1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
//===-------------- GCNRewritePartialRegUses.cpp --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// RenameIndependentSubregs pass leaves large partially used super registers,
/// for example:
/// undef %0.sub4:VReg_1024 = ...
/// %0.sub5:VReg_1024 = ...
/// %0.sub6:VReg_1024 = ...
/// %0.sub7:VReg_1024 = ...
/// use %0.sub4_sub5_sub6_sub7
/// use %0.sub6_sub7
///
/// GCNRewritePartialRegUses goes right after RenameIndependentSubregs and
/// rewrites such partially used super registers with registers of minimal size:
/// undef %0.sub0:VReg_128 = ...
/// %0.sub1:VReg_128 = ...
/// %0.sub2:VReg_128 = ...
/// %0.sub3:VReg_128 = ...
/// use %0.sub0_sub1_sub2_sub3
/// use %0.sub2_sub3
///
/// This allows to avoid subreg lanemasks tracking during register pressure
/// calculation and creates more possibilities for the code unaware of lanemasks
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
using namespace llvm;
#define DEBUG_TYPE "rewrite-partial-reg-uses"
namespace {
class GCNRewritePartialRegUses : public MachineFunctionPass {
public:
static char ID;
GCNRewritePartialRegUses() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "Rewrite Partial Register Uses";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
MachineRegisterInfo *MRI;
const SIRegisterInfo *TRI;
const TargetInstrInfo *TII;
LiveIntervals *LIS;
/// Rewrite partially used register Reg by shifting all its subregisters to
/// the right and replacing the original register with a register of minimal
/// size. Return true if the change has been made.
bool rewriteReg(Register Reg) const;
/// Value type for SubRegMap below.
struct SubRegInfo {
/// Register class required to hold the value stored in the SubReg.
const TargetRegisterClass *RC;
/// Index for the right-shifted subregister. If 0 this is the "covering"
/// subreg i.e. subreg that covers all others. Covering subreg becomes the
/// whole register after the replacement.
unsigned SubReg = AMDGPU::NoSubRegister;
SubRegInfo(const TargetRegisterClass *RC_ = nullptr) : RC(RC_) {}
};
/// Map OldSubReg -> { RC, NewSubReg }. Used as in/out container.
typedef SmallDenseMap<unsigned, SubRegInfo> SubRegMap;
/// Given register class RC and the set of used subregs as keys in the SubRegs
/// map return new register class and indexes of right-shifted subregs as
/// values in SubRegs map such that the resulting regclass would contain
/// registers of minimal size.
const TargetRegisterClass *getMinSizeReg(const TargetRegisterClass *RC,
SubRegMap &SubRegs) const;
/// Given regclass RC and pairs of [OldSubReg, SubRegRC] in SubRegs try to
/// find new regclass such that:
/// 1. It has subregs obtained by shifting each OldSubReg by RShift number
/// of bits to the right. Every "shifted" subreg should have the same
/// SubRegRC. SubRegRC can be null, in this case it initialized using
/// getSubRegisterClass. If CoverSubregIdx is not zero it's a subreg that
/// "covers" all other subregs in pairs. Basically such subreg becomes a
/// whole register.
/// 2. Resulting register class contains registers of minimal size but not
/// less than RegNumBits.
///
/// SubRegs is map of OldSubReg -> [SubRegRC, NewSubReg] and is used as in/out
/// parameter:
/// OldSubReg - input parameter,
/// SubRegRC - in/out, should be changed for unknown regclass,
/// NewSubReg - output, contains shifted subregs on return.
const TargetRegisterClass *
getRegClassWithShiftedSubregs(const TargetRegisterClass *RC, unsigned RShift,
unsigned RegNumBits, unsigned CoverSubregIdx,
SubRegMap &SubRegs) const;
/// Update live intervals after rewriting OldReg to NewReg with SubRegs map
/// describing OldSubReg -> NewSubReg mapping.
void updateLiveIntervals(Register OldReg, Register NewReg,
SubRegMap &SubRegs) const;
/// Helper methods.
/// Return reg class expected by a MO's parent instruction for a given MO.
const TargetRegisterClass *getOperandRegClass(MachineOperand &MO) const;
/// Find right-shifted by RShift amount version of the SubReg if it exists,
/// return 0 otherwise.
unsigned shiftSubReg(unsigned SubReg, unsigned RShift) const;
/// Find subreg index with a given Offset and Size, return 0 if there is no
/// such subregister index. The result is cached in SubRegs data-member.
unsigned getSubReg(unsigned Offset, unsigned Size) const;
/// Cache for getSubReg method: {Offset, Size} -> SubReg index.
mutable SmallDenseMap<std::pair<unsigned, unsigned>, unsigned> SubRegs;
/// Return bit mask that contains all register classes that are projected into
/// RC by SubRegIdx. The result is cached in SuperRegMasks data-member.
const uint32_t *getSuperRegClassMask(const TargetRegisterClass *RC,
unsigned SubRegIdx) const;
/// Cache for getSuperRegClassMask method: { RC, SubRegIdx } -> Class bitmask.
mutable SmallDenseMap<std::pair<const TargetRegisterClass *, unsigned>,
const uint32_t *>
SuperRegMasks;
/// Return bitmask containing all allocatable register classes with registers
/// aligned at AlignNumBits. The result is cached in
/// AllocatableAndAlignedRegClassMasks data-member.
const BitVector &
getAllocatableAndAlignedRegClassMask(unsigned AlignNumBits) const;
/// Cache for getAllocatableAndAlignedRegClassMask method:
/// AlignNumBits -> Class bitmask.
mutable SmallDenseMap<unsigned, BitVector> AllocatableAndAlignedRegClassMasks;
};
} // end anonymous namespace
// TODO: move this to the tablegen and use binary search by Offset.
unsigned GCNRewritePartialRegUses::getSubReg(unsigned Offset,
unsigned Size) const {
const auto [I, Inserted] = SubRegs.try_emplace({Offset, Size}, 0);
if (Inserted) {
for (unsigned Idx = 1, E = TRI->getNumSubRegIndices(); Idx < E; ++Idx) {
if (TRI->getSubRegIdxOffset(Idx) == Offset &&
TRI->getSubRegIdxSize(Idx) == Size) {
I->second = Idx;
break;
}
}
}
return I->second;
}
unsigned GCNRewritePartialRegUses::shiftSubReg(unsigned SubReg,
unsigned RShift) const {
unsigned Offset = TRI->getSubRegIdxOffset(SubReg) - RShift;
return getSubReg(Offset, TRI->getSubRegIdxSize(SubReg));
}
const uint32_t *
GCNRewritePartialRegUses::getSuperRegClassMask(const TargetRegisterClass *RC,
unsigned SubRegIdx) const {
const auto [I, Inserted] =
SuperRegMasks.try_emplace({RC, SubRegIdx}, nullptr);
if (Inserted) {
for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) {
if (RCI.getSubReg() == SubRegIdx) {
I->second = RCI.getMask();
break;
}
}
}
return I->second;
}
const BitVector &GCNRewritePartialRegUses::getAllocatableAndAlignedRegClassMask(
unsigned AlignNumBits) const {
const auto [I, Inserted] =
AllocatableAndAlignedRegClassMasks.try_emplace(AlignNumBits);
if (Inserted) {
BitVector &BV = I->second;
BV.resize(TRI->getNumRegClasses());
for (unsigned ClassID = 0; ClassID < TRI->getNumRegClasses(); ++ClassID) {
auto *RC = TRI->getRegClass(ClassID);
if (RC->isAllocatable() && TRI->isRegClassAligned(RC, AlignNumBits))
BV.set(ClassID);
}
}
return I->second;
}
const TargetRegisterClass *
GCNRewritePartialRegUses::getRegClassWithShiftedSubregs(
const TargetRegisterClass *RC, unsigned RShift, unsigned RegNumBits,
unsigned CoverSubregIdx, SubRegMap &SubRegs) const {
unsigned RCAlign = TRI->getRegClassAlignmentNumBits(RC);
LLVM_DEBUG(dbgs() << " Shift " << RShift << ", reg align " << RCAlign
<< '\n');
BitVector ClassMask(getAllocatableAndAlignedRegClassMask(RCAlign));
for (auto &[OldSubReg, SRI] : SubRegs) {
auto &[SubRegRC, NewSubReg] = SRI;
// Register class may be unknown, for example:
// undef %0.sub4:sgpr_1024 = S_MOV_B32 01
// %0.sub5:sgpr_1024 = S_MOV_B32 02
// %1:vreg_64 = COPY %0.sub4_sub5
// Register classes for subregs 'sub4' and 'sub5' are known from the
// description of destination operand of S_MOV_B32 instruction but the
// class for the subreg 'sub4_sub5' isn't specified by the COPY instruction.
if (!SubRegRC)
SubRegRC = TRI->getSubRegisterClass(RC, OldSubReg);
if (!SubRegRC)
return nullptr;
LLVM_DEBUG(dbgs() << " " << TRI->getSubRegIndexName(OldSubReg) << ':'
<< TRI->getRegClassName(SubRegRC)
<< (SubRegRC->isAllocatable() ? "" : " not alloc")
<< " -> ");
if (OldSubReg == CoverSubregIdx) {
NewSubReg = AMDGPU::NoSubRegister;
LLVM_DEBUG(dbgs() << "whole reg");
} else {
NewSubReg = shiftSubReg(OldSubReg, RShift);
if (!NewSubReg) {
LLVM_DEBUG(dbgs() << "none\n");
return nullptr;
}
LLVM_DEBUG(dbgs() << TRI->getSubRegIndexName(NewSubReg));
}
const uint32_t *Mask = NewSubReg ? getSuperRegClassMask(SubRegRC, NewSubReg)
: SubRegRC->getSubClassMask();
if (!Mask)
llvm_unreachable("no register class mask?");
ClassMask.clearBitsNotInMask(Mask);
// Don't try to early exit because checking if ClassMask has set bits isn't
// that cheap and we expect it to pass in most cases.
LLVM_DEBUG(dbgs() << ", num regclasses " << ClassMask.count() << '\n');
}
// ClassMask is the set of all register classes such that each class is
// allocatable, aligned, has all shifted subregs and each subreg has required
// register class (see SubRegRC above). Now select first (that is largest)
// register class with registers of minimal but not less than RegNumBits size.
// We have to check register size because we may encounter classes of smaller
// registers like VReg_1 in some situations.
const TargetRegisterClass *MinRC = nullptr;
unsigned MinNumBits = std::numeric_limits<unsigned>::max();
for (unsigned ClassID : ClassMask.set_bits()) {
auto *RC = TRI->getRegClass(ClassID);
unsigned NumBits = TRI->getRegSizeInBits(*RC);
if (NumBits < MinNumBits && NumBits >= RegNumBits) {
MinNumBits = NumBits;
MinRC = RC;
}
if (MinNumBits == RegNumBits)
break;
}
#ifndef NDEBUG
if (MinRC) {
assert(MinRC->isAllocatable() && TRI->isRegClassAligned(MinRC, RCAlign));
for (auto [SubReg, SRI] : SubRegs)
// Check that all registers in MinRC support SRI.SubReg subregister.
assert(MinRC == TRI->getSubClassWithSubReg(MinRC, SRI.SubReg));
}
#endif
// There might be zero RShift - in this case we just trying to find smaller
// register.
return (MinRC != RC || RShift != 0) ? MinRC : nullptr;
}
const TargetRegisterClass *
GCNRewritePartialRegUses::getMinSizeReg(const TargetRegisterClass *RC,
SubRegMap &SubRegs) const {
unsigned CoverSubreg = AMDGPU::NoSubRegister;
unsigned Offset = std::numeric_limits<unsigned>::max();
unsigned End = 0;
for (auto [SubReg, SRI] : SubRegs) {
unsigned SubRegOffset = TRI->getSubRegIdxOffset(SubReg);
unsigned SubRegEnd = SubRegOffset + TRI->getSubRegIdxSize(SubReg);
if (SubRegOffset < Offset) {
Offset = SubRegOffset;
CoverSubreg = AMDGPU::NoSubRegister;
}
if (SubRegEnd > End) {
End = SubRegEnd;
CoverSubreg = AMDGPU::NoSubRegister;
}
if (SubRegOffset == Offset && SubRegEnd == End)
CoverSubreg = SubReg;
}
// If covering subreg is found shift everything so the covering subreg would
// be in the rightmost position.
if (CoverSubreg != AMDGPU::NoSubRegister)
return getRegClassWithShiftedSubregs(RC, Offset, End - Offset, CoverSubreg,
SubRegs);
// Otherwise find subreg with maximum required alignment and shift it and all
// other subregs to the rightmost possible position with respect to the
// alignment.
unsigned MaxAlign = 0;
for (auto [SubReg, SRI] : SubRegs)
MaxAlign = std::max(MaxAlign, TRI->getSubRegAlignmentNumBits(RC, SubReg));
unsigned FirstMaxAlignedSubRegOffset = std::numeric_limits<unsigned>::max();
for (auto [SubReg, SRI] : SubRegs) {
if (TRI->getSubRegAlignmentNumBits(RC, SubReg) != MaxAlign)
continue;
FirstMaxAlignedSubRegOffset =
std::min(FirstMaxAlignedSubRegOffset, TRI->getSubRegIdxOffset(SubReg));
if (FirstMaxAlignedSubRegOffset == Offset)
break;
}
unsigned NewOffsetOfMaxAlignedSubReg =
alignTo(FirstMaxAlignedSubRegOffset - Offset, MaxAlign);
if (NewOffsetOfMaxAlignedSubReg > FirstMaxAlignedSubRegOffset)
llvm_unreachable("misaligned subreg");
unsigned RShift = FirstMaxAlignedSubRegOffset - NewOffsetOfMaxAlignedSubReg;
return getRegClassWithShiftedSubregs(RC, RShift, End - RShift, 0, SubRegs);
}
// Only the subrange's lanemasks of the original interval need to be modified.
// Subrange for a covering subreg becomes the main range.
void GCNRewritePartialRegUses::updateLiveIntervals(Register OldReg,
Register NewReg,
SubRegMap &SubRegs) const {
if (!LIS->hasInterval(OldReg))
return;
auto &OldLI = LIS->getInterval(OldReg);
auto &NewLI = LIS->createEmptyInterval(NewReg);
auto &Allocator = LIS->getVNInfoAllocator();
NewLI.setWeight(OldLI.weight());
for (auto &SR : OldLI.subranges()) {
auto I = find_if(SubRegs, [&](auto &P) {
return SR.LaneMask == TRI->getSubRegIndexLaneMask(P.first);
});
if (I == SubRegs.end()) {
// There might be a situation when subranges don't exactly match used
// subregs, for example:
// %120 [160r,1392r:0) 0@160r
// L000000000000C000 [160r,1392r:0) 0@160r
// L0000000000003000 [160r,1392r:0) 0@160r
// L0000000000000C00 [160r,1392r:0) 0@160r
// L0000000000000300 [160r,1392r:0) 0@160r
// L0000000000000003 [160r,1104r:0) 0@160r
// L000000000000000C [160r,1104r:0) 0@160r
// L0000000000000030 [160r,1104r:0) 0@160r
// L00000000000000C0 [160r,1104r:0) 0@160r
// but used subregs are:
// sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7, L000000000000FFFF
// sub0_sub1_sub2_sub3, L00000000000000FF
// sub4_sub5_sub6_sub7, L000000000000FF00
// In this example subregs sub0_sub1_sub2_sub3 and sub4_sub5_sub6_sub7
// have several subranges with the same lifetime. For such cases just
// recreate the interval.
LIS->removeInterval(OldReg);
LIS->removeInterval(NewReg);
LIS->createAndComputeVirtRegInterval(NewReg);
return;
}
if (unsigned NewSubReg = I->second.SubReg)
NewLI.createSubRangeFrom(Allocator,
TRI->getSubRegIndexLaneMask(NewSubReg), SR);
else // This is the covering subreg (0 index) - set it as main range.
NewLI.assign(SR, Allocator);
SubRegs.erase(I);
}
if (NewLI.empty())
NewLI.assign(OldLI, Allocator);
NewLI.verify(MRI);
LIS->removeInterval(OldReg);
}
const TargetRegisterClass *
GCNRewritePartialRegUses::getOperandRegClass(MachineOperand &MO) const {
MachineInstr *MI = MO.getParent();
return TII->getRegClass(TII->get(MI->getOpcode()), MI->getOperandNo(&MO), TRI,
*MI->getParent()->getParent());
}
bool GCNRewritePartialRegUses::rewriteReg(Register Reg) const {
auto Range = MRI->reg_nodbg_operands(Reg);
if (Range.begin() == Range.end())
return false;
for (MachineOperand &MO : Range) {
if (MO.getSubReg() == AMDGPU::NoSubRegister) // Whole reg used, quit.
return false;
}
auto *RC = MRI->getRegClass(Reg);
LLVM_DEBUG(dbgs() << "Try to rewrite partial reg " << printReg(Reg, TRI)
<< ':' << TRI->getRegClassName(RC) << '\n');
// Collect used subregs and constrained reg classes infered from instruction
// operands.
SubRegMap SubRegs;
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
assert(MO.getSubReg() != AMDGPU::NoSubRegister);
auto *OpDescRC = getOperandRegClass(MO);
const auto [I, Inserted] = SubRegs.try_emplace(MO.getSubReg(), OpDescRC);
if (!Inserted && OpDescRC) {
SubRegInfo &SRI = I->second;
SRI.RC = SRI.RC ? TRI->getCommonSubClass(SRI.RC, OpDescRC) : OpDescRC;
if (!SRI.RC) {
LLVM_DEBUG(dbgs() << " Couldn't find common target regclass\n");
return false;
}
}
}
auto *NewRC = getMinSizeReg(RC, SubRegs);
if (!NewRC) {
LLVM_DEBUG(dbgs() << " No improvement achieved\n");
return false;
}
Register NewReg = MRI->createVirtualRegister(NewRC);
LLVM_DEBUG(dbgs() << " Success " << printReg(Reg, TRI) << ':'
<< TRI->getRegClassName(RC) << " -> "
<< printReg(NewReg, TRI) << ':'
<< TRI->getRegClassName(NewRC) << '\n');
for (auto &MO : make_early_inc_range(MRI->reg_operands(Reg))) {
MO.setReg(NewReg);
// Debug info can refer to the whole reg, just leave it as it is for now.
// TODO: create some DI shift expression?
if (MO.isDebug() && MO.getSubReg() == 0)
continue;
unsigned SubReg = SubRegs[MO.getSubReg()].SubReg;
MO.setSubReg(SubReg);
if (SubReg == AMDGPU::NoSubRegister && MO.isDef())
MO.setIsUndef(false);
}
if (LIS)
updateLiveIntervals(Reg, NewReg, SubRegs);
return true;
}
bool GCNRewritePartialRegUses::runOnMachineFunction(MachineFunction &MF) {
MRI = &MF.getRegInfo();
TRI = static_cast<const SIRegisterInfo *>(MRI->getTargetRegisterInfo());
TII = MF.getSubtarget().getInstrInfo();
LIS = getAnalysisIfAvailable<LiveIntervals>();
bool Changed = false;
for (size_t I = 0, E = MRI->getNumVirtRegs(); I < E; ++I) {
Changed |= rewriteReg(Register::index2VirtReg(I));
}
return Changed;
}
char GCNRewritePartialRegUses::ID;
char &llvm::GCNRewritePartialRegUsesID = GCNRewritePartialRegUses::ID;
INITIALIZE_PASS_BEGIN(GCNRewritePartialRegUses, DEBUG_TYPE,
"Rewrite Partial Register Uses", false, false)
INITIALIZE_PASS_END(GCNRewritePartialRegUses, DEBUG_TYPE,
"Rewrite Partial Register Uses", false, false)
|