
if (LI->isVolatile())
return false;
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
if (SI->isVolatile())
return false;
// Reject if the stored value is not the pointer operand.
if (SI->getPointerOperand() != Val)
return false;
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
if (RMW->isVolatile())
return false;
} else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
if (CAS->isVolatile())
return false;
}
// Only promote a select if we know that the other select operand
// is from another pointer that will also be promoted.
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
return false;
// May need to rewrite constant operands.
WorkList.push_back(ICmp);
}
if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
// Give up if the pointer may be captured.
if (PointerMayBeCaptured(UseInst, true, true))
return false;
// Don't collect the users of this.
WorkList.push_back(User);
continue;
}
// Do not promote vector/aggregate type instructions. It is hard to track
// their users.
if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User))
return false;
if (!User->getType()->isPointerTy())
continue;
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
// Be conservative if an address could be computed outside the bounds of
// the alloca.
if (!GEP->isInBounds())
return false;
}
// Only promote a select if we know that the other select operand is from
// another pointer that will also be promoted.
if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
return false;
}
// Repeat for phis.
if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
// TODO: Handle more complex cases. We should be able to replace loops
// over arrays.
switch (Phi->getNumIncomingValues()) {
case 1:
break;
case 2:
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
return false;
break;
default:
return false;
}
}
WorkList.push_back(User);
if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
return false;
}
return true;
}
bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
FunctionType *FTy = F.getFunctionType();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
// If the function has any arguments in the local address space, then it's
// possible these arguments require the entire local memory space, so
// we cannot use local memory in the pass.
for (Type *ParamTy : FTy->params()) {
PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
LocalMemLimit = 0;
LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
"local memory disabled.\n");
return false;
}
}
LocalMemLimit = ST.getAddressableLocalMemorySize();
if (LocalMemLimit == 0)
return false;
SmallVector<const Constant *, 16> Stack;
SmallPtrSet<const Constant *, 8> VisitedConstants;
SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
for (const User *U : Val->users()) {
if (const Instruction *Use = dyn_cast<Instruction>(U)) {
if (Use->getParent()->getParent() == &F)
return true;
} else {
const Constant *C = cast<Constant>(U);
if (VisitedConstants.insert(C).second)
Stack.push_back(C);
}
}
return false;
};
for (GlobalVariable &GV : Mod->globals()) {
if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
continue;
if (visitUsers(&GV, &GV)) {
UsedLDS.insert(&GV);
Stack.clear();
continue;
}
// For any ConstantExpr uses, we need to recursively search the users until
// we see a function.
while (!Stack.empty()) {
const Constant *C = Stack.pop_back_val();
if (visitUsers(&GV, C)) {
UsedLDS.insert(&GV);
Stack.clear();
break;
}
}
}
const DataLayout &DL = Mod->getDataLayout();
SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
AllocatedSizes.reserve(UsedLDS.size());
for (const GlobalVariable *GV : UsedLDS) {
Align Alignment =
DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
// HIP uses an extern unsized array in local address space for dynamically
// allocated shared memory. In that case, we have to disable the promotion.
if (GV->hasExternalLinkage() && AllocSize == 0) {
LocalMemLimit = 0;
LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated "
"local memory. Promoting to local memory "
"disabled.\n");
return false;
}
AllocatedSizes.emplace_back(AllocSize, Alignment);
}
// Sort to try to estimate the worst case alignment padding
//
// FIXME: We should really do something to fix the addresses to a more optimal
// value instead
llvm::sort(AllocatedSizes, llvm::less_second());
// Check how much local memory is being used by global objects
CurrentLocalMemUsage = 0;
// FIXME: Try to account for padding here. The real padding and address is
// currently determined from the inverse order of uses in the function when
// legalizing, which could also potentially change. We try to estimate the
// worst case here, but we probably should fix the addresses earlier.
for (auto Alloc : AllocatedSizes) {
CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
CurrentLocalMemUsage += Alloc.first;
}
unsigned MaxOccupancy =
ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, F);
// Restrict local memory usage so that we don't drastically reduce occupancy,
// unless it is already significantly reduced.
// TODO: Have some sort of hint or other heuristics to guess occupancy based
// on other factors..
unsigned OccupancyHint = ST.getWavesPerEU(F).second;
if (OccupancyHint == 0)
OccupancyHint = 7;
// Clamp to max value.
OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
// Check the hint but ignore it if it's obviously wrong from the existing LDS
// usage.
MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
// Round up to the next tier of usage.
unsigned MaxSizeWithWaveCount =
ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
// Program is possibly broken by using more local mem than available.
if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
return false;
LocalMemLimit = MaxSizeWithWaveCount;
LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
<< " bytes of LDS\n"
<< " Rounding size to " << MaxSizeWithWaveCount
<< " with a maximum occupancy of " << MaxOccupancy << '\n'
<< " and " << (LocalMemLimit - CurrentLocalMemUsage)
<< " available for promotion\n");
return true;
}
// FIXME: Should try to pick the most likely to be profitable allocas first.
bool AMDGPUPromoteAllocaImpl::tryPromoteAllocaToLDS(AllocaInst &I,
bool SufficientLDS) {
LLVM_DEBUG(dbgs() << "Trying to promote to LDS: " << I << '\n');
if (DisablePromoteAllocaToLDS) {
LLVM_DEBUG(dbgs() << " Promote alloca to LDS is disabled\n");
return false;
}
const DataLayout &DL = Mod->getDataLayout();
IRBuilder<> Builder(&I);
const Function &ContainingFunction = *I.getParent()->getParent();
CallingConv::ID CC = ContainingFunction.getCallingConv();
// Don't promote the alloca to LDS for shader calling conventions as the work
// item ID intrinsics are not supported for these calling conventions.
// Furthermore not all LDS is available for some of the stages.
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
break;
default:
LLVM_DEBUG(
dbgs()
<< " promote alloca to LDS not supported with calling convention.\n");
return false;
}
// Not likely to have sufficient local memory for promotion.
if (!SufficientLDS)
return false;
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
Align Alignment =
DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
// FIXME: This computed padding is likely wrong since it depends on inverse
// usage order.
//
// FIXME: It is also possible that if we're allowed to use all of the memory
// could end up using more than the maximum due to alignment padding.
uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
uint32_t AllocSize =
WorkGroupSize * DL.getTypeAllocSize(I.getAllocatedType());
NewSize += AllocSize;
if (NewSize > LocalMemLimit) {
LLVM_DEBUG(dbgs() << " " << AllocSize
<< " bytes of local memory not available to promote\n");
return false;
}
CurrentLocalMemUsage = NewSize;
std::vector<Value *> WorkList;
if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
return false;
}
LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
Function *F = I.getParent()->getParent();
Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
GlobalVariable *GV = new GlobalVariable(
*Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy),
Twine(F->getName()) + Twine('.') + I.getName(), nullptr,
GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS);
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
GV->setAlignment(I.getAlign());
Value *TCntY, *TCntZ;
std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
Value *TIdX = getWorkitemID(Builder, 0);
Value *TIdY = getWorkitemID(Builder, 1);
Value *TIdZ = getWorkitemID(Builder, 2);
Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
Tmp0 = Builder.CreateMul(Tmp0, TIdX);
Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
TID = Builder.CreateAdd(TID, TIdZ);
LLVMContext &Context = Mod->getContext();
Value *Indices[] = {Constant::getNullValue(Type::getInt32Ty(Context)), TID};
Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
I.mutateType(Offset->getType());
I.replaceAllUsesWith(Offset);
I.eraseFromParent();
SmallVector<IntrinsicInst *> DeferredIntrs;
for (Value *V : WorkList) {
CallInst *Call = dyn_cast<CallInst>(V);
if (!Call) {
if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS);
if (isa<ConstantPointerNull>(CI->getOperand(0)))
CI->setOperand(0, ConstantPointerNull::get(NewTy));
if (isa<ConstantPointerNull>(CI->getOperand(1)))
CI->setOperand(1, ConstantPointerNull::get(NewTy));
continue;
}
// The operand's value should be corrected on its own and we don't want to
// touch the users.
if (isa<AddrSpaceCastInst>(V))
continue;
PointerType *NewTy = PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS);
// FIXME: It doesn't really make sense to try to do this for all
// instructions.
V->mutateType(NewTy);
// Adjust the types of any constant operands.
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
if (isa<ConstantPointerNull>(SI->getOperand(1)))
SI->setOperand(1, ConstantPointerNull::get(NewTy));
if (isa<ConstantPointerNull>(SI->getOperand(2)))
SI->setOperand(2, ConstantPointerNull::get(NewTy));
} else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
}
}
continue;
}
IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
Builder.SetInsertPoint(Intr);
switch (Intr->getIntrinsicID()) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
// These intrinsics are for address space 0 only
Intr->eraseFromParent();
continue;
case Intrinsic::memcpy:
case Intrinsic::memmove:
// These have 2 pointer operands. In case if second pointer also needs
// to be replaced we defer processing of these intrinsics until all
// other values are processed.
DeferredIntrs.push_back(Intr);
continue;
case Intrinsic::memset: {
MemSetInst *MemSet = cast<MemSetInst>(Intr);
Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
MemSet->getLength(), MemSet->getDestAlign(),
MemSet->isVolatile());
Intr->eraseFromParent();
continue;
}
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
Intr->eraseFromParent();
// FIXME: I think the invariant marker should still theoretically apply,
// but the intrinsics need to be changed to accept pointers with any
// address space.
continue;
case Intrinsic::objectsize: {
Value *Src = Intr->getOperand(0);
Function *ObjectSize = Intrinsic::getDeclaration(
Mod, Intrinsic::objectsize,
{Intr->getType(),
PointerType::get(Context, AMDGPUAS::LOCAL_ADDRESS)});
CallInst *NewCall = Builder.CreateCall(
ObjectSize,
{Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
Intr->replaceAllUsesWith(NewCall);
Intr->eraseFromParent();
continue;
}
default:
Intr->print(errs());
llvm_unreachable("Don't know how to promote alloca intrinsic use.");
}
}
for (IntrinsicInst *Intr : DeferredIntrs) {
Builder.SetInsertPoint(Intr);
Intrinsic::ID ID = Intr->getIntrinsicID();
assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
MemTransferInst *MI = cast<MemTransferInst>(Intr);
auto *B = Builder.CreateMemTransferInst(
ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(),
MI->getSourceAlign(), MI->getLength(), MI->isVolatile());
for (unsigned I = 0; I != 2; ++I) {
if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) {
B->addDereferenceableParamAttr(I, Bytes);
}
}
Intr->eraseFromParent();
}
return true;
}
|