1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
|
//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This file contains definition for AMDGPU ISA disassembler
//
//===----------------------------------------------------------------------===//
// ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
#include "Disassembler/AMDGPUDisassembler.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIDefines.h"
#include "SIRegisterInfo.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm-c/DisassemblerTypes.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDecoderOps.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-disassembler"
#define SGPR_MAX \
(isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \
: AMDGPU::EncValues::SGPR_MAX_SI)
using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
MCContext &Ctx, MCInstrInfo const *MCII)
: MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
// ToDo: AMDGPUDisassembler supports only VI ISA.
if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
report_fatal_error("Disassembly not yet supported for subtarget");
}
inline static MCDisassembler::DecodeStatus
addOperand(MCInst &Inst, const MCOperand& Opnd) {
Inst.addOperand(Opnd);
return Opnd.isValid() ?
MCDisassembler::Success :
MCDisassembler::Fail;
}
static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
uint16_t NameIdx) {
int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
if (OpIdx != -1) {
auto I = MI.begin();
std::advance(I, OpIdx);
MI.insert(I, Op);
}
return OpIdx;
}
static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
uint64_t Addr,
const MCDisassembler *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
// Our branches take a simm16, but we need two extra bits to account for the
// factor of 4.
APInt SignedOffset(18, Imm * 4, true);
int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
return MCDisassembler::Success;
return addOperand(Inst, MCOperand::createImm(Imm));
}
static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
const MCDisassembler *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
int64_t Offset;
if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
Offset = Imm & 0xFFFFF;
} else { // GFX9+ supports 21-bit signed offsets.
Offset = SignExtend64<21>(Imm);
}
return addOperand(Inst, MCOperand::createImm(Offset));
}
static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
const MCDisassembler *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeBoolReg(Val));
}
#define DECODE_OPERAND(StaticDecoderName, DecoderName) \
static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \
uint64_t /*Addr*/, \
const MCDisassembler *Decoder) { \
auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
return addOperand(Inst, DAsm->DecoderName(Imm)); \
}
// Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
// number of register. Used by VGPR only and AGPR only operands.
#define DECODE_OPERAND_REG_8(RegClass) \
static DecodeStatus Decode##RegClass##RegisterClass( \
MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \
const MCDisassembler *Decoder) { \
assert(Imm < (1 << 8) && "8-bit encoding"); \
auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
return addOperand( \
Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \
}
#define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \
ImmWidth) \
static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \
const MCDisassembler *Decoder) { \
assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \
auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
return addOperand(Inst, \
DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \
MandatoryLiteral, ImmWidth)); \
}
// Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
// get register class. Used by SGPR only operands.
#define DECODE_OPERAND_REG_7(RegClass, OpWidth) \
DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
// Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
// Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
// Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
// Used by AV_ register classes (AGPR or VGPR only register operands).
#define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \
DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \
Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
// Decoder for Src(9-bit encoding) registers only.
#define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \
DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
// Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
// Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
// only.
#define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \
DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
// Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
// Imm{9} is acc, registers only.
#define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \
DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
// Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
// register from RegClass or immediate. Registers that don't belong to RegClass
// will be decoded and InstPrinter will report warning. Immediate will be
// decoded into constant of size ImmWidth, should match width of immediate used
// by OperandType (important for floating point types).
#define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \
DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \
false, ImmWidth)
// Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
// and decode using 'enum10' from decodeSrcOp.
#define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \
DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \
Imm | 512, false, ImmWidth)
#define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \
DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \
OpWidth, Imm, true, ImmWidth)
// Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
// when RegisterClass is used as an operand. Most often used for destination
// operands.
DECODE_OPERAND_REG_8(VGPR_32)
DECODE_OPERAND_REG_8(VGPR_32_Lo128)
DECODE_OPERAND_REG_8(VReg_64)
DECODE_OPERAND_REG_8(VReg_96)
DECODE_OPERAND_REG_8(VReg_128)
DECODE_OPERAND_REG_8(VReg_256)
DECODE_OPERAND_REG_8(VReg_288)
DECODE_OPERAND_REG_8(VReg_352)
DECODE_OPERAND_REG_8(VReg_384)
DECODE_OPERAND_REG_8(VReg_512)
DECODE_OPERAND_REG_8(VReg_1024)
DECODE_OPERAND_REG_7(SReg_32, OPW32)
DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
DECODE_OPERAND_REG_7(SReg_64, OPW64)
DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
DECODE_OPERAND_REG_7(SReg_128, OPW128)
DECODE_OPERAND_REG_7(SReg_256, OPW256)
DECODE_OPERAND_REG_7(SReg_512, OPW512)
DECODE_OPERAND_REG_8(AGPR_32)
DECODE_OPERAND_REG_8(AReg_64)
DECODE_OPERAND_REG_8(AReg_128)
DECODE_OPERAND_REG_8(AReg_256)
DECODE_OPERAND_REG_8(AReg_512)
DECODE_OPERAND_REG_8(AReg_1024)
DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
// Decoders for register only source RegisterOperands that use use 9-bit Src
// encoding: 'decodeOperand_<RegClass>'.
DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
// Decoders for register or immediate RegisterOperands that use 9-bit Src
// encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
uint64_t Addr,
const MCDisassembler *Decoder) {
const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
}
static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
uint64_t Addr, const void *Decoder) {
const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
}
static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
const MCRegisterInfo *MRI) {
if (OpIdx < 0)
return false;
const MCOperand &Op = Inst.getOperand(OpIdx);
if (!Op.isReg())
return false;
unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
auto Reg = Sub ? Sub : Op.getReg();
return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
}
static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
AMDGPUDisassembler::OpWidthTy Opw,
const MCDisassembler *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
if (!DAsm->isGFX90A()) {
Imm &= 511;
} else {
// If atomic has both vdata and vdst their register classes are tied.
// The bit is decoded along with the vdst, first operand. We need to
// change register class to AGPR if vdst was AGPR.
// If a DS instruction has both data0 and data1 their register classes
// are also tied.
unsigned Opc = Inst.getOpcode();
uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
: AMDGPU::OpName::vdata;
const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
if ((int)Inst.getNumOperands() == DataIdx) {
int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
if (IsAGPROperand(Inst, DstIdx, MRI))
Imm |= 512;
}
if (TSFlags & SIInstrFlags::DS) {
int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
if ((int)Inst.getNumOperands() == Data2Idx &&
IsAGPROperand(Inst, DataIdx, MRI))
Imm |= 512;
}
}
return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
}
static DecodeStatus
DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
const MCDisassembler *Decoder) {
return decodeOperand_AVLdSt_Any(Inst, Imm,
AMDGPUDisassembler::OPW32, Decoder);
}
static DecodeStatus
DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
const MCDisassembler *Decoder) {
return decodeOperand_AVLdSt_Any(Inst, Imm,
AMDGPUDisassembler::OPW64, Decoder);
}
static DecodeStatus
DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
const MCDisassembler *Decoder) {
return decodeOperand_AVLdSt_Any(Inst, Imm,
AMDGPUDisassembler::OPW96, Decoder);
}
static DecodeStatus
DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
const MCDisassembler *Decoder) {
return decodeOperand_AVLdSt_Any(Inst, Imm,
AMDGPUDisassembler::OPW128, Decoder);
}
static DecodeStatus
DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
const MCDisassembler *Decoder) {
return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
Decoder);
}
#define DECODE_SDWA(DecName) \
DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
DECODE_SDWA(Src32)
DECODE_SDWA(Src16)
DECODE_SDWA(VopcDst)
#include "AMDGPUGenDisassemblerTables.inc"
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
assert(Bytes.size() >= sizeof(T));
const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
Bytes = Bytes.slice(sizeof(T));
return Res;
}
static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
assert(Bytes.size() >= 12);
uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
Bytes.data());
Bytes = Bytes.slice(8);
uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
Bytes.data());
Bytes = Bytes.slice(4);
return DecoderUInt128(Lo, Hi);
}
// The disassembler is greedy, so we need to check FI operand value to
// not parse a dpp if the correct literal is not set. For dpp16 the
// autogenerated decoder checks the dpp literal
static bool isValidDPP8(const MCInst &MI) {
using namespace llvm::AMDGPU::DPP;
int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
assert(FiIdx != -1);
if ((unsigned)FiIdx >= MI.getNumOperands())
return false;
unsigned Fi = MI.getOperand(FiIdx).getImm();
return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
}
DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
ArrayRef<uint8_t> Bytes_,
uint64_t Address,
raw_ostream &CS) const {
bool IsSDWA = false;
unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
Bytes = Bytes_.slice(0, MaxInstBytesNum);
DecodeStatus Res = MCDisassembler::Fail;
do {
// ToDo: better to switch encoding length using some bit predicate
// but it is unknown yet, so try all we can
// Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
// encodings
if (isGFX11Plus() && Bytes.size() >= 12 ) {
DecoderUInt128 DecW = eat12Bytes(Bytes);
Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, Address, CS);
if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
break;
MI = MCInst(); // clear
Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, Address, CS);
if (Res) {
if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
convertVOP3PDPPInst(MI);
else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
convertVOPCDPPInst(MI); // Special VOP3 case
else {
assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
convertVOP3DPPInst(MI); // Regular VOP3 case
}
break;
}
Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
if (Res)
break;
}
// Reinitialize Bytes
Bytes = Bytes_.slice(0, MaxInstBytesNum);
if (Bytes.size() >= 8) {
const uint64_t QW = eatBytes<uint64_t>(Bytes);
if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
if (Res) {
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
== -1)
break;
if (convertDPP8Inst(MI) == MCDisassembler::Success)
break;
MI = MCInst(); // clear
}
}
Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
break;
MI = MCInst(); // clear
Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address, CS);
if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
break;
MI = MCInst(); // clear
Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
if (Res) break;
Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address, CS);
if (Res) {
if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
convertVOPCDPPInst(MI);
break;
}
Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
if (Res) { IsSDWA = true; break; }
Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
if (Res) { IsSDWA = true; break; }
Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
if (Res) { IsSDWA = true; break; }
if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
if (Res)
break;
}
// Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
// v_mad_mixhi_f16 for FMA variants. Try to decode using this special
// table first so we print the correct name.
if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
if (Res)
break;
}
}
// Reinitialize Bytes as DPP64 could have eaten too much
Bytes = Bytes_.slice(0, MaxInstBytesNum);
// Try decode 32-bit instruction
if (Bytes.size() < 4) break;
const uint32_t DW = eatBytes<uint32_t>(Bytes);
Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
if (Res) break;
Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
if (Res) break;
if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
if (Res)
break;
}
if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
if (Res) break;
}
Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address, CS);
if (Res) break;
if (Bytes.size() < 4) break;
const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
if (Res)
break;
}
if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
if (Res)
break;
}
Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
if (Res) break;
Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address, CS);
if (Res)
break;
Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
} while (false);
if (Res && AMDGPU::isMAC(MI.getOpcode())) {
// Insert dummy unused src2_modifiers.
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src2_modifiers);
}
if (Res && (MCII->get(MI.getOpcode()).TSFlags &
(SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::cpol);
if (CPolPos != -1) {
unsigned CPol =
(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
AMDGPU::CPol::GLC : 0;
if (MI.getNumOperands() <= (unsigned)CPolPos) {
insertNamedMCOperand(MI, MCOperand::createImm(CPol),
AMDGPU::OpName::cpol);
} else if (CPol) {
MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
}
}
}
if (Res && (MCII->get(MI.getOpcode()).TSFlags &
(SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
(STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
// GFX90A lost TFE, its place is occupied by ACC.
int TFEOpIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
if (TFEOpIdx != -1) {
auto TFEIter = MI.begin();
std::advance(TFEIter, TFEOpIdx);
MI.insert(TFEIter, MCOperand::createImm(0));
}
}
if (Res && (MCII->get(MI.getOpcode()).TSFlags &
(SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
int SWZOpIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
if (SWZOpIdx != -1) {
auto SWZIter = MI.begin();
std::advance(SWZIter, SWZOpIdx);
MI.insert(SWZIter, MCOperand::createImm(0));
}
}
if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
int VAddr0Idx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
int RsrcIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
if (VAddr0Idx >= 0 && NSAArgs > 0) {
unsigned NSAWords = (NSAArgs + 3) / 4;
if (Bytes.size() < 4 * NSAWords) {
Res = MCDisassembler::Fail;
} else {
for (unsigned i = 0; i < NSAArgs; ++i) {
const unsigned VAddrIdx = VAddr0Idx + 1 + i;
auto VAddrRCID =
MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
MI.insert(MI.begin() + VAddrIdx,
createRegOperand(VAddrRCID, Bytes[i]));
}
Bytes = Bytes.slice(4 * NSAWords);
}
}
if (Res)
Res = convertMIMGInst(MI);
}
if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
Res = convertEXPInst(MI);
if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
Res = convertVINTERPInst(MI);
if (Res && IsSDWA)
Res = convertSDWAInst(MI);
int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::vdst_in);
if (VDstIn_Idx != -1) {
int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
MCOI::OperandConstraint::TIED_TO);
if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
!MI.getOperand(VDstIn_Idx).isReg() ||
MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
MI.erase(&MI.getOperand(VDstIn_Idx));
insertNamedMCOperand(MI,
MCOperand::createReg(MI.getOperand(Tied).getReg()),
AMDGPU::OpName::vdst_in);
}
}
int ImmLitIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
if (Res && ImmLitIdx != -1 && !IsSOPK)
Res = convertFMAanyK(MI, ImmLitIdx);
// if the opcode was not recognized we'll assume a Size of 4 bytes
// (unless there are fewer bytes left)
Size = Res ? (MaxInstBytesNum - Bytes.size())
: std::min((size_t)4, Bytes_.size());
return Res;
}
DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
if (STI.hasFeature(AMDGPU::FeatureGFX11)) {
// The MCInst still has these fields even though they are no longer encoded
// in the GFX11 instruction.
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
}
return MCDisassembler::Success;
}
DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
// The MCInst has this field that is not directly encoded in the
// instruction.
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
}
return MCDisassembler::Success;
}
DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
STI.hasFeature(AMDGPU::FeatureGFX10)) {
if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
// VOPC - insert clamp
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
} else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
if (SDst != -1) {
// VOPC - insert VCC register as sdst
insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
AMDGPU::OpName::sdst);
} else {
// VOP1/2 - insert omod if present in instruction
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
}
}
return MCDisassembler::Success;
}
struct VOPModifiers {
unsigned OpSel = 0;
unsigned OpSelHi = 0;
unsigned NegLo = 0;
unsigned NegHi = 0;
};
// Reconstruct values of VOP3/VOP3P operands such as op_sel.
// Note that these values do not affect disassembler output,
// so this is only necessary for consistency with src_modifiers.
static VOPModifiers collectVOPModifiers(const MCInst &MI,
bool IsVOP3P = false) {
VOPModifiers Modifiers;
unsigned Opc = MI.getOpcode();
const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
AMDGPU::OpName::src1_modifiers,
AMDGPU::OpName::src2_modifiers};
for (int J = 0; J < 3; ++J) {
int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
if (OpIdx == -1)
continue;
unsigned Val = MI.getOperand(OpIdx).getImm();
Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
if (IsVOP3P) {
Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
} else if (J == 0) {
Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
}
}
return Modifiers;
}
// MAC opcodes have special old and src2 operands.
// src2 is tied to dst, while old is not tied (but assumed to be).
bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
constexpr int DST_IDX = 0;
auto Opcode = MI.getOpcode();
const auto &Desc = MCII->get(Opcode);
auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
if (OldIdx != -1 && Desc.getOperandConstraint(
OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
assert(Desc.getOperandConstraint(
AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
MCOI::OperandConstraint::TIED_TO) == DST_IDX);
(void)DST_IDX;
return true;
}
return false;
}
// Create dummy old operand and insert dummy unused src2_modifiers
void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src2_modifiers);
}
// We must check FI == literal to reject not genuine dpp8 insts, and we must
// first add optional MI operands to check FI
DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
unsigned Opc = MI.getOpcode();
if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
convertVOP3PDPPInst(MI);
} else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
AMDGPU::isVOPC64DPP(Opc)) {
convertVOPCDPPInst(MI);
} else {
if (isMacDPP(MI))
convertMacDPPInst(MI);
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
auto Mods = collectVOPModifiers(MI);
insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
AMDGPU::OpName::op_sel);
} else {
// Insert dummy unused src modifiers.
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src0_modifiers);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src1_modifiers);
}
}
return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
}
DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
if (isMacDPP(MI))
convertMacDPPInst(MI);
unsigned Opc = MI.getOpcode();
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
auto Mods = collectVOPModifiers(MI);
insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
AMDGPU::OpName::op_sel);
}
return MCDisassembler::Success;
}
// Note that before gfx10, the MIMG encoding provided no information about
// VADDR size. Consequently, decoded instructions always show address as if it
// has 1 dword, which could be not really so.
DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::vdst);
int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::vdata);
int VAddr0Idx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
int RsrcIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::dmask);
int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::tfe);
int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::d16);
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
assert(VDataIdx != -1);
if (BaseOpcode->BVH) {
// Add A16 operand for intersect_ray instructions
addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
return MCDisassembler::Success;
}
bool IsAtomic = (VDstIdx != -1);
bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
bool IsNSA = false;
bool IsPartialNSA = false;
unsigned AddrSize = Info->VAddrDwords;
if (isGFX10Plus()) {
unsigned DimIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
int A16Idx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
const AMDGPU::MIMGDimInfo *Dim =
AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
AddrSize =
AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
if (!IsNSA) {
if (AddrSize > 12)
AddrSize = 16;
} else {
if (AddrSize > Info->VAddrDwords) {
if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
// The NSA encoding does not contain enough operands for the
// combination of base opcode / dimension. Should this be an error?
return MCDisassembler::Success;
}
IsPartialNSA = true;
}
}
}
unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
if (D16 && AMDGPU::hasPackedD16(STI)) {
DstSize = (DstSize + 1) / 2;
}
if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
DstSize += 1;
if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
return MCDisassembler::Success;
int NewOpcode =
AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
if (NewOpcode == -1)
return MCDisassembler::Success;
// Widen the register to the correct number of enabled channels.
unsigned NewVdata = AMDGPU::NoRegister;
if (DstSize != Info->VDataDwords) {
auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
// Get first subregister of VData
unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
&MRI.getRegClass(DataRCID));
if (NewVdata == AMDGPU::NoRegister) {
// It's possible to encode this such that the low register + enabled
// components exceeds the register count.
return MCDisassembler::Success;
}
}
// If not using NSA on GFX10+, widen vaddr0 address register to correct size.
// If using partial NSA on GFX11+ widen last address register.
int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
unsigned NewVAddrSA = AMDGPU::NoRegister;
if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
AddrSize != Info->VAddrDwords) {
unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
&MRI.getRegClass(AddrRCID));
if (!NewVAddrSA)
return MCDisassembler::Success;
}
MI.setOpcode(NewOpcode);
if (NewVdata != AMDGPU::NoRegister) {
MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
if (IsAtomic) {
// Atomic operations have an additional operand (a copy of data)
MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
}
}
if (NewVAddrSA) {
MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
} else if (IsNSA) {
assert(AddrSize <= Info->VAddrDwords);
MI.erase(MI.begin() + VAddr0Idx + AddrSize,
MI.begin() + VAddr0Idx + Info->VAddrDwords);
}
return MCDisassembler::Success;
}
// Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
// decoder only adds to src_modifiers, so manually add the bits to the other
// operands.
DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
unsigned Opc = MI.getOpcode();
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
auto Mods = collectVOPModifiers(MI, true);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
AMDGPU::OpName::op_sel);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
AMDGPU::OpName::op_sel_hi);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
AMDGPU::OpName::neg_lo);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
AMDGPU::OpName::neg_hi);
return MCDisassembler::Success;
}
// Create dummy old operand and insert optional operands
DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
unsigned Opc = MI.getOpcode();
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src0_modifiers);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src1_modifiers);
return MCDisassembler::Success;
}
DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
int ImmLitIdx) const {
assert(HasLiteral && "Should have decoded a literal");
const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
unsigned DescNumOps = Desc.getNumOperands();
insertNamedMCOperand(MI, MCOperand::createImm(Literal),
AMDGPU::OpName::immDeferred);
assert(DescNumOps == MI.getNumOperands());
for (unsigned I = 0; I < DescNumOps; ++I) {
auto &Op = MI.getOperand(I);
auto OpType = Desc.operands()[I].OperandType;
bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
IsDeferredOp)
Op.setImm(Literal);
}
return MCDisassembler::Success;
}
const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
return getContext().getRegisterInfo()->
getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
}
inline
MCOperand AMDGPUDisassembler::errOperand(unsigned V,
const Twine& ErrMsg) const {
*CommentStream << "Error: " + ErrMsg;
// ToDo: add support for error operands to MCInst.h
// return MCOperand::createError(V);
return MCOperand();
}
inline
MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
}
inline
MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
unsigned Val) const {
const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
if (Val >= RegCl.getNumRegs())
return errOperand(Val, Twine(getRegClassName(RegClassID)) +
": unknown register " + Twine(Val));
return createRegOperand(RegCl.getRegister(Val));
}
inline
MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
unsigned Val) const {
// ToDo: SI/CI have 104 SGPRs, VI - 102
// Valery: here we accepting as much as we can, let assembler sort it out
int shift = 0;
switch (SRegClassID) {
case AMDGPU::SGPR_32RegClassID:
case AMDGPU::TTMP_32RegClassID:
break;
case AMDGPU::SGPR_64RegClassID:
case AMDGPU::TTMP_64RegClassID:
shift = 1;
break;
case AMDGPU::SGPR_128RegClassID:
case AMDGPU::TTMP_128RegClassID:
// ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
case AMDGPU::SGPR_256RegClassID:
case AMDGPU::TTMP_256RegClassID:
// ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
case AMDGPU::SGPR_288RegClassID:
case AMDGPU::TTMP_288RegClassID:
case AMDGPU::SGPR_320RegClassID:
case AMDGPU::TTMP_320RegClassID:
case AMDGPU::SGPR_352RegClassID:
case AMDGPU::TTMP_352RegClassID:
case AMDGPU::SGPR_384RegClassID:
case AMDGPU::TTMP_384RegClassID:
case AMDGPU::SGPR_512RegClassID:
case AMDGPU::TTMP_512RegClassID:
shift = 2;
break;
// ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
default:
llvm_unreachable("unhandled register class");
}
if (Val % (1 << shift)) {
*CommentStream << "Warning: " << getRegClassName(SRegClassID)
<< ": scalar reg isn't aligned " << Val;
}
return createRegOperand(SRegClassID, Val >> shift);
}
// Decode Literals for insts which always have a literal in the encoding
MCOperand
AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
if (HasLiteral) {
assert(
AMDGPU::hasVOPD(STI) &&
"Should only decode multiple kimm with VOPD, check VSrc operand types");
if (Literal != Val)
return errOperand(Val, "More than one unique literal is illegal");
}
HasLiteral = true;
Literal = Val;
return MCOperand::createImm(Literal);
}
MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
// For now all literal constants are supposed to be unsigned integer
// ToDo: deal with signed/unsigned 64-bit integer constants
// ToDo: deal with float/double constants
if (!HasLiteral) {
if (Bytes.size() < 4) {
return errOperand(0, "cannot read literal, inst bytes left " +
Twine(Bytes.size()));
}
HasLiteral = true;
Literal = eatBytes<uint32_t>(Bytes);
}
return MCOperand::createImm(Literal);
}
MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
using namespace AMDGPU::EncValues;
assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
(static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
(INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
// Cast prevents negative overflow.
}
static int64_t getInlineImmVal32(unsigned Imm) {
switch (Imm) {
case 240:
return llvm::bit_cast<uint32_t>(0.5f);
case 241:
return llvm::bit_cast<uint32_t>(-0.5f);
case 242:
return llvm::bit_cast<uint32_t>(1.0f);
case 243:
return llvm::bit_cast<uint32_t>(-1.0f);
case 244:
return llvm::bit_cast<uint32_t>(2.0f);
case 245:
return llvm::bit_cast<uint32_t>(-2.0f);
case 246:
return llvm::bit_cast<uint32_t>(4.0f);
case 247:
return llvm::bit_cast<uint32_t>(-4.0f);
case 248: // 1 / (2 * PI)
return 0x3e22f983;
default:
llvm_unreachable("invalid fp inline imm");
}
}
static int64_t getInlineImmVal64(unsigned Imm) {
switch (Imm) {
case 240:
return llvm::bit_cast<uint64_t>(0.5);
case 241:
return llvm::bit_cast<uint64_t>(-0.5);
case 242:
return llvm::bit_cast<uint64_t>(1.0);
case 243:
return llvm::bit_cast<uint64_t>(-1.0);
case 244:
return llvm::bit_cast<uint64_t>(2.0);
case 245:
return llvm::bit_cast<uint64_t>(-2.0);
case 246:
return llvm::bit_cast<uint64_t>(4.0);
case 247:
return llvm::bit_cast<uint64_t>(-4.0);
case 248: // 1 / (2 * PI)
return 0x3fc45f306dc9c882;
default:
llvm_unreachable("invalid fp inline imm");
}
}
static int64_t getInlineImmVal16(unsigned Imm) {
switch (Imm) {
case 240:
return 0x3800;
case 241:
return 0xB800;
case 242:
return 0x3C00;
case 243:
return 0xBC00;
case 244:
return 0x4000;
case 245:
return 0xC000;
case 246:
return 0x4400;
case 247:
return 0xC400;
case 248: // 1 / (2 * PI)
return 0x3118;
default:
llvm_unreachable("invalid fp inline imm");
}
}
MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
&& Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
// ToDo: case 248: 1/(2*PI) - is allowed only on VI
// ImmWidth 0 is a default case where operand should not allow immediates.
// Imm value is still decoded into 32 bit immediate operand, inst printer will
// use it to print verbose error message.
switch (ImmWidth) {
case 0:
case 32:
return MCOperand::createImm(getInlineImmVal32(Imm));
case 64:
return MCOperand::createImm(getInlineImmVal64(Imm));
case 16:
return MCOperand::createImm(getInlineImmVal16(Imm));
default:
llvm_unreachable("implement me");
}
}
unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return VGPR_32RegClassID;
case OPW64:
case OPWV232: return VReg_64RegClassID;
case OPW96: return VReg_96RegClassID;
case OPW128: return VReg_128RegClassID;
case OPW160: return VReg_160RegClassID;
case OPW256: return VReg_256RegClassID;
case OPW288: return VReg_288RegClassID;
case OPW320: return VReg_320RegClassID;
case OPW352: return VReg_352RegClassID;
case OPW384: return VReg_384RegClassID;
case OPW512: return VReg_512RegClassID;
case OPW1024: return VReg_1024RegClassID;
}
}
unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return AGPR_32RegClassID;
case OPW64:
case OPWV232: return AReg_64RegClassID;
case OPW96: return AReg_96RegClassID;
case OPW128: return AReg_128RegClassID;
case OPW160: return AReg_160RegClassID;
case OPW256: return AReg_256RegClassID;
case OPW288: return AReg_288RegClassID;
case OPW320: return AReg_320RegClassID;
case OPW352: return AReg_352RegClassID;
case OPW384: return AReg_384RegClassID;
case OPW512: return AReg_512RegClassID;
case OPW1024: return AReg_1024RegClassID;
}
}
unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return SGPR_32RegClassID;
case OPW64:
case OPWV232: return SGPR_64RegClassID;
case OPW96: return SGPR_96RegClassID;
case OPW128: return SGPR_128RegClassID;
case OPW160: return SGPR_160RegClassID;
case OPW256: return SGPR_256RegClassID;
case OPW288: return SGPR_288RegClassID;
case OPW320: return SGPR_320RegClassID;
case OPW352: return SGPR_352RegClassID;
case OPW384: return SGPR_384RegClassID;
case OPW512: return SGPR_512RegClassID;
}
}
unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return TTMP_32RegClassID;
case OPW64:
case OPWV232: return TTMP_64RegClassID;
case OPW128: return TTMP_128RegClassID;
case OPW256: return TTMP_256RegClassID;
case OPW288: return TTMP_288RegClassID;
case OPW320: return TTMP_320RegClassID;
case OPW352: return TTMP_352RegClassID;
case OPW384: return TTMP_384RegClassID;
case OPW512: return TTMP_512RegClassID;
}
}
int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
using namespace AMDGPU::EncValues;
unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
}
MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
bool MandatoryLiteral,
unsigned ImmWidth) const {
using namespace AMDGPU::EncValues;
assert(Val < 1024); // enum10
bool IsAGPR = Val & 512;
Val &= 511;
if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
return createRegOperand(IsAGPR ? getAgprClassId(Width)
: getVgprClassId(Width), Val - VGPR_MIN);
}
if (Val <= SGPR_MAX) {
// "SGPR_MIN <= Val" is always true and causes compilation warning.
static_assert(SGPR_MIN == 0);
return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
}
int TTmpIdx = getTTmpIdx(Val);
if (TTmpIdx >= 0) {
return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
}
if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
return decodeIntImmed(Val);
if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
return decodeFPImmed(ImmWidth, Val);
if (Val == LITERAL_CONST) {
if (MandatoryLiteral)
// Keep a sentinel value for deferred setting
return MCOperand::createImm(LITERAL_CONST);
else
return decodeLiteralConstant();
}
switch (Width) {
case OPW32:
case OPW16:
case OPWV216:
return decodeSpecialReg32(Val);
case OPW64:
case OPWV232:
return decodeSpecialReg64(Val);
default:
llvm_unreachable("unexpected immediate type");
}
}
// Bit 0 of DstY isn't stored in the instruction, because it's always the
// opposite of bit 0 of DstX.
MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
unsigned Val) const {
int VDstXInd =
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
assert(VDstXInd != -1);
assert(Inst.getOperand(VDstXInd).isReg());
unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
Val |= ~XDstReg & 1;
auto Width = llvm::AMDGPUDisassembler::OPW32;
return createRegOperand(getVgprClassId(Width), Val);
}
MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
using namespace AMDGPU;
switch (Val) {
// clang-format off
case 102: return createRegOperand(FLAT_SCR_LO);
case 103: return createRegOperand(FLAT_SCR_HI);
case 104: return createRegOperand(XNACK_MASK_LO);
case 105: return createRegOperand(XNACK_MASK_HI);
case 106: return createRegOperand(VCC_LO);
case 107: return createRegOperand(VCC_HI);
case 108: return createRegOperand(TBA_LO);
case 109: return createRegOperand(TBA_HI);
case 110: return createRegOperand(TMA_LO);
case 111: return createRegOperand(TMA_HI);
case 124:
return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
case 125:
return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
case 126: return createRegOperand(EXEC_LO);
case 127: return createRegOperand(EXEC_HI);
case 235: return createRegOperand(SRC_SHARED_BASE_LO);
case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
case 251: return createRegOperand(SRC_VCCZ);
case 252: return createRegOperand(SRC_EXECZ);
case 253: return createRegOperand(SRC_SCC);
case 254: return createRegOperand(LDS_DIRECT);
default: break;
// clang-format on
}
return errOperand(Val, "unknown operand encoding " + Twine(Val));
}
MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
using namespace AMDGPU;
switch (Val) {
case 102: return createRegOperand(FLAT_SCR);
case 104: return createRegOperand(XNACK_MASK);
case 106: return createRegOperand(VCC);
case 108: return createRegOperand(TBA);
case 110: return createRegOperand(TMA);
case 124:
if (isGFX11Plus())
return createRegOperand(SGPR_NULL);
break;
case 125:
if (!isGFX11Plus())
return createRegOperand(SGPR_NULL);
break;
case 126: return createRegOperand(EXEC);
case 235: return createRegOperand(SRC_SHARED_BASE);
case 236: return createRegOperand(SRC_SHARED_LIMIT);
case 237: return createRegOperand(SRC_PRIVATE_BASE);
case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
case 251: return createRegOperand(SRC_VCCZ);
case 252: return createRegOperand(SRC_EXECZ);
case 253: return createRegOperand(SRC_SCC);
default: break;
}
return errOperand(Val, "unknown operand encoding " + Twine(Val));
}
MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
const unsigned Val,
unsigned ImmWidth) const {
using namespace AMDGPU::SDWA;
using namespace AMDGPU::EncValues;
if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
STI.hasFeature(AMDGPU::FeatureGFX10)) {
// XXX: cast to int is needed to avoid stupid warning:
// compare with unsigned is always true
if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
Val <= SDWA9EncValues::SRC_VGPR_MAX) {
return createRegOperand(getVgprClassId(Width),
Val - SDWA9EncValues::SRC_VGPR_MIN);
}
if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
: SDWA9EncValues::SRC_SGPR_MAX_SI)) {
return createSRegOperand(getSgprClassId(Width),
Val - SDWA9EncValues::SRC_SGPR_MIN);
}
if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
Val <= SDWA9EncValues::SRC_TTMP_MAX) {
return createSRegOperand(getTtmpClassId(Width),
Val - SDWA9EncValues::SRC_TTMP_MIN);
}
const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
return decodeIntImmed(SVal);
if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
return decodeFPImmed(ImmWidth, SVal);
return decodeSpecialReg32(SVal);
} else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
return createRegOperand(getVgprClassId(Width), Val);
}
llvm_unreachable("unsupported target");
}
MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
return decodeSDWASrc(OPW16, Val, 16);
}
MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
return decodeSDWASrc(OPW32, Val, 32);
}
MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
using namespace AMDGPU::SDWA;
assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
STI.hasFeature(AMDGPU::FeatureGFX10)) &&
"SDWAVopcDst should be present only on GFX9+");
bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
int TTmpIdx = getTTmpIdx(Val);
if (TTmpIdx >= 0) {
auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
return createSRegOperand(TTmpClsId, TTmpIdx);
} else if (Val > SGPR_MAX) {
return IsWave64 ? decodeSpecialReg64(Val)
: decodeSpecialReg32(Val);
} else {
return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
}
} else {
return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
}
}
MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
? decodeSrcOp(OPW64, Val)
: decodeSrcOp(OPW32, Val);
}
bool AMDGPUDisassembler::isVI() const {
return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
}
bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
bool AMDGPUDisassembler::isGFX90A() const {
return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
}
bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
bool AMDGPUDisassembler::isGFX10Plus() const {
return AMDGPU::isGFX10Plus(STI);
}
bool AMDGPUDisassembler::isGFX11() const {
return STI.hasFeature(AMDGPU::FeatureGFX11);
}
bool AMDGPUDisassembler::isGFX11Plus() const {
return AMDGPU::isGFX11Plus(STI);
}
bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
}
//===----------------------------------------------------------------------===//
// AMDGPU specific symbol handling
//===----------------------------------------------------------------------===//
#define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
do { \
KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \
} while (0)
#define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \
do { \
KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \
<< GET_FIELD(MASK) << '\n'; \
} while (0)
// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
using namespace amdhsa;
StringRef Indent = "\t";
// We cannot accurately backward compute #VGPRs used from
// GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
// value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
// simply calculate the inverse of what the assembler does.
uint32_t GranulatedWorkitemVGPRCount =
GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
uint32_t NextFreeVGPR =
(GranulatedWorkitemVGPRCount + 1) *
AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
// We cannot backward compute values used to calculate
// GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
// directives can't be computed:
// .amdhsa_reserve_vcc
// .amdhsa_reserve_flat_scratch
// .amdhsa_reserve_xnack_mask
// They take their respective default values if not specified in the assembly.
//
// GRANULATED_WAVEFRONT_SGPR_COUNT
// = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
//
// We compute the inverse as though all directives apart from NEXT_FREE_SGPR
// are set to 0. So while disassembling we consider that:
//
// GRANULATED_WAVEFRONT_SGPR_COUNT
// = f(NEXT_FREE_SGPR + 0 + 0 + 0)
//
// The disassembler cannot recover the original values of those 3 directives.
uint32_t GranulatedWavefrontSGPRCount =
GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
return MCDisassembler::Fail;
uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
if (!hasArchitectedFlatScratch())
KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
return MCDisassembler::Fail;
if (isGFX10Plus()) {
PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
COMPUTE_PGM_RSRC1_WGP_MODE);
PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
}
return MCDisassembler::Success;
}
// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
using namespace amdhsa;
StringRef Indent = "\t";
if (hasArchitectedFlatScratch())
PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
else
PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(
".amdhsa_exception_fp_ieee_invalid_op",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
PRINT_DIRECTIVE(
".amdhsa_exception_fp_ieee_div_zero",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
return MCDisassembler::Fail;
return MCDisassembler::Success;
}
// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
using namespace amdhsa;
StringRef Indent = "\t";
if (isGFX90A()) {
KdStream << Indent << ".amdhsa_accum_offset "
<< (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
<< '\n';
if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
return MCDisassembler::Fail;
} else if (isGFX10Plus()) {
if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
} else {
PRINT_PSEUDO_DIRECTIVE_COMMENT(
"SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
}
PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE);
PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END);
if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0)
return MCDisassembler::Fail;
PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
} else if (FourByteBuffer) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
}
#undef PRINT_PSEUDO_DIRECTIVE_COMMENT
#undef PRINT_DIRECTIVE
#undef GET_FIELD
MCDisassembler::DecodeStatus
AMDGPUDisassembler::decodeKernelDescriptorDirective(
DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
raw_string_ostream &KdStream) const {
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
do { \
KdStream << Indent << DIRECTIVE " " \
<< ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
} while (0)
uint16_t TwoByteBuffer = 0;
uint32_t FourByteBuffer = 0;
StringRef ReservedBytes;
StringRef Indent = "\t";
assert(Bytes.size() == 64);
DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
switch (Cursor.tell()) {
case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
<< '\n';
return MCDisassembler::Success;
case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
KdStream << Indent << ".amdhsa_private_segment_fixed_size "
<< FourByteBuffer << '\n';
return MCDisassembler::Success;
case amdhsa::KERNARG_SIZE_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
KdStream << Indent << ".amdhsa_kernarg_size "
<< FourByteBuffer << '\n';
return MCDisassembler::Success;
case amdhsa::RESERVED0_OFFSET:
// 4 reserved bytes, must be 0.
ReservedBytes = DE.getBytes(Cursor, 4);
for (int I = 0; I < 4; ++I) {
if (ReservedBytes[I] != 0) {
return MCDisassembler::Fail;
}
}
return MCDisassembler::Success;
case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
// KERNEL_CODE_ENTRY_BYTE_OFFSET
// So far no directive controls this for Code Object V3, so simply skip for
// disassembly.
DE.skip(Cursor, 8);
return MCDisassembler::Success;
case amdhsa::RESERVED1_OFFSET:
// 20 reserved bytes, must be 0.
ReservedBytes = DE.getBytes(Cursor, 20);
for (int I = 0; I < 20; ++I) {
if (ReservedBytes[I] != 0) {
return MCDisassembler::Fail;
}
}
return MCDisassembler::Success;
case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
using namespace amdhsa;
TwoByteBuffer = DE.getU16(Cursor);
if (!hasArchitectedFlatScratch())
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
if (!hasArchitectedFlatScratch())
PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
return MCDisassembler::Fail;
// Reserved for GFX9
if (isGFX9() &&
(TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
return MCDisassembler::Fail;
} else if (isGFX10Plus()) {
PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
}
if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
return MCDisassembler::Fail;
return MCDisassembler::Success;
case amdhsa::RESERVED2_OFFSET:
// 6 bytes from here are reserved, must be 0.
ReservedBytes = DE.getBytes(Cursor, 6);
for (int I = 0; I < 6; ++I) {
if (ReservedBytes[I] != 0)
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
default:
llvm_unreachable("Unhandled index. Case statements cover everything.");
return MCDisassembler::Fail;
}
#undef PRINT_DIRECTIVE
}
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
// CP microcode requires the kernel descriptor to be 64 aligned.
if (Bytes.size() != 64 || KdAddress % 64 != 0)
return MCDisassembler::Fail;
// FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
// requires us to know the setting of .amdhsa_wavefront_size32 in order to
// accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
// order. Workaround this by first looking up .amdhsa_wavefront_size32 here
// when required.
if (isGFX10Plus()) {
uint16_t KernelCodeProperties =
support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
support::endianness::little);
EnableWavefrontSize32 =
AMDHSA_BITS_GET(KernelCodeProperties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
}
std::string Kd;
raw_string_ostream KdStream(Kd);
KdStream << ".amdhsa_kernel " << KdName << '\n';
DataExtractor::Cursor C(0);
while (C && C.tell() < Bytes.size()) {
MCDisassembler::DecodeStatus Status =
decodeKernelDescriptorDirective(C, Bytes, KdStream);
cantFail(C.takeError());
if (Status == MCDisassembler::Fail)
return MCDisassembler::Fail;
}
KdStream << ".end_amdhsa_kernel\n";
outs() << KdStream.str();
return MCDisassembler::Success;
}
std::optional<MCDisassembler::DecodeStatus>
AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &CStream) const {
// Right now only kernel descriptor needs to be handled.
// We ignore all other symbols for target specific handling.
// TODO:
// Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
// Object V2 and V3 when symbols are marked protected.
// amd_kernel_code_t for Code Object V2.
if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
Size = 256;
return MCDisassembler::Fail;
}
// Code Object V3 kernel descriptors.
StringRef Name = Symbol.Name;
if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
Size = 64; // Size = 64 regardless of success or failure.
return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
}
return std::nullopt;
}
//===----------------------------------------------------------------------===//
// AMDGPUSymbolizer
//===----------------------------------------------------------------------===//
// Try to find symbol name for specified label
bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
if (!IsBranch) {
return false;
}
auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
if (!Symbols)
return false;
auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
return Val.Addr == static_cast<uint64_t>(Value) &&
Val.Type == ELF::STT_NOTYPE;
});
if (Result != Symbols->end()) {
auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
Inst.addOperand(MCOperand::createExpr(Add));
return true;
}
// Add to list of referenced addresses, so caller can synthesize a label.
ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
return false;
}
void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
int64_t Value,
uint64_t Address) {
llvm_unreachable("unimplemented");
}
//===----------------------------------------------------------------------===//
// Initialization
//===----------------------------------------------------------------------===//
static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
LLVMOpInfoCallback /*GetOpInfo*/,
LLVMSymbolLookupCallback /*SymbolLookUp*/,
void *DisInfo,
MCContext *Ctx,
std::unique_ptr<MCRelocationInfo> &&RelInfo) {
return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
}
static MCDisassembler *createAMDGPUDisassembler(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
createAMDGPUDisassembler);
TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
createAMDGPUSymbolizer);
}
|