1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
|
//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements a TargetTransformInfo analysis pass specific to the
// AMDGPU target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetTransformInfo.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIModeRegisterDefaults.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "AMDGPUtti"
static cl::opt<unsigned> UnrollThresholdPrivate(
"amdgpu-unroll-threshold-private",
cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
cl::init(2700), cl::Hidden);
static cl::opt<unsigned> UnrollThresholdLocal(
"amdgpu-unroll-threshold-local",
cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
cl::init(1000), cl::Hidden);
static cl::opt<unsigned> UnrollThresholdIf(
"amdgpu-unroll-threshold-if",
cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
cl::init(200), cl::Hidden);
static cl::opt<bool> UnrollRuntimeLocal(
"amdgpu-unroll-runtime-local",
cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
cl::init(true), cl::Hidden);
static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
"amdgpu-unroll-max-block-to-analyze",
cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
cl::init(32), cl::Hidden);
static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
cl::Hidden, cl::init(4000),
cl::desc("Cost of alloca argument"));
// If the amount of scratch memory to eliminate exceeds our ability to allocate
// it into registers we gain nothing by aggressively inlining functions for that
// heuristic.
static cl::opt<unsigned>
ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
cl::init(256),
cl::desc("Maximum alloca size to use for inline cost"));
// Inliner constraint to achieve reasonable compilation time.
static cl::opt<size_t> InlineMaxBB(
"amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
cl::desc("Maximum number of BBs allowed in a function after inlining"
" (compile time constraint)"));
static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
unsigned Depth = 0) {
const Instruction *I = dyn_cast<Instruction>(Cond);
if (!I)
return false;
for (const Value *V : I->operand_values()) {
if (!L->contains(I))
continue;
if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
return SubLoop->contains(PHI); }))
return true;
} else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
return true;
}
return false;
}
AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()),
TargetTriple(TM->getTargetTriple()),
ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
TLI(ST->getTargetLowering()) {}
void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
const Function &F = *L->getHeader()->getParent();
UP.Threshold =
F.getFnAttributeAsParsedInteger("amdgpu-unroll-threshold", 300);
UP.MaxCount = std::numeric_limits<unsigned>::max();
UP.Partial = true;
// Conditional branch in a loop back edge needs 3 additional exec
// manipulations in average.
UP.BEInsns += 3;
// We want to run unroll even for the loops which have been vectorized.
UP.UnrollVectorizedLoop = true;
// TODO: Do we want runtime unrolling?
// Maximum alloca size than can fit registers. Reserve 16 registers.
const unsigned MaxAlloca = (256 - 16) * 4;
unsigned ThresholdPrivate = UnrollThresholdPrivate;
unsigned ThresholdLocal = UnrollThresholdLocal;
// If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
// provided threshold value as the default for Threshold
if (MDNode *LoopUnrollThreshold =
findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
if (LoopUnrollThreshold->getNumOperands() == 2) {
ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
LoopUnrollThreshold->getOperand(1));
if (MetaThresholdValue) {
// We will also use the supplied value for PartialThreshold for now.
// We may introduce additional metadata if it becomes necessary in the
// future.
UP.Threshold = MetaThresholdValue->getSExtValue();
UP.PartialThreshold = UP.Threshold;
ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
}
}
}
unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
for (const BasicBlock *BB : L->getBlocks()) {
const DataLayout &DL = BB->getModule()->getDataLayout();
unsigned LocalGEPsSeen = 0;
if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
return SubLoop->contains(BB); }))
continue; // Block belongs to an inner loop.
for (const Instruction &I : *BB) {
// Unroll a loop which contains an "if" statement whose condition
// defined by a PHI belonging to the loop. This may help to eliminate
// if region and potentially even PHI itself, saving on both divergence
// and registers used for the PHI.
// Add a small bonus for each of such "if" statements.
if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
if (UP.Threshold < MaxBoost && Br->isConditional()) {
BasicBlock *Succ0 = Br->getSuccessor(0);
BasicBlock *Succ1 = Br->getSuccessor(1);
if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
(L->contains(Succ1) && L->isLoopExiting(Succ1)))
continue;
if (dependsOnLocalPhi(L, Br->getCondition())) {
UP.Threshold += UnrollThresholdIf;
LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
<< " for loop:\n"
<< *L << " due to " << *Br << '\n');
if (UP.Threshold >= MaxBoost)
return;
}
}
continue;
}
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
if (!GEP)
continue;
unsigned AS = GEP->getAddressSpace();
unsigned Threshold = 0;
if (AS == AMDGPUAS::PRIVATE_ADDRESS)
Threshold = ThresholdPrivate;
else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
Threshold = ThresholdLocal;
else
continue;
if (UP.Threshold >= Threshold)
continue;
if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
const Value *Ptr = GEP->getPointerOperand();
const AllocaInst *Alloca =
dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
if (!Alloca || !Alloca->isStaticAlloca())
continue;
Type *Ty = Alloca->getAllocatedType();
unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
if (AllocaSize > MaxAlloca)
continue;
} else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
AS == AMDGPUAS::REGION_ADDRESS) {
LocalGEPsSeen++;
// Inhibit unroll for local memory if we have seen addressing not to
// a variable, most likely we will be unable to combine it.
// Do not unroll too deep inner loops for local memory to give a chance
// to unroll an outer loop for a more important reason.
if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
(!isa<GlobalVariable>(GEP->getPointerOperand()) &&
!isa<Argument>(GEP->getPointerOperand())))
continue;
LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
<< *L << " due to LDS use.\n");
UP.Runtime = UnrollRuntimeLocal;
}
// Check if GEP depends on a value defined by this loop itself.
bool HasLoopDef = false;
for (const Value *Op : GEP->operands()) {
const Instruction *Inst = dyn_cast<Instruction>(Op);
if (!Inst || L->isLoopInvariant(Op))
continue;
if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
return SubLoop->contains(Inst); }))
continue;
HasLoopDef = true;
break;
}
if (!HasLoopDef)
continue;
// We want to do whatever we can to limit the number of alloca
// instructions that make it through to the code generator. allocas
// require us to use indirect addressing, which is slow and prone to
// compiler bugs. If this loop does an address calculation on an
// alloca ptr, then we want to use a higher than normal loop unroll
// threshold. This will give SROA a better chance to eliminate these
// allocas.
//
// We also want to have more unrolling for local memory to let ds
// instructions with different offsets combine.
//
// Don't use the maximum allowed value here as it will make some
// programs way too big.
UP.Threshold = Threshold;
LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
<< " for loop:\n"
<< *L << " due to " << *GEP << '\n');
if (UP.Threshold >= MaxBoost)
return;
}
// If we got a GEP in a small BB from inner loop then increase max trip
// count to analyze for better estimation cost in unroll
if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
UP.MaxIterationsCountToAnalyze = 32;
}
}
void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
int64_t AMDGPUTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const {
return 1024;
}
const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
// Codegen control options which don't matter.
AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
AMDGPU::FeatureUnalignedAccessMode,
AMDGPU::FeatureAutoWaitcntBeforeBarrier,
// Property of the kernel/environment which can't actually differ.
AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
AMDGPU::FeatureTrapHandler,
// The default assumption needs to be ecc is enabled, but no directly
// exposed operations depend on it, so it can be safely inlined.
AMDGPU::FeatureSRAMECC,
// Perf-tuning features
AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()),
ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
TLI(ST->getTargetLowering()), CommonTTI(TM, F),
IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
SIModeRegisterDefaults Mode(F);
HasFP32Denormals = Mode.FP32Denormals != DenormalMode::getPreserveSign();
HasFP64FP16Denormals =
Mode.FP64FP16Denormals != DenormalMode::getPreserveSign();
}
bool GCNTTIImpl::hasBranchDivergence(const Function *F) const {
return !F || !ST->isSingleLaneExecution(*F);
}
unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
// NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
// registers. See getRegisterClassForType for the implementation.
// In this case vector registers are not vector in terms of
// VGPRs, but those which can hold multiple values.
// This is really the number of registers to fill when vectorizing /
// interleaving loops, so we lie to avoid trying to use all registers.
return 4;
}
TypeSize
GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(32);
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(0);
}
llvm_unreachable("Unsupported register kind");
}
unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
return 32;
}
unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
if (Opcode == Instruction::Load || Opcode == Instruction::Store)
return 32 * 4 / ElemWidth;
return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
: (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
: 1;
}
unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
unsigned VecRegBitWidth = VF * LoadSize;
if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
// TODO: Support element-size less than 32bit?
return 128 / LoadSize;
return VF;
}
unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
unsigned VecRegBitWidth = VF * StoreSize;
if (VecRegBitWidth > 128)
return 128 / StoreSize;
return VF;
}
unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER ||
AddrSpace == AMDGPUAS::BUFFER_RESOURCE) {
return 512;
}
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
return 8 * ST->getMaxPrivateElementSize();
// Common to flat, global, local and region. Assume for unknown addrspace.
return 128;
}
bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
// We allow vectorization of flat stores, even though we may need to decompose
// them later if they may access private memory. We don't have enough context
// here, and legalization can handle it.
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
ChainSizeInBytes <= ST->getMaxPrivateElementSize();
}
return true;
}
bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
int64_t GCNTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const {
return 1024;
}
// FIXME: Really we would like to issue multiple 128-bit loads and stores per
// iteration. Should we report a larger size and let it legalize?
//
// FIXME: Should we use narrower types for local/region, or account for when
// unaligned access is legal?
//
// FIXME: This could use fine tuning and microbenchmarks.
Type *GCNTTIImpl::getMemcpyLoopLoweringType(
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicElementSize) const {
if (AtomicElementSize)
return Type::getIntNTy(Context, *AtomicElementSize * 8);
unsigned MinAlign = std::min(SrcAlign, DestAlign);
// A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
// hardware into byte accesses. If you assume all alignments are equally
// probable, it's more efficient on average to use short accesses for this
// case.
if (MinAlign == 2)
return Type::getInt16Ty(Context);
// Not all subtargets have 128-bit DS instructions, and we currently don't
// form them by default.
if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
return FixedVectorType::get(Type::getInt32Ty(Context), 2);
}
// Global memory works best with 16-byte accesses. Private memory will also
// hit this, although they'll be decomposed.
return FixedVectorType::get(Type::getInt32Ty(Context), 4);
}
void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicCpySize) const {
assert(RemainingBytes < 16);
if (AtomicCpySize)
BaseT::getMemcpyLoopResidualLoweringType(
OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
DestAlign, AtomicCpySize);
unsigned MinAlign = std::min(SrcAlign, DestAlign);
if (MinAlign != 2) {
Type *I64Ty = Type::getInt64Ty(Context);
while (RemainingBytes >= 8) {
OpsOut.push_back(I64Ty);
RemainingBytes -= 8;
}
Type *I32Ty = Type::getInt32Ty(Context);
while (RemainingBytes >= 4) {
OpsOut.push_back(I32Ty);
RemainingBytes -= 4;
}
}
Type *I16Ty = Type::getInt16Ty(Context);
while (RemainingBytes >= 2) {
OpsOut.push_back(I16Ty);
RemainingBytes -= 2;
}
Type *I8Ty = Type::getInt8Ty(Context);
while (RemainingBytes) {
OpsOut.push_back(I8Ty);
--RemainingBytes;
}
}
unsigned GCNTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
// Disable unrolling if the loop is not vectorized.
// TODO: Enable this again.
if (VF.isScalar())
return 1;
return 8;
}
bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
switch (Inst->getIntrinsicID()) {
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
if (!Ordering || !Volatile)
return false; // Invalid.
unsigned OrderingVal = Ordering->getZExtValue();
if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
return false;
Info.PtrVal = Inst->getArgOperand(0);
Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
Info.ReadMem = true;
Info.WriteMem = true;
Info.IsVolatile = !Volatile->isZero();
return true;
}
default:
return false;
}
}
InstructionCost GCNTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args,
const Instruction *CxtI) {
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// Because we don't have any legal vector operations, but the legal types, we
// need to account for split vectors.
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
switch (ISD) {
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
if (SLT == MVT::i64)
return get64BitInstrCost(CostKind) * LT.first * NElts;
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
// i32
return getFullRateInstrCost() * LT.first * NElts;
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
if (SLT == MVT::i64) {
// and, or and xor are typically split into 2 VALU instructions.
return 2 * getFullRateInstrCost() * LT.first * NElts;
}
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
return LT.first * NElts * getFullRateInstrCost();
case ISD::MUL: {
const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
if (SLT == MVT::i64) {
const int FullRateCost = getFullRateInstrCost();
return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
}
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
// i32
return QuarterRateCost * NElts * LT.first;
}
case ISD::FMUL:
// Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
// fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
// fused operation.
if (CxtI && CxtI->hasOneUse())
if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
if (OPC == ISD::FADD || OPC == ISD::FSUB) {
if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
return TargetTransformInfo::TCC_Free;
if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
return TargetTransformInfo::TCC_Free;
// Estimate all types may be fused with contract/unsafe flags
const TargetOptions &Options = TLI->getTargetMachine().Options;
if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
Options.UnsafeFPMath ||
(FAdd->hasAllowContract() && CxtI->hasAllowContract()))
return TargetTransformInfo::TCC_Free;
}
}
[[fallthrough]];
case ISD::FADD:
case ISD::FSUB:
if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
NElts = (NElts + 1) / 2;
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost(CostKind);
if (ST->has16BitInsts() && SLT == MVT::f16)
NElts = (NElts + 1) / 2;
if (SLT == MVT::f32 || SLT == MVT::f16)
return LT.first * NElts * getFullRateInstrCost();
break;
case ISD::FDIV:
case ISD::FREM:
// FIXME: frem should be handled separately. The fdiv in it is most of it,
// but the current lowering is also not entirely correct.
if (SLT == MVT::f64) {
int Cost = 7 * get64BitInstrCost(CostKind) +
getQuarterRateInstrCost(CostKind) +
3 * getHalfRateInstrCost(CostKind);
// Add cost of workaround.
if (!ST->hasUsableDivScaleConditionOutput())
Cost += 3 * getFullRateInstrCost();
return LT.first * Cost * NElts;
}
if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
// TODO: This is more complicated, unsafe flags etc.
if ((SLT == MVT::f32 && !HasFP32Denormals) ||
(SLT == MVT::f16 && ST->has16BitInsts())) {
return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
}
}
if (SLT == MVT::f16 && ST->has16BitInsts()) {
// 2 x v_cvt_f32_f16
// f32 rcp
// f32 fmul
// v_cvt_f16_f32
// f16 div_fixup
int Cost =
4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
return LT.first * Cost * NElts;
}
if (SLT == MVT::f32 || SLT == MVT::f16) {
// 4 more v_cvt_* insts without f16 insts support
int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
1 * getQuarterRateInstrCost(CostKind);
if (!HasFP32Denormals) {
// FP mode switches.
Cost += 2 * getFullRateInstrCost();
}
return LT.first * NElts * Cost;
}
break;
case ISD::FNEG:
// Use the backend' estimation. If fneg is not free each element will cost
// one additional instruction.
return TLI->isFNegFree(SLT) ? 0 : NElts;
default:
break;
}
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
}
// Return true if there's a potential benefit from using v2f16/v2i16
// instructions for an intrinsic, even if it requires nontrivial legalization.
static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
switch (ID) {
case Intrinsic::fma: // TODO: fmuladd
// There's a small benefit to using vector ops in the legalized code.
case Intrinsic::round:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
return true;
default:
return false;
}
}
InstructionCost
GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
if (ICA.getID() == Intrinsic::fabs)
return 0;
if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
Type *RetTy = ICA.getReturnType();
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost(CostKind);
if ((ST->has16BitInsts() && SLT == MVT::f16) ||
(ST->hasPackedFP32Ops() && SLT == MVT::f32))
NElts = (NElts + 1) / 2;
// TODO: Get more refined intrinsic costs?
unsigned InstRate = getQuarterRateInstrCost(CostKind);
switch (ICA.getID()) {
case Intrinsic::fma:
InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
: getQuarterRateInstrCost(CostKind);
break;
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; }))
NElts = 1;
break;
}
return LT.first * NElts * InstRate;
}
InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I) {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
const bool SCost =
(CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
const int CBrCost = SCost ? 5 : 7;
switch (Opcode) {
case Instruction::Br: {
// Branch instruction takes about 4 slots on gfx900.
auto BI = dyn_cast_or_null<BranchInst>(I);
if (BI && BI->isUnconditional())
return SCost ? 1 : 4;
// Suppose conditional branch takes additional 3 exec manipulations
// instructions in average.
return CBrCost;
}
case Instruction::Switch: {
auto SI = dyn_cast_or_null<SwitchInst>(I);
// Each case (including default) takes 1 cmp + 1 cbr instructions in
// average.
return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
}
case Instruction::Ret:
return SCost ? 1 : 10;
}
return BaseT::getCFInstrCost(Opcode, CostKind, I);
}
InstructionCost
GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (TTI::requiresOrderedReduction(FMF))
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
EVT OrigTy = TLI->getValueType(DL, Ty);
// Computes cost on targets that have packed math instructions(which support
// 16-bit types only).
if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
return LT.first * getFullRateInstrCost();
}
InstructionCost
GCNTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
FastMathFlags FMF,
TTI::TargetCostKind CostKind) {
EVT OrigTy = TLI->getValueType(DL, Ty);
// Computes cost on targets that have packed math instructions(which support
// 16-bit types only).
if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
return LT.first * getHalfRateInstrCost(CostKind);
}
InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0,
Value *Op1) {
switch (Opcode) {
case Instruction::ExtractElement:
case Instruction::InsertElement: {
unsigned EltSize
= DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
if (EltSize < 32) {
if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
return 0;
return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0,
Op1);
}
// Extracts are just reads of a subregister, so are free. Inserts are
// considered free because we don't want to have any cost for scalarizing
// operations, and we don't have to copy into a different register class.
// Dynamic indexing isn't free and is best avoided.
return Index == ~0u ? 2 : 0;
}
default:
return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
}
}
/// Analyze if the results of inline asm are divergent. If \p Indices is empty,
/// this is analyzing the collective result of all output registers. Otherwise,
/// this is only querying a specific result index if this returns multiple
/// registers in a struct.
bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
const CallInst *CI, ArrayRef<unsigned> Indices) const {
// TODO: Handle complex extract indices
if (Indices.size() > 1)
return true;
const DataLayout &DL = CI->getModule()->getDataLayout();
const SIRegisterInfo *TRI = ST->getRegisterInfo();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
int OutputIdx = 0;
for (auto &TC : TargetConstraints) {
if (TC.Type != InlineAsm::isOutput)
continue;
// Skip outputs we don't care about.
if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
continue;
TLI->ComputeConstraintToUse(TC, SDValue());
const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint(
TRI, TC.ConstraintCode, TC.ConstraintVT).second;
// For AGPR constraints null is returned on subtargets without AGPRs, so
// assume divergent for null.
if (!RC || !TRI->isSGPRClass(RC))
return true;
}
return false;
}
bool GCNTTIImpl::isReadRegisterSourceOfDivergence(
const IntrinsicInst *ReadReg) const {
Metadata *MD =
cast<MetadataAsValue>(ReadReg->getArgOperand(0))->getMetadata();
StringRef RegName =
cast<MDString>(cast<MDNode>(MD)->getOperand(0))->getString();
// Special case registers that look like VCC.
MVT VT = MVT::getVT(ReadReg->getType());
if (VT == MVT::i1)
return true;
// Special case scalar registers that start with 'v'.
if (RegName.startswith("vcc") || RegName.empty())
return false;
// VGPR or AGPR is divergent. There aren't any specially named vector
// registers.
return RegName[0] == 'v' || RegName[0] == 'a';
}
/// \returns true if the result of the value could potentially be
/// different across workitems in a wavefront.
bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V))
return !AMDGPU::isArgPassedInSGPR(A);
// Loads from the private and flat address spaces are divergent, because
// threads can execute the load instruction with the same inputs and get
// different results.
//
// All other loads are not divergent, because if threads issue loads with the
// same arguments, they will always get the same result.
if (const LoadInst *Load = dyn_cast<LoadInst>(V))
return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
// Atomics are divergent because they are executed sequentially: when an
// atomic operation refers to the same address in each thread, then each
// thread after the first sees the value written by the previous thread as
// original value.
if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
return true;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
if (Intrinsic->getIntrinsicID() == Intrinsic::read_register)
return isReadRegisterSourceOfDivergence(Intrinsic);
return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
}
// Assume all function calls are a source of divergence.
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (CI->isInlineAsm())
return isInlineAsmSourceOfDivergence(CI);
return true;
}
// Assume all function calls are a source of divergence.
if (isa<InvokeInst>(V))
return true;
return false;
}
bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
return AMDGPU::isIntrinsicAlwaysUniform(Intrinsic->getIntrinsicID());
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (CI->isInlineAsm())
return !isInlineAsmSourceOfDivergence(CI);
return false;
}
// In most cases TID / wavefrontsize is uniform.
//
// However, if a kernel has uneven dimesions we can have a value of
// workitem-id-x divided by the wavefrontsize non-uniform. For example
// dimensions (65, 2) will have workitems with address (64, 0) and (0, 1)
// packed into a same wave which gives 1 and 0 after the division by 64
// respectively.
//
// FIXME: limit it to 1D kernels only, although that shall be possible
// to perform this optimization is the size of the X dimension is a power
// of 2, we just do not currently have infrastructure to query it.
using namespace llvm::PatternMatch;
uint64_t C;
if (match(V, m_LShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
m_ConstantInt(C))) ||
match(V, m_AShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
m_ConstantInt(C)))) {
const Function *F = cast<Instruction>(V)->getFunction();
return C >= ST->getWavefrontSizeLog2() &&
ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
}
Value *Mask;
if (match(V, m_c_And(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
m_Value(Mask)))) {
const Function *F = cast<Instruction>(V)->getFunction();
const DataLayout &DL = F->getParent()->getDataLayout();
return computeKnownBits(Mask, DL).countMinTrailingZeros() >=
ST->getWavefrontSizeLog2() &&
ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
}
const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
if (!ExtValue)
return false;
const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
if (!CI)
return false;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
switch (Intrinsic->getIntrinsicID()) {
default:
return false;
case Intrinsic::amdgcn_if:
case Intrinsic::amdgcn_else: {
ArrayRef<unsigned> Indices = ExtValue->getIndices();
return Indices.size() == 1 && Indices[0] == 1;
}
}
}
// If we have inline asm returning mixed SGPR and VGPR results, we inferred
// divergent for the overall struct return. We need to override it in the
// case we're extracting an SGPR component here.
if (CI->isInlineAsm())
return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
return false;
}
bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const {
switch (IID) {
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax:
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private:
case Intrinsic::amdgcn_flat_atomic_fadd:
case Intrinsic::amdgcn_flat_atomic_fmax:
case Intrinsic::amdgcn_flat_atomic_fmin:
OpIndexes.push_back(0);
return true;
default:
return false;
}
}
Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
Value *OldV,
Value *NewV) const {
auto IntrID = II->getIntrinsicID();
switch (IntrID) {
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
if (!IsVolatile->isZero())
return nullptr;
Module *M = II->getParent()->getParent()->getParent();
Type *DestTy = II->getType();
Type *SrcTy = NewV->getType();
Function *NewDecl =
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
II->setArgOperand(0, NewV);
II->setCalledFunction(NewDecl);
return II;
}
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private: {
unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
LLVMContext &Ctx = NewV->getType()->getContext();
ConstantInt *NewVal = (TrueAS == NewAS) ?
ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
return NewVal;
}
case Intrinsic::ptrmask: {
unsigned OldAS = OldV->getType()->getPointerAddressSpace();
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
Value *MaskOp = II->getArgOperand(1);
Type *MaskTy = MaskOp->getType();
bool DoTruncate = false;
const GCNTargetMachine &TM =
static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
// All valid 64-bit to 32-bit casts work by chopping off the high
// bits. Any masking only clearing the low bits will also apply in the new
// address space.
if (DL.getPointerSizeInBits(OldAS) != 64 ||
DL.getPointerSizeInBits(NewAS) != 32)
return nullptr;
// TODO: Do we need to thread more context in here?
KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
if (Known.countMinLeadingOnes() < 32)
return nullptr;
DoTruncate = true;
}
IRBuilder<> B(II);
if (DoTruncate) {
MaskTy = B.getInt32Ty();
MaskOp = B.CreateTrunc(MaskOp, MaskTy);
}
return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
{NewV, MaskOp});
}
case Intrinsic::amdgcn_flat_atomic_fadd:
case Intrinsic::amdgcn_flat_atomic_fmax:
case Intrinsic::amdgcn_flat_atomic_fmin: {
Type *DestTy = II->getType();
Type *SrcTy = NewV->getType();
unsigned NewAS = SrcTy->getPointerAddressSpace();
if (!AMDGPU::isExtendedGlobalAddrSpace(NewAS))
return nullptr;
Module *M = II->getModule();
Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(),
{DestTy, SrcTy, DestTy});
II->setArgOperand(0, NewV);
II->setCalledFunction(NewDecl);
return II;
}
default:
return nullptr;
}
}
InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *VT, ArrayRef<int> Mask,
TTI::TargetCostKind CostKind,
int Index, VectorType *SubTp,
ArrayRef<const Value *> Args) {
Kind = improveShuffleKindFromMask(Kind, Mask);
if (ST->hasVOP3PInsts()) {
if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
DL.getTypeSizeInBits(VT->getElementType()) == 16) {
// With op_sel VOP3P instructions freely can access the low half or high
// half of a register, so any swizzle is free.
switch (Kind) {
case TTI::SK_Broadcast:
case TTI::SK_Reverse:
case TTI::SK_PermuteSingleSrc:
return 0;
default:
break;
}
}
}
return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
}
bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
const GCNSubtarget *CallerST
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
const GCNSubtarget *CalleeST
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
const FeatureBitset &CallerBits = CallerST->getFeatureBits();
const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
return false;
// FIXME: dx10_clamp can just take the caller setting, but there seems to be
// no way to support merge for backend defined attributes.
SIModeRegisterDefaults CallerMode(*Caller);
SIModeRegisterDefaults CalleeMode(*Callee);
if (!CallerMode.isInlineCompatible(CalleeMode))
return false;
if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
Callee->hasFnAttribute(Attribute::InlineHint))
return true;
// Hack to make compile times reasonable.
if (InlineMaxBB) {
// Single BB does not increase total BB amount.
if (Callee->size() == 1)
return true;
size_t BBSize = Caller->size() + Callee->size() - 1;
return BBSize <= InlineMaxBB;
}
return true;
}
static unsigned adjustInliningThresholdUsingCallee(const CallBase *CB,
const SITargetLowering *TLI,
const GCNTTIImpl *TTIImpl) {
const int NrOfSGPRUntilSpill = 26;
const int NrOfVGPRUntilSpill = 32;
const DataLayout &DL = TTIImpl->getDataLayout();
unsigned adjustThreshold = 0;
int SGPRsInUse = 0;
int VGPRsInUse = 0;
for (const Use &A : CB->args()) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*TLI, DL, A.get()->getType(), ValueVTs);
for (auto ArgVT : ValueVTs) {
unsigned CCRegNum = TLI->getNumRegistersForCallingConv(
CB->getContext(), CB->getCallingConv(), ArgVT);
if (AMDGPU::isArgPassedInSGPR(CB, CB->getArgOperandNo(&A)))
SGPRsInUse += CCRegNum;
else
VGPRsInUse += CCRegNum;
}
}
// The cost of passing function arguments through the stack:
// 1 instruction to put a function argument on the stack in the caller.
// 1 instruction to take a function argument from the stack in callee.
// 1 instruction is explicitly take care of data dependencies in callee
// function.
InstructionCost ArgStackCost(1);
ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
Instruction::Store, Type::getInt32Ty(CB->getContext()), Align(4),
AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency);
ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
Instruction::Load, Type::getInt32Ty(CB->getContext()), Align(4),
AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency);
// The penalty cost is computed relative to the cost of instructions and does
// not model any storage costs.
adjustThreshold += std::max(0, SGPRsInUse - NrOfSGPRUntilSpill) *
*ArgStackCost.getValue() * InlineConstants::getInstrCost();
adjustThreshold += std::max(0, VGPRsInUse - NrOfVGPRUntilSpill) *
*ArgStackCost.getValue() * InlineConstants::getInstrCost();
return adjustThreshold;
}
static unsigned getCallArgsTotalAllocaSize(const CallBase *CB,
const DataLayout &DL) {
// If we have a pointer to a private array passed into a function
// it will not be optimized out, leaving scratch usage.
// This function calculates the total size in bytes of the memory that would
// end in scratch if the call was not inlined.
unsigned AllocaSize = 0;
SmallPtrSet<const AllocaInst *, 8> AIVisited;
for (Value *PtrArg : CB->args()) {
PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
if (!Ty)
continue;
unsigned AddrSpace = Ty->getAddressSpace();
if (AddrSpace != AMDGPUAS::FLAT_ADDRESS &&
AddrSpace != AMDGPUAS::PRIVATE_ADDRESS)
continue;
const AllocaInst *AI = dyn_cast<AllocaInst>(getUnderlyingObject(PtrArg));
if (!AI || !AI->isStaticAlloca() || !AIVisited.insert(AI).second)
continue;
AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
}
return AllocaSize;
}
unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
unsigned Threshold = adjustInliningThresholdUsingCallee(CB, TLI, this);
// Private object passed as arguments may end up in scratch usage if the call
// is not inlined. Increase the inline threshold to promote inlining.
unsigned AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
if (AllocaSize > 0)
Threshold += ArgAllocaCost;
return Threshold;
}
unsigned GCNTTIImpl::getCallerAllocaCost(const CallBase *CB,
const AllocaInst *AI) const {
// Below the cutoff, assume that the private memory objects would be
// optimized
auto AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
if (AllocaSize <= ArgAllocaCutoff)
return 0;
// Above the cutoff, we give a cost to each private memory object
// depending its size. If the array can be optimized by SROA this cost is not
// added to the total-cost in the inliner cost analysis.
//
// We choose the total cost of the alloca such that their sum cancels the
// bonus given in the threshold (ArgAllocaCost).
//
// Cost_Alloca_0 + ... + Cost_Alloca_N == ArgAllocaCost
//
// Awkwardly, the ArgAllocaCost bonus is multiplied by threshold-multiplier,
// the single-bb bonus and the vector-bonus.
//
// We compensate the first two multipliers, by repeating logic from the
// inliner-cost in here. The vector-bonus is 0 on AMDGPU.
static_assert(InlinerVectorBonusPercent == 0, "vector bonus assumed to be 0");
unsigned Threshold = ArgAllocaCost * getInliningThresholdMultiplier();
bool SingleBB = none_of(*CB->getCalledFunction(), [](const BasicBlock &BB) {
return BB.getTerminator()->getNumSuccessors() > 1;
});
if (SingleBB) {
Threshold += Threshold / 2;
}
auto ArgAllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
// Attribute the bonus proportionally to the alloca size
unsigned AllocaThresholdBonus = (Threshold * ArgAllocaSize) / AllocaSize;
return AllocaThresholdBonus;
}
void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
}
void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
CommonTTI.getPeelingPreferences(L, SE, PP);
}
int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
return ST->hasFullRate64Ops()
? getFullRateInstrCost()
: ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
: getQuarterRateInstrCost(CostKind);
}
std::pair<InstructionCost, MVT>
GCNTTIImpl::getTypeLegalizationCost(Type *Ty) const {
std::pair<InstructionCost, MVT> Cost = BaseT::getTypeLegalizationCost(Ty);
auto Size = DL.getTypeSizeInBits(Ty);
// Maximum load or store can handle 8 dwords for scalar and 4 for
// vector ALU. Let's assume anything above 8 dwords is expensive
// even if legal.
if (Size <= 256)
return Cost;
Cost.first += (Size + 255) / 256;
return Cost;
}
|