1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
//=== lib/CodeGen/GlobalISel/AMDGPURegBankCombiner.cpp ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does combining of machine instructions at the generic MI level,
// after register banks are known.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutor.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/Target/TargetMachine.h"
#define GET_GICOMBINER_DEPS
#include "AMDGPUGenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_DEPS
#define DEBUG_TYPE "amdgpu-regbank-combiner"
using namespace llvm;
using namespace MIPatternMatch;
namespace {
#define GET_GICOMBINER_TYPES
#include "AMDGPUGenRegBankGICombiner.inc"
#undef GET_GICOMBINER_TYPES
class AMDGPURegBankCombinerImpl : public GIMatchTableExecutor {
protected:
const AMDGPURegBankCombinerImplRuleConfig &RuleConfig;
MachineIRBuilder &B;
MachineFunction &MF;
MachineRegisterInfo &MRI;
const GCNSubtarget &STI;
const RegisterBankInfo &RBI;
const TargetRegisterInfo &TRI;
const SIInstrInfo &TII;
CombinerHelper &Helper;
GISelChangeObserver &Observer;
public:
AMDGPURegBankCombinerImpl(
const AMDGPURegBankCombinerImplRuleConfig &RuleConfig,
MachineIRBuilder &B, CombinerHelper &Helper,
GISelChangeObserver &Observer);
static const char *getName() { return "AMDGPURegBankCombinerImpl"; }
bool tryCombineAll(MachineInstr &I) const;
bool isVgprRegBank(Register Reg) const;
Register getAsVgpr(Register Reg) const;
struct MinMaxMedOpc {
unsigned Min, Max, Med;
};
struct Med3MatchInfo {
unsigned Opc;
Register Val0, Val1, Val2;
};
MinMaxMedOpc getMinMaxPair(unsigned Opc) const;
template <class m_Cst, typename CstTy>
bool matchMed(MachineInstr &MI, MachineRegisterInfo &MRI, MinMaxMedOpc MMMOpc,
Register &Val, CstTy &K0, CstTy &K1) const;
bool matchIntMinMaxToMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo) const;
bool matchFPMinMaxToMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo) const;
bool matchFPMinMaxToClamp(MachineInstr &MI, Register &Reg) const;
bool matchFPMed3ToClamp(MachineInstr &MI, Register &Reg) const;
void applyMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo) const;
void applyClamp(MachineInstr &MI, Register &Reg) const;
private:
SIModeRegisterDefaults getMode() const;
bool getIEEE() const;
bool getDX10Clamp() const;
bool isFminnumIeee(const MachineInstr &MI) const;
bool isFCst(MachineInstr *MI) const;
bool isClampZeroToOne(MachineInstr *K0, MachineInstr *K1) const;
#define GET_GICOMBINER_CLASS_MEMBERS
#define AMDGPUSubtarget GCNSubtarget
#include "AMDGPUGenRegBankGICombiner.inc"
#undef GET_GICOMBINER_CLASS_MEMBERS
#undef AMDGPUSubtarget
};
#define GET_GICOMBINER_IMPL
#define AMDGPUSubtarget GCNSubtarget
#include "AMDGPUGenRegBankGICombiner.inc"
#undef AMDGPUSubtarget
#undef GET_GICOMBINER_IMPL
AMDGPURegBankCombinerImpl::AMDGPURegBankCombinerImpl(
const AMDGPURegBankCombinerImplRuleConfig &RuleConfig, MachineIRBuilder &B,
CombinerHelper &Helper, GISelChangeObserver &Observer)
: RuleConfig(RuleConfig), B(B), MF(B.getMF()), MRI(*B.getMRI()),
STI(MF.getSubtarget<GCNSubtarget>()), RBI(*STI.getRegBankInfo()),
TRI(*STI.getRegisterInfo()), TII(*STI.getInstrInfo()), Helper(Helper),
Observer(Observer),
#define GET_GICOMBINER_CONSTRUCTOR_INITS
#include "AMDGPUGenRegBankGICombiner.inc"
#undef GET_GICOMBINER_CONSTRUCTOR_INITS
{
}
bool AMDGPURegBankCombinerImpl::isVgprRegBank(Register Reg) const {
return RBI.getRegBank(Reg, MRI, TRI)->getID() == AMDGPU::VGPRRegBankID;
}
Register AMDGPURegBankCombinerImpl::getAsVgpr(Register Reg) const {
if (isVgprRegBank(Reg))
return Reg;
// Search for existing copy of Reg to vgpr.
for (MachineInstr &Use : MRI.use_instructions(Reg)) {
Register Def = Use.getOperand(0).getReg();
if (Use.getOpcode() == AMDGPU::COPY && isVgprRegBank(Def))
return Def;
}
// Copy Reg to vgpr.
Register VgprReg = B.buildCopy(MRI.getType(Reg), Reg).getReg(0);
MRI.setRegBank(VgprReg, RBI.getRegBank(AMDGPU::VGPRRegBankID));
return VgprReg;
}
AMDGPURegBankCombinerImpl::MinMaxMedOpc
AMDGPURegBankCombinerImpl::getMinMaxPair(unsigned Opc) const {
switch (Opc) {
default:
llvm_unreachable("Unsupported opcode");
case AMDGPU::G_SMAX:
case AMDGPU::G_SMIN:
return {AMDGPU::G_SMIN, AMDGPU::G_SMAX, AMDGPU::G_AMDGPU_SMED3};
case AMDGPU::G_UMAX:
case AMDGPU::G_UMIN:
return {AMDGPU::G_UMIN, AMDGPU::G_UMAX, AMDGPU::G_AMDGPU_UMED3};
case AMDGPU::G_FMAXNUM:
case AMDGPU::G_FMINNUM:
return {AMDGPU::G_FMINNUM, AMDGPU::G_FMAXNUM, AMDGPU::G_AMDGPU_FMED3};
case AMDGPU::G_FMAXNUM_IEEE:
case AMDGPU::G_FMINNUM_IEEE:
return {AMDGPU::G_FMINNUM_IEEE, AMDGPU::G_FMAXNUM_IEEE,
AMDGPU::G_AMDGPU_FMED3};
}
}
template <class m_Cst, typename CstTy>
bool AMDGPURegBankCombinerImpl::matchMed(MachineInstr &MI,
MachineRegisterInfo &MRI,
MinMaxMedOpc MMMOpc, Register &Val,
CstTy &K0, CstTy &K1) const {
// 4 operand commutes of: min(max(Val, K0), K1).
// Find K1 from outer instr: min(max(...), K1) or min(K1, max(...)).
// Find K0 and Val from inner instr: max(K0, Val) or max(Val, K0).
// 4 operand commutes of: max(min(Val, K1), K0).
// Find K0 from outer instr: max(min(...), K0) or max(K0, min(...)).
// Find K1 and Val from inner instr: min(K1, Val) or min(Val, K1).
return mi_match(
MI, MRI,
m_any_of(
m_CommutativeBinOp(
MMMOpc.Min, m_CommutativeBinOp(MMMOpc.Max, m_Reg(Val), m_Cst(K0)),
m_Cst(K1)),
m_CommutativeBinOp(
MMMOpc.Max, m_CommutativeBinOp(MMMOpc.Min, m_Reg(Val), m_Cst(K1)),
m_Cst(K0))));
}
bool AMDGPURegBankCombinerImpl::matchIntMinMaxToMed3(
MachineInstr &MI, Med3MatchInfo &MatchInfo) const {
Register Dst = MI.getOperand(0).getReg();
if (!isVgprRegBank(Dst))
return false;
// med3 for i16 is only available on gfx9+, and not available for v2i16.
LLT Ty = MRI.getType(Dst);
if ((Ty != LLT::scalar(16) || !STI.hasMed3_16()) && Ty != LLT::scalar(32))
return false;
MinMaxMedOpc OpcodeTriple = getMinMaxPair(MI.getOpcode());
Register Val;
std::optional<ValueAndVReg> K0, K1;
// Match min(max(Val, K0), K1) or max(min(Val, K1), K0). Then see if K0 <= K1.
if (!matchMed<GCstAndRegMatch>(MI, MRI, OpcodeTriple, Val, K0, K1))
return false;
if (OpcodeTriple.Med == AMDGPU::G_AMDGPU_SMED3 && K0->Value.sgt(K1->Value))
return false;
if (OpcodeTriple.Med == AMDGPU::G_AMDGPU_UMED3 && K0->Value.ugt(K1->Value))
return false;
MatchInfo = {OpcodeTriple.Med, Val, K0->VReg, K1->VReg};
return true;
}
// fmed3(NaN, K0, K1) = min(min(NaN, K0), K1)
// ieee = true : min/max(SNaN, K) = QNaN, min/max(QNaN, K) = K
// ieee = false : min/max(NaN, K) = K
// clamp(NaN) = dx10_clamp ? 0.0 : NaN
// Consider values of min(max(Val, K0), K1) and max(min(Val, K1), K0) as input.
// Other operand commutes (see matchMed) give same result since min and max are
// commutative.
// Try to replace fp min(max(Val, K0), K1) or max(min(Val, K1), K0), KO<=K1
// with fmed3(Val, K0, K1) or clamp(Val). Clamp requires K0 = 0.0 and K1 = 1.0.
// Val = SNaN only for ieee = true
// fmed3(SNaN, K0, K1) = min(min(SNaN, K0), K1) = min(QNaN, K1) = K1
// min(max(SNaN, K0), K1) = min(QNaN, K1) = K1
// max(min(SNaN, K1), K0) = max(K1, K0) = K1
// Val = NaN,ieee = false or Val = QNaN,ieee = true
// fmed3(NaN, K0, K1) = min(min(NaN, K0), K1) = min(K0, K1) = K0
// min(max(NaN, K0), K1) = min(K0, K1) = K0 (can clamp when dx10_clamp = true)
// max(min(NaN, K1), K0) = max(K1, K0) = K1 != K0
bool AMDGPURegBankCombinerImpl::matchFPMinMaxToMed3(
MachineInstr &MI, Med3MatchInfo &MatchInfo) const {
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
// med3 for f16 is only available on gfx9+, and not available for v2f16.
if ((Ty != LLT::scalar(16) || !STI.hasMed3_16()) && Ty != LLT::scalar(32))
return false;
auto OpcodeTriple = getMinMaxPair(MI.getOpcode());
Register Val;
std::optional<FPValueAndVReg> K0, K1;
// Match min(max(Val, K0), K1) or max(min(Val, K1), K0). Then see if K0 <= K1.
if (!matchMed<GFCstAndRegMatch>(MI, MRI, OpcodeTriple, Val, K0, K1))
return false;
if (K0->Value > K1->Value)
return false;
// For IEEE=false perform combine only when it's safe to assume that there are
// no NaN inputs. Most often MI is marked with nnan fast math flag.
// For IEEE=true consider NaN inputs. fmed3(NaN, K0, K1) is equivalent to
// min(min(NaN, K0), K1). Safe to fold for min(max(Val, K0), K1) since inner
// nodes(max/min) have same behavior when one input is NaN and other isn't.
// Don't consider max(min(SNaN, K1), K0) since there is no isKnownNeverQNaN,
// also post-legalizer inputs to min/max are fcanonicalized (never SNaN).
if ((getIEEE() && isFminnumIeee(MI)) || isKnownNeverNaN(Dst, MRI)) {
// Don't fold single use constant that can't be inlined.
if ((!MRI.hasOneNonDBGUse(K0->VReg) || TII.isInlineConstant(K0->Value)) &&
(!MRI.hasOneNonDBGUse(K1->VReg) || TII.isInlineConstant(K1->Value))) {
MatchInfo = {OpcodeTriple.Med, Val, K0->VReg, K1->VReg};
return true;
}
}
return false;
}
bool AMDGPURegBankCombinerImpl::matchFPMinMaxToClamp(MachineInstr &MI,
Register &Reg) const {
// Clamp is available on all types after regbankselect (f16, f32, f64, v2f16).
auto OpcodeTriple = getMinMaxPair(MI.getOpcode());
Register Val;
std::optional<FPValueAndVReg> K0, K1;
// Match min(max(Val, K0), K1) or max(min(Val, K1), K0).
if (!matchMed<GFCstOrSplatGFCstMatch>(MI, MRI, OpcodeTriple, Val, K0, K1))
return false;
if (!K0->Value.isExactlyValue(0.0) || !K1->Value.isExactlyValue(1.0))
return false;
// For IEEE=false perform combine only when it's safe to assume that there are
// no NaN inputs. Most often MI is marked with nnan fast math flag.
// For IEEE=true consider NaN inputs. Only min(max(QNaN, 0.0), 1.0) evaluates
// to 0.0 requires dx10_clamp = true.
if ((getIEEE() && getDX10Clamp() && isFminnumIeee(MI) &&
isKnownNeverSNaN(Val, MRI)) ||
isKnownNeverNaN(MI.getOperand(0).getReg(), MRI)) {
Reg = Val;
return true;
}
return false;
}
// Replacing fmed3(NaN, 0.0, 1.0) with clamp. Requires dx10_clamp = true.
// Val = SNaN only for ieee = true. It is important which operand is NaN.
// min(min(SNaN, 0.0), 1.0) = min(QNaN, 1.0) = 1.0
// min(min(SNaN, 1.0), 0.0) = min(QNaN, 0.0) = 0.0
// min(min(0.0, 1.0), SNaN) = min(0.0, SNaN) = QNaN
// Val = NaN,ieee = false or Val = QNaN,ieee = true
// min(min(NaN, 0.0), 1.0) = min(0.0, 1.0) = 0.0
// min(min(NaN, 1.0), 0.0) = min(1.0, 0.0) = 0.0
// min(min(0.0, 1.0), NaN) = min(0.0, NaN) = 0.0
bool AMDGPURegBankCombinerImpl::matchFPMed3ToClamp(MachineInstr &MI,
Register &Reg) const {
// In llvm-ir, clamp is often represented as an intrinsic call to
// @llvm.amdgcn.fmed3.f32(%Val, 0.0, 1.0). Check for other operand orders.
MachineInstr *Src0 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
MachineInstr *Src1 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
MachineInstr *Src2 = getDefIgnoringCopies(MI.getOperand(3).getReg(), MRI);
if (isFCst(Src0) && !isFCst(Src1))
std::swap(Src0, Src1);
if (isFCst(Src1) && !isFCst(Src2))
std::swap(Src1, Src2);
if (isFCst(Src0) && !isFCst(Src1))
std::swap(Src0, Src1);
if (!isClampZeroToOne(Src1, Src2))
return false;
Register Val = Src0->getOperand(0).getReg();
auto isOp3Zero = [&]() {
MachineInstr *Op3 = getDefIgnoringCopies(MI.getOperand(4).getReg(), MRI);
if (Op3->getOpcode() == TargetOpcode::G_FCONSTANT)
return Op3->getOperand(1).getFPImm()->isExactlyValue(0.0);
return false;
};
// For IEEE=false perform combine only when it's safe to assume that there are
// no NaN inputs. Most often MI is marked with nnan fast math flag.
// For IEEE=true consider NaN inputs. Requires dx10_clamp = true. Safe to fold
// when Val could be QNaN. If Val can also be SNaN third input should be 0.0.
if (isKnownNeverNaN(MI.getOperand(0).getReg(), MRI) ||
(getIEEE() && getDX10Clamp() &&
(isKnownNeverSNaN(Val, MRI) || isOp3Zero()))) {
Reg = Val;
return true;
}
return false;
}
void AMDGPURegBankCombinerImpl::applyClamp(MachineInstr &MI,
Register &Reg) const {
B.setInstrAndDebugLoc(MI);
B.buildInstr(AMDGPU::G_AMDGPU_CLAMP, {MI.getOperand(0)}, {Reg},
MI.getFlags());
MI.eraseFromParent();
}
void AMDGPURegBankCombinerImpl::applyMed3(MachineInstr &MI,
Med3MatchInfo &MatchInfo) const {
B.setInstrAndDebugLoc(MI);
B.buildInstr(MatchInfo.Opc, {MI.getOperand(0)},
{getAsVgpr(MatchInfo.Val0), getAsVgpr(MatchInfo.Val1),
getAsVgpr(MatchInfo.Val2)},
MI.getFlags());
MI.eraseFromParent();
}
SIModeRegisterDefaults AMDGPURegBankCombinerImpl::getMode() const {
return MF.getInfo<SIMachineFunctionInfo>()->getMode();
}
bool AMDGPURegBankCombinerImpl::getIEEE() const { return getMode().IEEE; }
bool AMDGPURegBankCombinerImpl::getDX10Clamp() const {
return getMode().DX10Clamp;
}
bool AMDGPURegBankCombinerImpl::isFminnumIeee(const MachineInstr &MI) const {
return MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE;
}
bool AMDGPURegBankCombinerImpl::isFCst(MachineInstr *MI) const {
return MI->getOpcode() == AMDGPU::G_FCONSTANT;
}
bool AMDGPURegBankCombinerImpl::isClampZeroToOne(MachineInstr *K0,
MachineInstr *K1) const {
if (isFCst(K0) && isFCst(K1)) {
const ConstantFP *KO_FPImm = K0->getOperand(1).getFPImm();
const ConstantFP *K1_FPImm = K1->getOperand(1).getFPImm();
return (KO_FPImm->isExactlyValue(0.0) && K1_FPImm->isExactlyValue(1.0)) ||
(KO_FPImm->isExactlyValue(1.0) && K1_FPImm->isExactlyValue(0.0));
}
return false;
}
class AMDGPURegBankCombinerInfo final : public CombinerInfo {
GISelKnownBits *KB;
MachineDominatorTree *MDT;
AMDGPURegBankCombinerImplRuleConfig RuleConfig;
public:
AMDGPURegBankCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
const AMDGPULegalizerInfo *LI, GISelKnownBits *KB,
MachineDominatorTree *MDT)
: CombinerInfo(/*AllowIllegalOps*/ false, /*ShouldLegalizeIllegal*/ true,
/*LegalizerInfo*/ LI, EnableOpt, OptSize, MinSize),
KB(KB), MDT(MDT) {
if (!RuleConfig.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
MachineIRBuilder &B) const override;
};
bool AMDGPURegBankCombinerInfo::combine(GISelChangeObserver &Observer,
MachineInstr &MI,
MachineIRBuilder &B) const {
CombinerHelper Helper(Observer, B, /* IsPreLegalize*/ false, KB, MDT);
// TODO: Do not re-create the Impl on every inst, it should be per function.
AMDGPURegBankCombinerImpl Impl(RuleConfig, B, Helper, Observer);
Impl.setupMF(*MI.getMF(), KB);
return Impl.tryCombineAll(MI);
}
// Pass boilerplate
// ================
class AMDGPURegBankCombiner : public MachineFunctionPass {
public:
static char ID;
AMDGPURegBankCombiner(bool IsOptNone = false);
StringRef getPassName() const override { return "AMDGPURegBankCombiner"; }
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
bool IsOptNone;
};
} // end anonymous namespace
void AMDGPURegBankCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
if (!IsOptNone) {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
MachineFunctionPass::getAnalysisUsage(AU);
}
AMDGPURegBankCombiner::AMDGPURegBankCombiner(bool IsOptNone)
: MachineFunctionPass(ID), IsOptNone(IsOptNone) {
initializeAMDGPURegBankCombinerPass(*PassRegistry::getPassRegistry());
}
bool AMDGPURegBankCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
auto *TPC = &getAnalysis<TargetPassConfig>();
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const AMDGPULegalizerInfo *LI =
static_cast<const AMDGPULegalizerInfo *>(ST.getLegalizerInfo());
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT =
IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
AMDGPURegBankCombinerInfo PCInfo(EnableOpt, F.hasOptSize(), F.hasMinSize(),
LI, KB, MDT);
Combiner C(PCInfo, TPC);
return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
}
char AMDGPURegBankCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPURegBankCombiner, DEBUG_TYPE,
"Combine AMDGPU machine instrs after regbankselect",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_END(AMDGPURegBankCombiner, DEBUG_TYPE,
"Combine AMDGPU machine instrs after regbankselect", false,
false)
namespace llvm {
FunctionPass *createAMDGPURegBankCombiner(bool IsOptNone) {
return new AMDGPURegBankCombiner(IsOptNone);
}
} // end namespace llvm
|