1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
//===- AMDGPUTargetTransformInfo.h - AMDGPU specific TTI --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file a TargetTransformInfo::Concept conforming object specific to the
/// AMDGPU target machine. It uses the target's detailed information to
/// provide more precise answers to certain TTI queries, while letting the
/// target independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_AMDGPUTARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_AMDGPU_AMDGPUTARGETTRANSFORMINFO_H
#include "AMDGPU.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include <optional>
namespace llvm {
class AMDGPUTargetMachine;
class GCNSubtarget;
class InstCombiner;
class Loop;
class ScalarEvolution;
class SITargetLowering;
class Type;
class Value;
class AMDGPUTTIImpl final : public BasicTTIImplBase<AMDGPUTTIImpl> {
using BaseT = BasicTTIImplBase<AMDGPUTTIImpl>;
using TTI = TargetTransformInfo;
friend BaseT;
Triple TargetTriple;
const TargetSubtargetInfo *ST;
const TargetLoweringBase *TLI;
const TargetSubtargetInfo *getST() const { return ST; }
const TargetLoweringBase *getTLI() const { return TLI; }
public:
explicit AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F);
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE);
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP);
int64_t getMaxMemIntrinsicInlineSizeThreshold() const;
};
class GCNTTIImpl final : public BasicTTIImplBase<GCNTTIImpl> {
using BaseT = BasicTTIImplBase<GCNTTIImpl>;
using TTI = TargetTransformInfo;
friend BaseT;
const GCNSubtarget *ST;
const SITargetLowering *TLI;
AMDGPUTTIImpl CommonTTI;
bool IsGraphics;
bool HasFP32Denormals;
bool HasFP64FP16Denormals;
static constexpr bool InlinerVectorBonusPercent = 0;
static const FeatureBitset InlineFeatureIgnoreList;
const GCNSubtarget *getST() const { return ST; }
const SITargetLowering *getTLI() const { return TLI; }
static inline int getFullRateInstrCost() {
return TargetTransformInfo::TCC_Basic;
}
static inline int getHalfRateInstrCost(TTI::TargetCostKind CostKind) {
return CostKind == TTI::TCK_CodeSize ? 2
: 2 * TargetTransformInfo::TCC_Basic;
}
// TODO: The size is usually 8 bytes, but takes 4x as many cycles. Maybe
// should be 2 or 4.
static inline int getQuarterRateInstrCost(TTI::TargetCostKind CostKind) {
return CostKind == TTI::TCK_CodeSize ? 2
: 4 * TargetTransformInfo::TCC_Basic;
}
// On some parts, normal fp64 operations are half rate, and others
// quarter. This also applies to some integer operations.
int get64BitInstrCost(TTI::TargetCostKind CostKind) const;
std::pair<InstructionCost, MVT> getTypeLegalizationCost(Type *Ty) const;
public:
explicit GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F);
bool hasBranchDivergence(const Function *F = nullptr) const;
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE);
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP);
TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
return TTI::PSK_FastHardware;
}
unsigned getNumberOfRegisters(unsigned RCID) const;
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind Vector) const;
unsigned getMinVectorRegisterBitWidth() const;
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const;
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const;
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
bool isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const;
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const;
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const;
int64_t getMaxMemIntrinsicInlineSizeThreshold() const;
Type *getMemcpyLoopLoweringType(
LLVMContext & Context, Value * Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicElementSize) const;
void getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
std::optional<uint32_t> AtomicCpySize) const;
unsigned getMaxInterleaveFactor(ElementCount VF);
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
const Instruction *CxtI = nullptr);
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
bool isInlineAsmSourceOfDivergence(const CallInst *CI,
ArrayRef<unsigned> Indices = {}) const;
using BaseT::getVectorInstrCost;
InstructionCost getVectorInstrCost(unsigned Opcode, Type *ValTy,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0, Value *Op1);
bool isReadRegisterSourceOfDivergence(const IntrinsicInst *ReadReg) const;
bool isSourceOfDivergence(const Value *V) const;
bool isAlwaysUniform(const Value *V) const;
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
if (ToAS == AMDGPUAS::FLAT_ADDRESS) {
switch (FromAS) {
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::CONSTANT_ADDRESS:
case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::PRIVATE_ADDRESS:
return true;
default:
break;
}
return false;
}
if ((FromAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
ToAS == AMDGPUAS::CONSTANT_ADDRESS) ||
(FromAS == AMDGPUAS::CONSTANT_ADDRESS &&
ToAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT))
return true;
return false;
}
bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const {
return AMDGPU::addrspacesMayAlias(AS0, AS1);
}
unsigned getFlatAddressSpace() const {
// Don't bother running InferAddressSpaces pass on graphics shaders which
// don't use flat addressing.
if (IsGraphics)
return -1;
return AMDGPUAS::FLAT_ADDRESS;
}
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const;
bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const {
return AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::REGION_ADDRESS &&
AS != AMDGPUAS::PRIVATE_ADDRESS;
}
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
Value *NewV) const;
bool canSimplifyLegacyMulToMul(const Instruction &I, const Value *Op0,
const Value *Op1, InstCombiner &IC) const;
std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) const;
std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const;
InstructionCost getVectorSplitCost() { return 0; }
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask,
TTI::TargetCostKind CostKind, int Index,
VectorType *SubTp,
ArrayRef<const Value *> Args = std::nullopt);
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const;
unsigned getInliningThresholdMultiplier() const { return 11; }
unsigned adjustInliningThreshold(const CallBase *CB) const;
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const;
int getInlinerVectorBonusPercent() const { return InlinerVectorBonusPercent; }
InstructionCost getArithmeticReductionCost(
unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind);
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind);
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
FastMathFlags FMF,
TTI::TargetCostKind CostKind);
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_AMDGPUTARGETTRANSFORMINFO_H
|