File: GCNSchedStrategy.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (1572 lines) | stat: -rw-r--r-- 57,469 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
///
/// This pass will apply multiple scheduling stages to the same function.
/// Regions are first recorded in GCNScheduleDAGMILive::schedule. The actual
/// entry point for the scheduling of those regions is
/// GCNScheduleDAGMILive::runSchedStages.

/// Generally, the reason for having multiple scheduling stages is to account
/// for the kernel-wide effect of register usage on occupancy.  Usually, only a
/// few scheduling regions will have register pressure high enough to limit
/// occupancy for the kernel, so constraints can be relaxed to improve ILP in
/// other regions.
///
//===----------------------------------------------------------------------===//

#include "GCNSchedStrategy.h"
#include "AMDGPUIGroupLP.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"

#define DEBUG_TYPE "machine-scheduler"

using namespace llvm;

static cl::opt<bool>
    DisableUnclusterHighRP("amdgpu-disable-unclustred-high-rp-reschedule",
                           cl::Hidden,
                           cl::desc("Disable unclustred high register pressure "
                                    "reduction scheduling stage."),
                           cl::init(false));
static cl::opt<unsigned> ScheduleMetricBias(
    "amdgpu-schedule-metric-bias", cl::Hidden,
    cl::desc(
        "Sets the bias which adds weight to occupancy vs latency. Set it to "
        "100 to chase the occupancy only."),
    cl::init(10));

static cl::opt<bool>
    RelaxedOcc("amdgpu-schedule-relaxed-occupancy", cl::Hidden,
               cl::desc("Relax occupancy targets for kernels which are memory "
                        "bound (amdgpu-membound-threshold), or "
                        "Wave Limited (amdgpu-limit-wave-threshold)."),
               cl::init(false));

const unsigned ScheduleMetrics::ScaleFactor = 100;

GCNSchedStrategy::GCNSchedStrategy(const MachineSchedContext *C)
    : GenericScheduler(C), TargetOccupancy(0), MF(nullptr),
      HasHighPressure(false) {}

void GCNSchedStrategy::initialize(ScheduleDAGMI *DAG) {
  GenericScheduler::initialize(DAG);

  MF = &DAG->MF;

  const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();

  SGPRExcessLimit =
      Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
  VGPRExcessLimit =
      Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);

  SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
  // Set the initial TargetOccupnacy to the maximum occupancy that we can
  // achieve for this function. This effectively sets a lower bound on the
  // 'Critical' register limits in the scheduler.
  // Allow for lower occupancy targets if kernel is wave limited or memory
  // bound, and using the relaxed occupancy feature.
  TargetOccupancy =
      RelaxedOcc ? MFI.getMinAllowedOccupancy() : MFI.getOccupancy();
  SGPRCriticalLimit =
      std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);

  if (!KnownExcessRP) {
    VGPRCriticalLimit =
        std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit);
  } else {
    // This is similar to ST.getMaxNumVGPRs(TargetOccupancy) result except
    // returns a reasonably small number for targets with lots of VGPRs, such
    // as GFX10 and GFX11.
    LLVM_DEBUG(dbgs() << "Region is known to spill, use alternative "
                         "VGPRCriticalLimit calculation method.\n");

    unsigned Granule = AMDGPU::IsaInfo::getVGPRAllocGranule(&ST);
    unsigned Addressable = AMDGPU::IsaInfo::getAddressableNumVGPRs(&ST);
    unsigned VGPRBudget = alignDown(Addressable / TargetOccupancy, Granule);
    VGPRBudget = std::max(VGPRBudget, Granule);
    VGPRCriticalLimit = std::min(VGPRBudget, VGPRExcessLimit);
  }

  // Subtract error margin and bias from register limits and avoid overflow.
  SGPRCriticalLimit -= std::min(SGPRLimitBias + ErrorMargin, SGPRCriticalLimit);
  VGPRCriticalLimit -= std::min(VGPRLimitBias + ErrorMargin, VGPRCriticalLimit);
  SGPRExcessLimit -= std::min(SGPRLimitBias + ErrorMargin, SGPRExcessLimit);
  VGPRExcessLimit -= std::min(VGPRLimitBias + ErrorMargin, VGPRExcessLimit);

  LLVM_DEBUG(dbgs() << "VGPRCriticalLimit = " << VGPRCriticalLimit
                    << ", VGPRExcessLimit = " << VGPRExcessLimit
                    << ", SGPRCriticalLimit = " << SGPRCriticalLimit
                    << ", SGPRExcessLimit = " << SGPRExcessLimit << "\n\n");
}

void GCNSchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
                                     bool AtTop,
                                     const RegPressureTracker &RPTracker,
                                     const SIRegisterInfo *SRI,
                                     unsigned SGPRPressure,
                                     unsigned VGPRPressure) {
  Cand.SU = SU;
  Cand.AtTop = AtTop;

  if (!DAG->isTrackingPressure())
    return;

  // getDownwardPressure() and getUpwardPressure() make temporary changes to
  // the tracker, so we need to pass those function a non-const copy.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  Pressure.clear();
  MaxPressure.clear();

  if (AtTop)
    TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
  else {
    // FIXME: I think for bottom up scheduling, the register pressure is cached
    // and can be retrieved by DAG->getPressureDif(SU).
    TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
  }

  unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
  unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];

  // If two instructions increase the pressure of different register sets
  // by the same amount, the generic scheduler will prefer to schedule the
  // instruction that increases the set with the least amount of registers,
  // which in our case would be SGPRs.  This is rarely what we want, so
  // when we report excess/critical register pressure, we do it either
  // only for VGPRs or only for SGPRs.

  // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
  const unsigned MaxVGPRPressureInc = 16;
  bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
  bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;


  // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
  // to increase the likelihood we don't go over the limits.  We should improve
  // the analysis to look through dependencies to find the path with the least
  // register pressure.

  // We only need to update the RPDelta for instructions that increase register
  // pressure. Instructions that decrease or keep reg pressure the same will be
  // marked as RegExcess in tryCandidate() when they are compared with
  // instructions that increase the register pressure.
  if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
    HasHighPressure = true;
    Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
    Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
  }

  if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
    HasHighPressure = true;
    Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
    Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
  }

  // Register pressure is considered 'CRITICAL' if it is approaching a value
  // that would reduce the wave occupancy for the execution unit.  When
  // register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
  // has the same cost, so we don't need to prefer one over the other.

  int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
  int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;

  if (SGPRDelta >= 0 || VGPRDelta >= 0) {
    HasHighPressure = true;
    if (SGPRDelta > VGPRDelta) {
      Cand.RPDelta.CriticalMax =
        PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
      Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
    } else {
      Cand.RPDelta.CriticalMax =
        PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
      Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
    }
  }
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNSchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
                                         const CandPolicy &ZonePolicy,
                                         const RegPressureTracker &RPTracker,
                                         SchedCandidate &Cand) {
  const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
  ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
  unsigned SGPRPressure = 0;
  unsigned VGPRPressure = 0;
  if (DAG->isTrackingPressure()) {
    SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
    VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
  }
  ReadyQueue &Q = Zone.Available;
  for (SUnit *SU : Q) {

    SchedCandidate TryCand(ZonePolicy);
    initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
                  SGPRPressure, VGPRPressure);
    // Pass SchedBoundary only when comparing nodes from the same boundary.
    SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
    tryCandidate(Cand, TryCand, ZoneArg);
    if (TryCand.Reason != NoCand) {
      // Initialize resource delta if needed in case future heuristics query it.
      if (TryCand.ResDelta == SchedResourceDelta())
        TryCand.initResourceDelta(Zone.DAG, SchedModel);
      Cand.setBest(TryCand);
      LLVM_DEBUG(traceCandidate(Cand));
    }
  }
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNSchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    IsTopNode = false;
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    IsTopNode = true;
    return SU;
  }
  // Set the bottom-up policy based on the state of the current bottom zone and
  // the instructions outside the zone, including the top zone.
  CandPolicy BotPolicy;
  setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
  // Set the top-down policy based on the state of the current top zone and
  // the instructions outside the zone, including the bottom zone.
  CandPolicy TopPolicy;
  setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);

  // See if BotCand is still valid (because we previously scheduled from Top).
  LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
  if (!BotCand.isValid() || BotCand.SU->isScheduled ||
      BotCand.Policy != BotPolicy) {
    BotCand.reset(CandPolicy());
    pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
    assert(BotCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    LLVM_DEBUG(traceCandidate(BotCand));
#ifndef NDEBUG
    if (VerifyScheduling) {
      SchedCandidate TCand;
      TCand.reset(CandPolicy());
      pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
      assert(TCand.SU == BotCand.SU &&
             "Last pick result should correspond to re-picking right now");
    }
#endif
  }

  // Check if the top Q has a better candidate.
  LLVM_DEBUG(dbgs() << "Picking from Top:\n");
  if (!TopCand.isValid() || TopCand.SU->isScheduled ||
      TopCand.Policy != TopPolicy) {
    TopCand.reset(CandPolicy());
    pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
    assert(TopCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    LLVM_DEBUG(traceCandidate(TopCand));
#ifndef NDEBUG
    if (VerifyScheduling) {
      SchedCandidate TCand;
      TCand.reset(CandPolicy());
      pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
      assert(TCand.SU == TopCand.SU &&
           "Last pick result should correspond to re-picking right now");
    }
#endif
  }

  // Pick best from BotCand and TopCand.
  LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
             dbgs() << "Bot Cand: "; traceCandidate(BotCand););
  SchedCandidate Cand = BotCand;
  TopCand.Reason = NoCand;
  tryCandidate(Cand, TopCand, nullptr);
  if (TopCand.Reason != NoCand) {
    Cand.setBest(TopCand);
  }
  LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););

  IsTopNode = Cand.AtTop;
  return Cand.SU;
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNSchedStrategy::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return nullptr;
  }
  SUnit *SU;
  do {
    if (RegionPolicy.OnlyTopDown) {
      SU = Top.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        TopCand.reset(NoPolicy);
        pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
        assert(TopCand.Reason != NoCand && "failed to find a candidate");
        SU = TopCand.SU;
      }
      IsTopNode = true;
    } else if (RegionPolicy.OnlyBottomUp) {
      SU = Bot.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        BotCand.reset(NoPolicy);
        pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
        assert(BotCand.Reason != NoCand && "failed to find a candidate");
        SU = BotCand.SU;
      }
      IsTopNode = false;
    } else {
      SU = pickNodeBidirectional(IsTopNode);
    }
  } while (SU->isScheduled);

  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
                    << *SU->getInstr());
  return SU;
}

GCNSchedStageID GCNSchedStrategy::getCurrentStage() {
  assert(CurrentStage && CurrentStage != SchedStages.end());
  return *CurrentStage;
}

bool GCNSchedStrategy::advanceStage() {
  assert(CurrentStage != SchedStages.end());
  if (!CurrentStage)
    CurrentStage = SchedStages.begin();
  else
    CurrentStage++;

  return CurrentStage != SchedStages.end();
}

bool GCNSchedStrategy::hasNextStage() const {
  assert(CurrentStage);
  return std::next(CurrentStage) != SchedStages.end();
}

GCNSchedStageID GCNSchedStrategy::getNextStage() const {
  assert(CurrentStage && std::next(CurrentStage) != SchedStages.end());
  return *std::next(CurrentStage);
}

GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
    const MachineSchedContext *C)
    : GCNSchedStrategy(C) {
  SchedStages.push_back(GCNSchedStageID::OccInitialSchedule);
  SchedStages.push_back(GCNSchedStageID::UnclusteredHighRPReschedule);
  SchedStages.push_back(GCNSchedStageID::ClusteredLowOccupancyReschedule);
  SchedStages.push_back(GCNSchedStageID::PreRARematerialize);
}

GCNMaxILPSchedStrategy::GCNMaxILPSchedStrategy(const MachineSchedContext *C)
    : GCNSchedStrategy(C) {
  SchedStages.push_back(GCNSchedStageID::ILPInitialSchedule);
}

bool GCNMaxILPSchedStrategy::tryCandidate(SchedCandidate &Cand,
                                          SchedCandidate &TryCand,
                                          SchedBoundary *Zone) const {
  // Initialize the candidate if needed.
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return true;
  }

  // Avoid spilling by exceeding the register limit.
  if (DAG->isTrackingPressure() &&
      tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
                  RegExcess, TRI, DAG->MF))
    return TryCand.Reason != NoCand;

  // Bias PhysReg Defs and copies to their uses and defined respectively.
  if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
                 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
    return TryCand.Reason != NoCand;

  bool SameBoundary = Zone != nullptr;
  if (SameBoundary) {
    // Prioritize instructions that read unbuffered resources by stall cycles.
    if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
                Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
      return TryCand.Reason != NoCand;

    // Avoid critical resource consumption and balance the schedule.
    TryCand.initResourceDelta(DAG, SchedModel);
    if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
                TryCand, Cand, ResourceReduce))
      return TryCand.Reason != NoCand;
    if (tryGreater(TryCand.ResDelta.DemandedResources,
                   Cand.ResDelta.DemandedResources, TryCand, Cand,
                   ResourceDemand))
      return TryCand.Reason != NoCand;

    // Unconditionally try to reduce latency.
    if (tryLatency(TryCand, Cand, *Zone))
      return TryCand.Reason != NoCand;

    // Weak edges are for clustering and other constraints.
    if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
                getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
      return TryCand.Reason != NoCand;
  }

  // Keep clustered nodes together to encourage downstream peephole
  // optimizations which may reduce resource requirements.
  //
  // This is a best effort to set things up for a post-RA pass. Optimizations
  // like generating loads of multiple registers should ideally be done within
  // the scheduler pass by combining the loads during DAG postprocessing.
  const SUnit *CandNextClusterSU =
      Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
  const SUnit *TryCandNextClusterSU =
      TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
  if (tryGreater(TryCand.SU == TryCandNextClusterSU,
                 Cand.SU == CandNextClusterSU, TryCand, Cand, Cluster))
    return TryCand.Reason != NoCand;

  // Avoid increasing the max critical pressure in the scheduled region.
  if (DAG->isTrackingPressure() &&
      tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
                  TryCand, Cand, RegCritical, TRI, DAG->MF))
    return TryCand.Reason != NoCand;

  // Avoid increasing the max pressure of the entire region.
  if (DAG->isTrackingPressure() &&
      tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
                  Cand, RegMax, TRI, DAG->MF))
    return TryCand.Reason != NoCand;

  if (SameBoundary) {
    // Fall through to original instruction order.
    if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) ||
        (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
      TryCand.Reason = NodeOrder;
      return true;
    }
  }
  return false;
}

GCNScheduleDAGMILive::GCNScheduleDAGMILive(
    MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S)
    : ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget<GCNSubtarget>()),
      MFI(*MF.getInfo<SIMachineFunctionInfo>()),
      StartingOccupancy(MFI.getOccupancy()), MinOccupancy(StartingOccupancy) {

  LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
  if (RelaxedOcc) {
    MinOccupancy = std::min(MFI.getMinAllowedOccupancy(), StartingOccupancy);
    if (MinOccupancy != StartingOccupancy)
      LLVM_DEBUG(dbgs() << "Allowing Occupancy drops to " << MinOccupancy
                        << ".\n");
  }
}

std::unique_ptr<GCNSchedStage>
GCNScheduleDAGMILive::createSchedStage(GCNSchedStageID SchedStageID) {
  switch (SchedStageID) {
  case GCNSchedStageID::OccInitialSchedule:
    return std::make_unique<OccInitialScheduleStage>(SchedStageID, *this);
  case GCNSchedStageID::UnclusteredHighRPReschedule:
    return std::make_unique<UnclusteredHighRPStage>(SchedStageID, *this);
  case GCNSchedStageID::ClusteredLowOccupancyReschedule:
    return std::make_unique<ClusteredLowOccStage>(SchedStageID, *this);
  case GCNSchedStageID::PreRARematerialize:
    return std::make_unique<PreRARematStage>(SchedStageID, *this);
  case GCNSchedStageID::ILPInitialSchedule:
    return std::make_unique<ILPInitialScheduleStage>(SchedStageID, *this);
  }

  llvm_unreachable("Unknown SchedStageID.");
}

void GCNScheduleDAGMILive::schedule() {
  // Collect all scheduling regions. The actual scheduling is performed in
  // GCNScheduleDAGMILive::finalizeSchedule.
  Regions.push_back(std::pair(RegionBegin, RegionEnd));
}

GCNRegPressure
GCNScheduleDAGMILive::getRealRegPressure(unsigned RegionIdx) const {
  GCNDownwardRPTracker RPTracker(*LIS);
  RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
  return RPTracker.moveMaxPressure();
}

void GCNScheduleDAGMILive::computeBlockPressure(unsigned RegionIdx,
                                                const MachineBasicBlock *MBB) {
  GCNDownwardRPTracker RPTracker(*LIS);

  // If the block has the only successor then live-ins of that successor are
  // live-outs of the current block. We can reuse calculated live set if the
  // successor will be sent to scheduling past current block.

  // However, due to the bug in LiveInterval analysis it may happen that two
  // predecessors of the same successor block have different lane bitmasks for
  // a live-out register. Workaround that by sticking to one-to-one relationship
  // i.e. one predecessor with one successor block.
  const MachineBasicBlock *OnlySucc = nullptr;
  if (MBB->succ_size() == 1) {
    auto *Candidate = *MBB->succ_begin();
    if (!Candidate->empty() && Candidate->pred_size() == 1) {
      SlotIndexes *Ind = LIS->getSlotIndexes();
      if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(Candidate))
        OnlySucc = Candidate;
    }
  }

  // Scheduler sends regions from the end of the block upwards.
  size_t CurRegion = RegionIdx;
  for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
    if (Regions[CurRegion].first->getParent() != MBB)
      break;
  --CurRegion;

  auto I = MBB->begin();
  auto LiveInIt = MBBLiveIns.find(MBB);
  auto &Rgn = Regions[CurRegion];
  auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
  if (LiveInIt != MBBLiveIns.end()) {
    auto LiveIn = std::move(LiveInIt->second);
    RPTracker.reset(*MBB->begin(), &LiveIn);
    MBBLiveIns.erase(LiveInIt);
  } else {
    I = Rgn.first;
    auto LRS = BBLiveInMap.lookup(NonDbgMI);
#ifdef EXPENSIVE_CHECKS
    assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
#endif
    RPTracker.reset(*I, &LRS);
  }

  for (;;) {
    I = RPTracker.getNext();

    if (Regions[CurRegion].first == I || NonDbgMI == I) {
      LiveIns[CurRegion] = RPTracker.getLiveRegs();
      RPTracker.clearMaxPressure();
    }

    if (Regions[CurRegion].second == I) {
      Pressure[CurRegion] = RPTracker.moveMaxPressure();
      if (CurRegion-- == RegionIdx)
        break;
    }
    RPTracker.advanceToNext();
    RPTracker.advanceBeforeNext();
  }

  if (OnlySucc) {
    if (I != MBB->end()) {
      RPTracker.advanceToNext();
      RPTracker.advance(MBB->end());
    }
    RPTracker.advanceBeforeNext();
    MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
  }
}

DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getBBLiveInMap() const {
  assert(!Regions.empty());
  std::vector<MachineInstr *> BBStarters;
  BBStarters.reserve(Regions.size());
  auto I = Regions.rbegin(), E = Regions.rend();
  auto *BB = I->first->getParent();
  do {
    auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
    BBStarters.push_back(MI);
    do {
      ++I;
    } while (I != E && I->first->getParent() == BB);
  } while (I != E);
  return getLiveRegMap(BBStarters, false /*After*/, *LIS);
}

void GCNScheduleDAGMILive::finalizeSchedule() {
  // Start actual scheduling here. This function is called by the base
  // MachineScheduler after all regions have been recorded by
  // GCNScheduleDAGMILive::schedule().
  LiveIns.resize(Regions.size());
  Pressure.resize(Regions.size());
  RescheduleRegions.resize(Regions.size());
  RegionsWithHighRP.resize(Regions.size());
  RegionsWithExcessRP.resize(Regions.size());
  RegionsWithMinOcc.resize(Regions.size());
  RegionsWithIGLPInstrs.resize(Regions.size());
  RescheduleRegions.set();
  RegionsWithHighRP.reset();
  RegionsWithExcessRP.reset();
  RegionsWithMinOcc.reset();
  RegionsWithIGLPInstrs.reset();

  runSchedStages();
}

void GCNScheduleDAGMILive::runSchedStages() {
  LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");

  if (!Regions.empty())
    BBLiveInMap = getBBLiveInMap();

  GCNSchedStrategy &S = static_cast<GCNSchedStrategy &>(*SchedImpl);
  while (S.advanceStage()) {
    auto Stage = createSchedStage(S.getCurrentStage());
    if (!Stage->initGCNSchedStage())
      continue;

    for (auto Region : Regions) {
      RegionBegin = Region.first;
      RegionEnd = Region.second;
      // Setup for scheduling the region and check whether it should be skipped.
      if (!Stage->initGCNRegion()) {
        Stage->advanceRegion();
        exitRegion();
        continue;
      }

      ScheduleDAGMILive::schedule();
      Stage->finalizeGCNRegion();
    }

    Stage->finalizeGCNSchedStage();
  }
}

#ifndef NDEBUG
raw_ostream &llvm::operator<<(raw_ostream &OS, const GCNSchedStageID &StageID) {
  switch (StageID) {
  case GCNSchedStageID::OccInitialSchedule:
    OS << "Max Occupancy Initial Schedule";
    break;
  case GCNSchedStageID::UnclusteredHighRPReschedule:
    OS << "Unclustered High Register Pressure Reschedule";
    break;
  case GCNSchedStageID::ClusteredLowOccupancyReschedule:
    OS << "Clustered Low Occupancy Reschedule";
    break;
  case GCNSchedStageID::PreRARematerialize:
    OS << "Pre-RA Rematerialize";
    break;
  case GCNSchedStageID::ILPInitialSchedule:
    OS << "Max ILP Initial Schedule";
    break;
  }

  return OS;
}
#endif

GCNSchedStage::GCNSchedStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG)
    : DAG(DAG), S(static_cast<GCNSchedStrategy &>(*DAG.SchedImpl)), MF(DAG.MF),
      MFI(DAG.MFI), ST(DAG.ST), StageID(StageID) {}

bool GCNSchedStage::initGCNSchedStage() {
  if (!DAG.LIS)
    return false;

  LLVM_DEBUG(dbgs() << "Starting scheduling stage: " << StageID << "\n");
  return true;
}

bool UnclusteredHighRPStage::initGCNSchedStage() {
  if (DisableUnclusterHighRP)
    return false;

  if (!GCNSchedStage::initGCNSchedStage())
    return false;

  if (DAG.RegionsWithHighRP.none() && DAG.RegionsWithExcessRP.none())
    return false;

  SavedMutations.swap(DAG.Mutations);
  DAG.addMutation(createIGroupLPDAGMutation());

  InitialOccupancy = DAG.MinOccupancy;
  // Aggressivly try to reduce register pressure in the unclustered high RP
  // stage. Temporarily increase occupancy target in the region.
  S.SGPRLimitBias = S.HighRPSGPRBias;
  S.VGPRLimitBias = S.HighRPVGPRBias;
  if (MFI.getMaxWavesPerEU() > DAG.MinOccupancy)
    MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);

  LLVM_DEBUG(
      dbgs()
      << "Retrying function scheduling without clustering. "
         "Aggressivly try to reduce register pressure to achieve occupancy "
      << DAG.MinOccupancy << ".\n");

  return true;
}

bool ClusteredLowOccStage::initGCNSchedStage() {
  if (!GCNSchedStage::initGCNSchedStage())
    return false;

  // Don't bother trying to improve ILP in lower RP regions if occupancy has not
  // been dropped. All regions will have already been scheduled with the ideal
  // occupancy targets.
  if (DAG.StartingOccupancy <= DAG.MinOccupancy)
    return false;

  LLVM_DEBUG(
      dbgs() << "Retrying function scheduling with lowest recorded occupancy "
             << DAG.MinOccupancy << ".\n");
  return true;
}

bool PreRARematStage::initGCNSchedStage() {
  if (!GCNSchedStage::initGCNSchedStage())
    return false;

  if (DAG.RegionsWithMinOcc.none() || DAG.Regions.size() == 1)
    return false;

  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
  // Check maximum occupancy
  if (ST.computeOccupancy(MF.getFunction(), MFI.getLDSSize()) ==
      DAG.MinOccupancy)
    return false;

  // FIXME: This pass will invalidate cached MBBLiveIns for regions
  // inbetween the defs and region we sinked the def to. Cached pressure
  // for regions where a def is sinked from will also be invalidated. Will
  // need to be fixed if there is another pass after this pass.
  assert(!S.hasNextStage());

  collectRematerializableInstructions();
  if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII))
    return false;

  LLVM_DEBUG(
      dbgs() << "Retrying function scheduling with improved occupancy of "
             << DAG.MinOccupancy << " from rematerializing\n");
  return true;
}

void GCNSchedStage::finalizeGCNSchedStage() {
  DAG.finishBlock();
  LLVM_DEBUG(dbgs() << "Ending scheduling stage: " << StageID << "\n");
}

void UnclusteredHighRPStage::finalizeGCNSchedStage() {
  SavedMutations.swap(DAG.Mutations);
  S.SGPRLimitBias = S.VGPRLimitBias = 0;
  if (DAG.MinOccupancy > InitialOccupancy) {
    for (unsigned IDX = 0; IDX < DAG.Pressure.size(); ++IDX)
      DAG.RegionsWithMinOcc[IDX] =
          DAG.Pressure[IDX].getOccupancy(DAG.ST) == DAG.MinOccupancy;

    LLVM_DEBUG(dbgs() << StageID
                      << " stage successfully increased occupancy to "
                      << DAG.MinOccupancy << '\n');
  }

  GCNSchedStage::finalizeGCNSchedStage();
}

bool GCNSchedStage::initGCNRegion() {
  // Check whether this new region is also a new block.
  if (DAG.RegionBegin->getParent() != CurrentMBB)
    setupNewBlock();

  unsigned NumRegionInstrs = std::distance(DAG.begin(), DAG.end());
  DAG.enterRegion(CurrentMBB, DAG.begin(), DAG.end(), NumRegionInstrs);

  // Skip empty scheduling regions (0 or 1 schedulable instructions).
  if (DAG.begin() == DAG.end() || DAG.begin() == std::prev(DAG.end()))
    return false;

  LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
  LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*CurrentMBB)
                    << " " << CurrentMBB->getName()
                    << "\n  From: " << *DAG.begin() << "    To: ";
             if (DAG.RegionEnd != CurrentMBB->end()) dbgs() << *DAG.RegionEnd;
             else dbgs() << "End";
             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');

  // Save original instruction order before scheduling for possible revert.
  Unsched.clear();
  Unsched.reserve(DAG.NumRegionInstrs);
  if (StageID == GCNSchedStageID::OccInitialSchedule ||
      StageID == GCNSchedStageID::ILPInitialSchedule) {
    for (auto &I : DAG) {
      Unsched.push_back(&I);
      if (I.getOpcode() == AMDGPU::SCHED_GROUP_BARRIER ||
          I.getOpcode() == AMDGPU::IGLP_OPT)
        DAG.RegionsWithIGLPInstrs[RegionIdx] = true;
    }
  } else {
    for (auto &I : DAG)
      Unsched.push_back(&I);
  }

  PressureBefore = DAG.Pressure[RegionIdx];

  LLVM_DEBUG(
      dbgs() << "Pressure before scheduling:\nRegion live-ins:"
             << print(DAG.LiveIns[RegionIdx], DAG.MRI)
             << "Region live-in pressure:  "
             << print(llvm::getRegPressure(DAG.MRI, DAG.LiveIns[RegionIdx]))
             << "Region register pressure: " << print(PressureBefore));

  S.HasHighPressure = false;
  S.KnownExcessRP = isRegionWithExcessRP();

  if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
      StageID != GCNSchedStageID::UnclusteredHighRPReschedule) {
    SavedMutations.clear();
    SavedMutations.swap(DAG.Mutations);
    DAG.addMutation(createIGroupLPDAGMutation());
  }

  return true;
}

bool UnclusteredHighRPStage::initGCNRegion() {
  // Only reschedule regions with the minimum occupancy or regions that may have
  // spilling (excess register pressure).
  if ((!DAG.RegionsWithMinOcc[RegionIdx] ||
       DAG.MinOccupancy <= InitialOccupancy) &&
      !DAG.RegionsWithExcessRP[RegionIdx])
    return false;

  return GCNSchedStage::initGCNRegion();
}

bool ClusteredLowOccStage::initGCNRegion() {
  // We may need to reschedule this region if it wasn't rescheduled in the last
  // stage, or if we found it was testing critical register pressure limits in
  // the unclustered reschedule stage. The later is because we may not have been
  // able to raise the min occupancy in the previous stage so the region may be
  // overly constrained even if it was already rescheduled.
  if (!DAG.RegionsWithHighRP[RegionIdx])
    return false;

  return GCNSchedStage::initGCNRegion();
}

bool PreRARematStage::initGCNRegion() {
  if (!DAG.RescheduleRegions[RegionIdx])
    return false;

  return GCNSchedStage::initGCNRegion();
}

void GCNSchedStage::setupNewBlock() {
  if (CurrentMBB)
    DAG.finishBlock();

  CurrentMBB = DAG.RegionBegin->getParent();
  DAG.startBlock(CurrentMBB);
  // Get real RP for the region if it hasn't be calculated before. After the
  // initial schedule stage real RP will be collected after scheduling.
  if (StageID == GCNSchedStageID::OccInitialSchedule ||
      StageID == GCNSchedStageID::ILPInitialSchedule)
    DAG.computeBlockPressure(RegionIdx, CurrentMBB);
}

void GCNSchedStage::finalizeGCNRegion() {
  DAG.Regions[RegionIdx] = std::pair(DAG.RegionBegin, DAG.RegionEnd);
  DAG.RescheduleRegions[RegionIdx] = false;
  if (S.HasHighPressure)
    DAG.RegionsWithHighRP[RegionIdx] = true;

  // Revert scheduling if we have dropped occupancy or there is some other
  // reason that the original schedule is better.
  checkScheduling();

  if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
      StageID != GCNSchedStageID::UnclusteredHighRPReschedule)
    SavedMutations.swap(DAG.Mutations);

  DAG.exitRegion();
  RegionIdx++;
}

void GCNSchedStage::checkScheduling() {
  // Check the results of scheduling.
  PressureAfter = DAG.getRealRegPressure(RegionIdx);
  LLVM_DEBUG(dbgs() << "Pressure after scheduling: " << print(PressureAfter));
  LLVM_DEBUG(dbgs() << "Region: " << RegionIdx << ".\n");

  if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
      PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
    DAG.Pressure[RegionIdx] = PressureAfter;
    DAG.RegionsWithMinOcc[RegionIdx] =
        PressureAfter.getOccupancy(ST) == DAG.MinOccupancy;

    // Early out if we have achieve the occupancy target.
    LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
    return;
  }

  unsigned TargetOccupancy =
      std::min(S.getTargetOccupancy(), ST.getOccupancyWithLocalMemSize(MF));
  unsigned WavesAfter =
      std::min(TargetOccupancy, PressureAfter.getOccupancy(ST));
  unsigned WavesBefore =
      std::min(TargetOccupancy, PressureBefore.getOccupancy(ST));
  LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
                    << ", after " << WavesAfter << ".\n");

  // We may not be able to keep the current target occupancy because of the just
  // scheduled region. We might still be able to revert scheduling if the
  // occupancy before was higher, or if the current schedule has register
  // pressure higher than the excess limits which could lead to more spilling.
  unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);

  // Allow memory bound functions to drop to 4 waves if not limited by an
  // attribute.
  if (WavesAfter < WavesBefore && WavesAfter < DAG.MinOccupancy &&
      WavesAfter >= MFI.getMinAllowedOccupancy()) {
    LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
                      << MFI.getMinAllowedOccupancy() << " waves\n");
    NewOccupancy = WavesAfter;
  }

  if (NewOccupancy < DAG.MinOccupancy) {
    DAG.MinOccupancy = NewOccupancy;
    MFI.limitOccupancy(DAG.MinOccupancy);
    DAG.RegionsWithMinOcc.reset();
    LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
                      << DAG.MinOccupancy << ".\n");
  }

  unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
  unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
  if (PressureAfter.getVGPRNum(false) > MaxVGPRs ||
      PressureAfter.getAGPRNum() > MaxVGPRs ||
      PressureAfter.getSGPRNum() > MaxSGPRs) {
    DAG.RescheduleRegions[RegionIdx] = true;
    DAG.RegionsWithHighRP[RegionIdx] = true;
    DAG.RegionsWithExcessRP[RegionIdx] = true;
  }

  // Revert if this region's schedule would cause a drop in occupancy or
  // spilling.
  if (shouldRevertScheduling(WavesAfter)) {
    revertScheduling();
  } else {
    DAG.Pressure[RegionIdx] = PressureAfter;
    DAG.RegionsWithMinOcc[RegionIdx] =
        PressureAfter.getOccupancy(ST) == DAG.MinOccupancy;
  }
}

unsigned
GCNSchedStage::computeSUnitReadyCycle(const SUnit &SU, unsigned CurrCycle,
                                      DenseMap<unsigned, unsigned> &ReadyCycles,
                                      const TargetSchedModel &SM) {
  unsigned ReadyCycle = CurrCycle;
  for (auto &D : SU.Preds) {
    if (D.isAssignedRegDep()) {
      MachineInstr *DefMI = D.getSUnit()->getInstr();
      unsigned Latency = SM.computeInstrLatency(DefMI);
      unsigned DefReady = ReadyCycles[DAG.getSUnit(DefMI)->NodeNum];
      ReadyCycle = std::max(ReadyCycle, DefReady + Latency);
    }
  }
  ReadyCycles[SU.NodeNum] = ReadyCycle;
  return ReadyCycle;
}

#ifndef NDEBUG
struct EarlierIssuingCycle {
  bool operator()(std::pair<MachineInstr *, unsigned> A,
                  std::pair<MachineInstr *, unsigned> B) const {
    return A.second < B.second;
  }
};

static void printScheduleModel(std::set<std::pair<MachineInstr *, unsigned>,
                                        EarlierIssuingCycle> &ReadyCycles) {
  if (ReadyCycles.empty())
    return;
  unsigned BBNum = ReadyCycles.begin()->first->getParent()->getNumber();
  dbgs() << "\n################## Schedule time ReadyCycles for MBB : " << BBNum
         << " ##################\n# Cycle #\t\t\tInstruction          "
            "             "
            "                            \n";
  unsigned IPrev = 1;
  for (auto &I : ReadyCycles) {
    if (I.second > IPrev + 1)
      dbgs() << "****************************** BUBBLE OF " << I.second - IPrev
             << " CYCLES DETECTED ******************************\n\n";
    dbgs() << "[ " << I.second << " ]  :  " << *I.first << "\n";
    IPrev = I.second;
  }
}
#endif

ScheduleMetrics
GCNSchedStage::getScheduleMetrics(const std::vector<SUnit> &InputSchedule) {
#ifndef NDEBUG
  std::set<std::pair<MachineInstr *, unsigned>, EarlierIssuingCycle>
      ReadyCyclesSorted;
#endif
  const TargetSchedModel &SM = ST.getInstrInfo()->getSchedModel();
  unsigned SumBubbles = 0;
  DenseMap<unsigned, unsigned> ReadyCycles;
  unsigned CurrCycle = 0;
  for (auto &SU : InputSchedule) {
    unsigned ReadyCycle =
        computeSUnitReadyCycle(SU, CurrCycle, ReadyCycles, SM);
    SumBubbles += ReadyCycle - CurrCycle;
#ifndef NDEBUG
    ReadyCyclesSorted.insert(std::make_pair(SU.getInstr(), ReadyCycle));
#endif
    CurrCycle = ++ReadyCycle;
  }
#ifndef NDEBUG
  LLVM_DEBUG(
      printScheduleModel(ReadyCyclesSorted);
      dbgs() << "\n\t"
             << "Metric: "
             << (SumBubbles
                     ? (SumBubbles * ScheduleMetrics::ScaleFactor) / CurrCycle
                     : 1)
             << "\n\n");
#endif

  return ScheduleMetrics(CurrCycle, SumBubbles);
}

ScheduleMetrics
GCNSchedStage::getScheduleMetrics(const GCNScheduleDAGMILive &DAG) {
#ifndef NDEBUG
  std::set<std::pair<MachineInstr *, unsigned>, EarlierIssuingCycle>
      ReadyCyclesSorted;
#endif
  const TargetSchedModel &SM = ST.getInstrInfo()->getSchedModel();
  unsigned SumBubbles = 0;
  DenseMap<unsigned, unsigned> ReadyCycles;
  unsigned CurrCycle = 0;
  for (auto &MI : DAG) {
    SUnit *SU = DAG.getSUnit(&MI);
    if (!SU)
      continue;
    unsigned ReadyCycle =
        computeSUnitReadyCycle(*SU, CurrCycle, ReadyCycles, SM);
    SumBubbles += ReadyCycle - CurrCycle;
#ifndef NDEBUG
    ReadyCyclesSorted.insert(std::make_pair(SU->getInstr(), ReadyCycle));
#endif
    CurrCycle = ++ReadyCycle;
  }
#ifndef NDEBUG
  LLVM_DEBUG(
      printScheduleModel(ReadyCyclesSorted);
      dbgs() << "\n\t"
             << "Metric: "
             << (SumBubbles
                     ? (SumBubbles * ScheduleMetrics::ScaleFactor) / CurrCycle
                     : 1)
             << "\n\n");
#endif

  return ScheduleMetrics(CurrCycle, SumBubbles);
}

bool GCNSchedStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (WavesAfter < DAG.MinOccupancy)
    return true;

  return false;
}

bool OccInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (PressureAfter == PressureBefore)
    return false;

  if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
    return true;

  if (mayCauseSpilling(WavesAfter))
    return true;

  return false;
}

bool UnclusteredHighRPStage::shouldRevertScheduling(unsigned WavesAfter) {
  // If RP is not reduced in the unclustred reschedule stage, revert to the
  // old schedule.
  if ((WavesAfter <= PressureBefore.getOccupancy(ST) &&
       mayCauseSpilling(WavesAfter)) ||
      GCNSchedStage::shouldRevertScheduling(WavesAfter)) {
    LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
    return true;
  }

  // Do not attempt to relax schedule even more if we are already spilling.
  if (isRegionWithExcessRP())
    return false;

  LLVM_DEBUG(
      dbgs()
      << "\n\t      *** In shouldRevertScheduling ***\n"
      << "      *********** BEFORE UnclusteredHighRPStage ***********\n");
  ScheduleMetrics MBefore =
      getScheduleMetrics(DAG.SUnits);
  LLVM_DEBUG(
      dbgs()
      << "\n      *********** AFTER UnclusteredHighRPStage ***********\n");
  ScheduleMetrics MAfter = getScheduleMetrics(DAG);
  unsigned OldMetric = MBefore.getMetric();
  unsigned NewMetric = MAfter.getMetric();
  unsigned WavesBefore =
      std::min(S.getTargetOccupancy(), PressureBefore.getOccupancy(ST));
  unsigned Profit =
      ((WavesAfter * ScheduleMetrics::ScaleFactor) / WavesBefore *
       ((OldMetric + ScheduleMetricBias) * ScheduleMetrics::ScaleFactor) /
       NewMetric) /
      ScheduleMetrics::ScaleFactor;
  LLVM_DEBUG(dbgs() << "\tMetric before " << MBefore << "\tMetric after "
                    << MAfter << "Profit: " << Profit << "\n");
  return Profit < ScheduleMetrics::ScaleFactor;
}

bool ClusteredLowOccStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (PressureAfter == PressureBefore)
    return false;

  if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
    return true;

  if (mayCauseSpilling(WavesAfter))
    return true;

  return false;
}

bool PreRARematStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
    return true;

  if (mayCauseSpilling(WavesAfter))
    return true;

  return false;
}

bool ILPInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (mayCauseSpilling(WavesAfter))
    return true;

  return false;
}

bool GCNSchedStage::mayCauseSpilling(unsigned WavesAfter) {
  if (WavesAfter <= MFI.getMinWavesPerEU() &&
      !PressureAfter.less(ST, PressureBefore) &&
      isRegionWithExcessRP()) {
    LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
    return true;
  }

  return false;
}

void GCNSchedStage::revertScheduling() {
  DAG.RegionsWithMinOcc[RegionIdx] =
      PressureBefore.getOccupancy(ST) == DAG.MinOccupancy;
  LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
  DAG.RescheduleRegions[RegionIdx] =
      S.hasNextStage() &&
      S.getNextStage() != GCNSchedStageID::UnclusteredHighRPReschedule;
  DAG.RegionEnd = DAG.RegionBegin;
  int SkippedDebugInstr = 0;
  for (MachineInstr *MI : Unsched) {
    if (MI->isDebugInstr()) {
      ++SkippedDebugInstr;
      continue;
    }

    if (MI->getIterator() != DAG.RegionEnd) {
      DAG.BB->remove(MI);
      DAG.BB->insert(DAG.RegionEnd, MI);
      if (!MI->isDebugInstr())
        DAG.LIS->handleMove(*MI, true);
    }

    // Reset read-undef flags and update them later.
    for (auto &Op : MI->all_defs())
      Op.setIsUndef(false);
    RegisterOperands RegOpers;
    RegOpers.collect(*MI, *DAG.TRI, DAG.MRI, DAG.ShouldTrackLaneMasks, false);
    if (!MI->isDebugInstr()) {
      if (DAG.ShouldTrackLaneMasks) {
        // Adjust liveness and add missing dead+read-undef flags.
        SlotIndex SlotIdx = DAG.LIS->getInstructionIndex(*MI).getRegSlot();
        RegOpers.adjustLaneLiveness(*DAG.LIS, DAG.MRI, SlotIdx, MI);
      } else {
        // Adjust for missing dead-def flags.
        RegOpers.detectDeadDefs(*MI, *DAG.LIS);
      }
    }
    DAG.RegionEnd = MI->getIterator();
    ++DAG.RegionEnd;
    LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
  }

  // After reverting schedule, debug instrs will now be at the end of the block
  // and RegionEnd will point to the first debug instr. Increment RegionEnd
  // pass debug instrs to the actual end of the scheduling region.
  while (SkippedDebugInstr-- > 0)
    ++DAG.RegionEnd;

  // If Unsched.front() instruction is a debug instruction, this will actually
  // shrink the region since we moved all debug instructions to the end of the
  // block. Find the first instruction that is not a debug instruction.
  DAG.RegionBegin = Unsched.front()->getIterator();
  if (DAG.RegionBegin->isDebugInstr()) {
    for (MachineInstr *MI : Unsched) {
      if (MI->isDebugInstr())
        continue;
      DAG.RegionBegin = MI->getIterator();
      break;
    }
  }

  // Then move the debug instructions back into their correct place and set
  // RegionBegin and RegionEnd if needed.
  DAG.placeDebugValues();

  DAG.Regions[RegionIdx] = std::pair(DAG.RegionBegin, DAG.RegionEnd);
}

void PreRARematStage::collectRematerializableInstructions() {
  const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(DAG.TRI);
  for (unsigned I = 0, E = DAG.MRI.getNumVirtRegs(); I != E; ++I) {
    Register Reg = Register::index2VirtReg(I);
    if (!DAG.LIS->hasInterval(Reg))
      continue;

    // TODO: Handle AGPR and SGPR rematerialization
    if (!SRI->isVGPRClass(DAG.MRI.getRegClass(Reg)) ||
        !DAG.MRI.hasOneDef(Reg) || !DAG.MRI.hasOneNonDBGUse(Reg))
      continue;

    MachineOperand *Op = DAG.MRI.getOneDef(Reg);
    MachineInstr *Def = Op->getParent();
    if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def))
      continue;

    MachineInstr *UseI = &*DAG.MRI.use_instr_nodbg_begin(Reg);
    if (Def->getParent() == UseI->getParent())
      continue;

    // We are only collecting defs that are defined in another block and are
    // live-through or used inside regions at MinOccupancy. This means that the
    // register must be in the live-in set for the region.
    bool AddedToRematList = false;
    for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
      auto It = DAG.LiveIns[I].find(Reg);
      if (It != DAG.LiveIns[I].end() && !It->second.none()) {
        if (DAG.RegionsWithMinOcc[I]) {
          RematerializableInsts[I][Def] = UseI;
          AddedToRematList = true;
        }

        // Collect regions with rematerializable reg as live-in to avoid
        // searching later when updating RP.
        RematDefToLiveInRegions[Def].push_back(I);
      }
    }
    if (!AddedToRematList)
      RematDefToLiveInRegions.erase(Def);
  }
}

bool PreRARematStage::sinkTriviallyRematInsts(const GCNSubtarget &ST,
                                              const TargetInstrInfo *TII) {
  // Temporary copies of cached variables we will be modifying and replacing if
  // sinking succeeds.
  SmallVector<
      std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>, 32>
      NewRegions;
  DenseMap<unsigned, GCNRPTracker::LiveRegSet> NewLiveIns;
  DenseMap<unsigned, GCNRegPressure> NewPressure;
  BitVector NewRescheduleRegions;
  LiveIntervals *LIS = DAG.LIS;

  NewRegions.resize(DAG.Regions.size());
  NewRescheduleRegions.resize(DAG.Regions.size());

  // Collect only regions that has a rematerializable def as a live-in.
  SmallSet<unsigned, 16> ImpactedRegions;
  for (const auto &It : RematDefToLiveInRegions)
    ImpactedRegions.insert(It.second.begin(), It.second.end());

  // Make copies of register pressure and live-ins cache that will be updated
  // as we rematerialize.
  for (auto Idx : ImpactedRegions) {
    NewPressure[Idx] = DAG.Pressure[Idx];
    NewLiveIns[Idx] = DAG.LiveIns[Idx];
  }
  NewRegions = DAG.Regions;
  NewRescheduleRegions.reset();

  DenseMap<MachineInstr *, MachineInstr *> InsertedMIToOldDef;
  bool Improved = false;
  for (auto I : ImpactedRegions) {
    if (!DAG.RegionsWithMinOcc[I])
      continue;

    Improved = false;
    int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts());
    int SGPRUsage = NewPressure[I].getSGPRNum();

    // TODO: Handle occupancy drop due to AGPR and SGPR.
    // Check if cause of occupancy drop is due to VGPR usage and not SGPR.
    if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == DAG.MinOccupancy)
      break;

    // The occupancy of this region could have been improved by a previous
    // iteration's sinking of defs.
    if (NewPressure[I].getOccupancy(ST) > DAG.MinOccupancy) {
      NewRescheduleRegions[I] = true;
      Improved = true;
      continue;
    }

    // First check if we have enough trivially rematerializable instructions to
    // improve occupancy. Optimistically assume all instructions we are able to
    // sink decreased RP.
    int TotalSinkableRegs = 0;
    for (const auto &It : RematerializableInsts[I]) {
      MachineInstr *Def = It.first;
      Register DefReg = Def->getOperand(0).getReg();
      TotalSinkableRegs +=
          SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]);
    }
    int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs;
    unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink);
    // If in the most optimistic scenario, we cannot improve occupancy, then do
    // not attempt to sink any instructions.
    if (OptimisticOccupancy <= DAG.MinOccupancy)
      break;

    unsigned ImproveOccupancy = 0;
    SmallVector<MachineInstr *, 4> SinkedDefs;
    for (auto &It : RematerializableInsts[I]) {
      MachineInstr *Def = It.first;
      MachineBasicBlock::iterator InsertPos =
          MachineBasicBlock::iterator(It.second);
      Register Reg = Def->getOperand(0).getReg();
      // Rematerialize MI to its use block. Since we are only rematerializing
      // instructions that do not have any virtual reg uses, we do not need to
      // call LiveRangeEdit::allUsesAvailableAt() and
      // LiveRangeEdit::canRematerializeAt().
      TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
                         Def->getOperand(0).getSubReg(), *Def, *DAG.TRI);
      MachineInstr *NewMI = &*std::prev(InsertPos);
      LIS->InsertMachineInstrInMaps(*NewMI);
      LIS->removeInterval(Reg);
      LIS->createAndComputeVirtRegInterval(Reg);
      InsertedMIToOldDef[NewMI] = Def;

      // Update region boundaries in scheduling region we sinked from since we
      // may sink an instruction that was at the beginning or end of its region
      DAG.updateRegionBoundaries(NewRegions, Def, /*NewMI =*/nullptr,
                                 /*Removing =*/true);

      // Update region boundaries in region we sinked to.
      DAG.updateRegionBoundaries(NewRegions, InsertPos, NewMI);

      LaneBitmask PrevMask = NewLiveIns[I][Reg];
      // FIXME: Also update cached pressure for where the def was sinked from.
      // Update RP for all regions that has this reg as a live-in and remove
      // the reg from all regions as a live-in.
      for (auto Idx : RematDefToLiveInRegions[Def]) {
        NewLiveIns[Idx].erase(Reg);
        if (InsertPos->getParent() != DAG.Regions[Idx].first->getParent()) {
          // Def is live-through and not used in this block.
          NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), DAG.MRI);
        } else {
          // Def is used and rematerialized into this block.
          GCNDownwardRPTracker RPT(*LIS);
          auto *NonDbgMI = &*skipDebugInstructionsForward(
              NewRegions[Idx].first, NewRegions[Idx].second);
          RPT.reset(*NonDbgMI, &NewLiveIns[Idx]);
          RPT.advance(NewRegions[Idx].second);
          NewPressure[Idx] = RPT.moveMaxPressure();
        }
      }

      SinkedDefs.push_back(Def);
      ImproveOccupancy = NewPressure[I].getOccupancy(ST);
      if (ImproveOccupancy > DAG.MinOccupancy)
        break;
    }

    // Remove defs we just sinked from all regions' list of sinkable defs
    for (auto &Def : SinkedDefs)
      for (auto TrackedIdx : RematDefToLiveInRegions[Def])
        RematerializableInsts[TrackedIdx].erase(Def);

    if (ImproveOccupancy <= DAG.MinOccupancy)
      break;

    NewRescheduleRegions[I] = true;
    Improved = true;
  }

  if (!Improved) {
    // Occupancy was not improved for all regions that were at MinOccupancy.
    // Undo sinking and remove newly rematerialized instructions.
    for (auto &Entry : InsertedMIToOldDef) {
      MachineInstr *MI = Entry.first;
      MachineInstr *OldMI = Entry.second;
      Register Reg = MI->getOperand(0).getReg();
      LIS->RemoveMachineInstrFromMaps(*MI);
      MI->eraseFromParent();
      OldMI->clearRegisterDeads(Reg);
      LIS->removeInterval(Reg);
      LIS->createAndComputeVirtRegInterval(Reg);
    }
    return false;
  }

  // Occupancy was improved for all regions.
  for (auto &Entry : InsertedMIToOldDef) {
    MachineInstr *MI = Entry.first;
    MachineInstr *OldMI = Entry.second;

    // Remove OldMI from BBLiveInMap since we are sinking it from its MBB.
    DAG.BBLiveInMap.erase(OldMI);

    // Remove OldMI and update LIS
    Register Reg = MI->getOperand(0).getReg();
    LIS->RemoveMachineInstrFromMaps(*OldMI);
    OldMI->eraseFromParent();
    LIS->removeInterval(Reg);
    LIS->createAndComputeVirtRegInterval(Reg);
  }

  // Update live-ins, register pressure, and regions caches.
  for (auto Idx : ImpactedRegions) {
    DAG.LiveIns[Idx] = NewLiveIns[Idx];
    DAG.Pressure[Idx] = NewPressure[Idx];
    DAG.MBBLiveIns.erase(DAG.Regions[Idx].first->getParent());
  }
  DAG.Regions = NewRegions;
  DAG.RescheduleRegions = NewRescheduleRegions;

  SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
  MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);

  return true;
}

// Copied from MachineLICM
bool PreRARematStage::isTriviallyReMaterializable(const MachineInstr &MI) {
  if (!DAG.TII->isTriviallyReMaterializable(MI))
    return false;

  for (const MachineOperand &MO : MI.all_uses())
    if (MO.getReg().isVirtual())
      return false;

  return true;
}

// When removing, we will have to check both beginning and ending of the region.
// When inserting, we will only have to check if we are inserting NewMI in front
// of a scheduling region and do not need to check the ending since we will only
// ever be inserting before an already existing MI.
void GCNScheduleDAGMILive::updateRegionBoundaries(
    SmallVectorImpl<std::pair<MachineBasicBlock::iterator,
                              MachineBasicBlock::iterator>> &RegionBoundaries,
    MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) {
  unsigned I = 0, E = RegionBoundaries.size();
  // Search for first region of the block where MI is located
  while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent())
    ++I;

  for (; I != E; ++I) {
    if (MI->getParent() != RegionBoundaries[I].first->getParent())
      return;

    if (Removing && MI == RegionBoundaries[I].first &&
        MI == RegionBoundaries[I].second) {
      // MI is in a region with size 1, after removing, the region will be
      // size 0, set RegionBegin and RegionEnd to pass end of block iterator.
      RegionBoundaries[I] =
          std::pair(MI->getParent()->end(), MI->getParent()->end());
      return;
    }
    if (MI == RegionBoundaries[I].first) {
      if (Removing)
        RegionBoundaries[I] =
            std::pair(std::next(MI), RegionBoundaries[I].second);
      else
        // Inserted NewMI in front of region, set new RegionBegin to NewMI
        RegionBoundaries[I] = std::pair(MachineBasicBlock::iterator(NewMI),
                                        RegionBoundaries[I].second);
      return;
    }
    if (Removing && MI == RegionBoundaries[I].second) {
      RegionBoundaries[I] = std::pair(RegionBoundaries[I].first, std::prev(MI));
      return;
    }
  }
}

static bool hasIGLPInstrs(ScheduleDAGInstrs *DAG) {
  return std::any_of(
      DAG->begin(), DAG->end(), [](MachineBasicBlock::iterator MI) {
        unsigned Opc = MI->getOpcode();
        return Opc == AMDGPU::SCHED_GROUP_BARRIER || Opc == AMDGPU::IGLP_OPT;
      });
}

GCNPostScheduleDAGMILive::GCNPostScheduleDAGMILive(
    MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
    bool RemoveKillFlags)
    : ScheduleDAGMI(C, std::move(S), RemoveKillFlags) {}

void GCNPostScheduleDAGMILive::schedule() {
  HasIGLPInstrs = hasIGLPInstrs(this);
  if (HasIGLPInstrs) {
    SavedMutations.clear();
    SavedMutations.swap(Mutations);
    addMutation(createIGroupLPDAGMutation());
  }

  ScheduleDAGMI::schedule();
}

void GCNPostScheduleDAGMILive::finalizeSchedule() {
  if (HasIGLPInstrs)
    SavedMutations.swap(Mutations);

  ScheduleDAGMI::finalizeSchedule();
}