1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
//===- GCNRegPressure.h -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the GCNRegPressure class, which tracks registry pressure
/// by bookkeeping number of SGPR/VGPRs used, weights for large SGPR/VGPRs. It
/// also implements a compare function, which compares different register
/// pressures, and declares one with max occupancy as winner.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H
#define LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H
#include "GCNSubtarget.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include <algorithm>
namespace llvm {
class MachineRegisterInfo;
class raw_ostream;
class SlotIndex;
struct GCNRegPressure {
enum RegKind {
SGPR32,
SGPR_TUPLE,
VGPR32,
VGPR_TUPLE,
AGPR32,
AGPR_TUPLE,
TOTAL_KINDS
};
GCNRegPressure() {
clear();
}
bool empty() const { return getSGPRNum() == 0 && getVGPRNum(false) == 0; }
void clear() { std::fill(&Value[0], &Value[TOTAL_KINDS], 0); }
unsigned getSGPRNum() const { return Value[SGPR32]; }
unsigned getVGPRNum(bool UnifiedVGPRFile) const {
if (UnifiedVGPRFile) {
return Value[AGPR32] ? alignTo(Value[VGPR32], 4) + Value[AGPR32]
: Value[VGPR32] + Value[AGPR32];
}
return std::max(Value[VGPR32], Value[AGPR32]);
}
unsigned getAGPRNum() const { return Value[AGPR32]; }
unsigned getVGPRTuplesWeight() const { return std::max(Value[VGPR_TUPLE],
Value[AGPR_TUPLE]); }
unsigned getSGPRTuplesWeight() const { return Value[SGPR_TUPLE]; }
unsigned getOccupancy(const GCNSubtarget &ST) const {
return std::min(ST.getOccupancyWithNumSGPRs(getSGPRNum()),
ST.getOccupancyWithNumVGPRs(getVGPRNum(ST.hasGFX90AInsts())));
}
void inc(unsigned Reg,
LaneBitmask PrevMask,
LaneBitmask NewMask,
const MachineRegisterInfo &MRI);
bool higherOccupancy(const GCNSubtarget &ST, const GCNRegPressure& O) const {
return getOccupancy(ST) > O.getOccupancy(ST);
}
bool less(const GCNSubtarget &ST, const GCNRegPressure& O,
unsigned MaxOccupancy = std::numeric_limits<unsigned>::max()) const;
bool operator==(const GCNRegPressure &O) const {
return std::equal(&Value[0], &Value[TOTAL_KINDS], O.Value);
}
bool operator!=(const GCNRegPressure &O) const {
return !(*this == O);
}
void dump() const;
private:
unsigned Value[TOTAL_KINDS];
static unsigned getRegKind(Register Reg, const MachineRegisterInfo &MRI);
friend GCNRegPressure max(const GCNRegPressure &P1,
const GCNRegPressure &P2);
friend Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST);
};
inline GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2) {
GCNRegPressure Res;
for (unsigned I = 0; I < GCNRegPressure::TOTAL_KINDS; ++I)
Res.Value[I] = std::max(P1.Value[I], P2.Value[I]);
return Res;
}
class GCNRPTracker {
public:
using LiveRegSet = DenseMap<unsigned, LaneBitmask>;
protected:
const LiveIntervals &LIS;
LiveRegSet LiveRegs;
GCNRegPressure CurPressure, MaxPressure;
const MachineInstr *LastTrackedMI = nullptr;
mutable const MachineRegisterInfo *MRI = nullptr;
GCNRPTracker(const LiveIntervals &LIS_) : LIS(LIS_) {}
void reset(const MachineInstr &MI, const LiveRegSet *LiveRegsCopy,
bool After);
public:
// live regs for the current state
const decltype(LiveRegs) &getLiveRegs() const { return LiveRegs; }
const MachineInstr *getLastTrackedMI() const { return LastTrackedMI; }
void clearMaxPressure() { MaxPressure.clear(); }
// returns MaxPressure, resetting it
decltype(MaxPressure) moveMaxPressure() {
auto Res = MaxPressure;
MaxPressure.clear();
return Res;
}
decltype(LiveRegs) moveLiveRegs() {
return std::move(LiveRegs);
}
};
class GCNUpwardRPTracker : public GCNRPTracker {
public:
GCNUpwardRPTracker(const LiveIntervals &LIS_) : GCNRPTracker(LIS_) {}
// reset tracker to the point just below MI
// filling live regs upon this point using LIS
void reset(const MachineInstr &MI, const LiveRegSet *LiveRegs = nullptr);
// move to the state just above the MI
void recede(const MachineInstr &MI);
// checks whether the tracker's state after receding MI corresponds
// to reported by LIS
bool isValid() const;
};
class GCNDownwardRPTracker : public GCNRPTracker {
// Last position of reset or advanceBeforeNext
MachineBasicBlock::const_iterator NextMI;
MachineBasicBlock::const_iterator MBBEnd;
public:
GCNDownwardRPTracker(const LiveIntervals &LIS_) : GCNRPTracker(LIS_) {}
MachineBasicBlock::const_iterator getNext() const { return NextMI; }
// Reset tracker to the point before the MI
// filling live regs upon this point using LIS.
// Returns false if block is empty except debug values.
bool reset(const MachineInstr &MI, const LiveRegSet *LiveRegs = nullptr);
// Move to the state right before the next MI or after the end of MBB.
// Returns false if reached end of the block.
bool advanceBeforeNext();
// Move to the state at the MI, advanceBeforeNext has to be called first.
void advanceToNext();
// Move to the state at the next MI. Returns false if reached end of block.
bool advance();
// Advance instructions until before End.
bool advance(MachineBasicBlock::const_iterator End);
// Reset to Begin and advance to End.
bool advance(MachineBasicBlock::const_iterator Begin,
MachineBasicBlock::const_iterator End,
const LiveRegSet *LiveRegsCopy = nullptr);
};
LaneBitmask getLiveLaneMask(unsigned Reg,
SlotIndex SI,
const LiveIntervals &LIS,
const MachineRegisterInfo &MRI);
GCNRPTracker::LiveRegSet getLiveRegs(SlotIndex SI,
const LiveIntervals &LIS,
const MachineRegisterInfo &MRI);
/// creates a map MachineInstr -> LiveRegSet
/// R - range of iterators on instructions
/// After - upon entry or exit of every instruction
/// Note: there is no entry in the map for instructions with empty live reg set
/// Complexity = O(NumVirtRegs * averageLiveRangeSegmentsPerReg * lg(R))
template <typename Range>
DenseMap<MachineInstr*, GCNRPTracker::LiveRegSet>
getLiveRegMap(Range &&R, bool After, LiveIntervals &LIS) {
std::vector<SlotIndex> Indexes;
Indexes.reserve(std::distance(R.begin(), R.end()));
auto &SII = *LIS.getSlotIndexes();
for (MachineInstr *I : R) {
auto SI = SII.getInstructionIndex(*I);
Indexes.push_back(After ? SI.getDeadSlot() : SI.getBaseIndex());
}
llvm::sort(Indexes);
auto &MRI = (*R.begin())->getParent()->getParent()->getRegInfo();
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> LiveRegMap;
SmallVector<SlotIndex, 32> LiveIdxs, SRLiveIdxs;
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
auto Reg = Register::index2VirtReg(I);
if (!LIS.hasInterval(Reg))
continue;
auto &LI = LIS.getInterval(Reg);
LiveIdxs.clear();
if (!LI.findIndexesLiveAt(Indexes, std::back_inserter(LiveIdxs)))
continue;
if (!LI.hasSubRanges()) {
for (auto SI : LiveIdxs)
LiveRegMap[SII.getInstructionFromIndex(SI)][Reg] =
MRI.getMaxLaneMaskForVReg(Reg);
} else
for (const auto &S : LI.subranges()) {
// constrain search for subranges by indexes live at main range
SRLiveIdxs.clear();
S.findIndexesLiveAt(LiveIdxs, std::back_inserter(SRLiveIdxs));
for (auto SI : SRLiveIdxs)
LiveRegMap[SII.getInstructionFromIndex(SI)][Reg] |= S.LaneMask;
}
}
return LiveRegMap;
}
inline GCNRPTracker::LiveRegSet getLiveRegsAfter(const MachineInstr &MI,
const LiveIntervals &LIS) {
return getLiveRegs(LIS.getInstructionIndex(MI).getDeadSlot(), LIS,
MI.getParent()->getParent()->getRegInfo());
}
inline GCNRPTracker::LiveRegSet getLiveRegsBefore(const MachineInstr &MI,
const LiveIntervals &LIS) {
return getLiveRegs(LIS.getInstructionIndex(MI).getBaseIndex(), LIS,
MI.getParent()->getParent()->getRegInfo());
}
template <typename Range>
GCNRegPressure getRegPressure(const MachineRegisterInfo &MRI,
Range &&LiveRegs) {
GCNRegPressure Res;
for (const auto &RM : LiveRegs)
Res.inc(RM.first, LaneBitmask::getNone(), RM.second, MRI);
return Res;
}
bool isEqual(const GCNRPTracker::LiveRegSet &S1,
const GCNRPTracker::LiveRegSet &S2);
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST = nullptr);
Printable print(const GCNRPTracker::LiveRegSet &LiveRegs,
const MachineRegisterInfo &MRI);
Printable reportMismatch(const GCNRPTracker::LiveRegSet &LISLR,
const GCNRPTracker::LiveRegSet &TrackedL,
const TargetRegisterInfo *TRI);
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H
|