1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
//===------------------ AMDGPUCustomBehaviour.cpp ---------------*-C++ -* -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements methods from the AMDGPUCustomBehaviour class.
///
//===----------------------------------------------------------------------===//
#include "AMDGPUCustomBehaviour.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/WithColor.h"
namespace llvm {
namespace mca {
void AMDGPUInstrPostProcess::postProcessInstruction(
std::unique_ptr<Instruction> &Inst, const MCInst &MCI) {
switch (MCI.getOpcode()) {
case AMDGPU::S_WAITCNT:
case AMDGPU::S_WAITCNT_EXPCNT:
case AMDGPU::S_WAITCNT_LGKMCNT:
case AMDGPU::S_WAITCNT_VMCNT:
case AMDGPU::S_WAITCNT_VSCNT:
case AMDGPU::S_WAITCNT_EXPCNT_gfx10:
case AMDGPU::S_WAITCNT_LGKMCNT_gfx10:
case AMDGPU::S_WAITCNT_VMCNT_gfx10:
case AMDGPU::S_WAITCNT_VSCNT_gfx10:
case AMDGPU::S_WAITCNT_gfx10:
case AMDGPU::S_WAITCNT_gfx6_gfx7:
case AMDGPU::S_WAITCNT_vi:
return processWaitCnt(Inst, MCI);
}
}
// s_waitcnt instructions encode important information as immediate operands
// which are lost during the MCInst -> mca::Instruction lowering.
void AMDGPUInstrPostProcess::processWaitCnt(std::unique_ptr<Instruction> &Inst,
const MCInst &MCI) {
for (int Idx = 0, N = MCI.size(); Idx < N; Idx++) {
MCAOperand Op;
const MCOperand &MCOp = MCI.getOperand(Idx);
if (MCOp.isReg()) {
Op = MCAOperand::createReg(MCOp.getReg());
} else if (MCOp.isImm()) {
Op = MCAOperand::createImm(MCOp.getImm());
}
Op.setIndex(Idx);
Inst->addOperand(Op);
}
}
AMDGPUCustomBehaviour::AMDGPUCustomBehaviour(const MCSubtargetInfo &STI,
const mca::SourceMgr &SrcMgr,
const MCInstrInfo &MCII)
: CustomBehaviour(STI, SrcMgr, MCII) {
generateWaitCntInfo();
}
unsigned AMDGPUCustomBehaviour::checkCustomHazard(ArrayRef<InstRef> IssuedInst,
const InstRef &IR) {
const Instruction &Inst = *IR.getInstruction();
unsigned Opcode = Inst.getOpcode();
// llvm-mca is generally run on fully compiled assembly so we wouldn't see any
// pseudo instructions here. However, there are plans for the future to make
// it possible to use mca within backend passes. As such, I have left the
// pseudo version of s_waitcnt within this switch statement.
switch (Opcode) {
default:
return 0;
case AMDGPU::S_WAITCNT: // This instruction
case AMDGPU::S_WAITCNT_EXPCNT:
case AMDGPU::S_WAITCNT_LGKMCNT:
case AMDGPU::S_WAITCNT_VMCNT:
case AMDGPU::S_WAITCNT_VSCNT: // to this instruction are all pseudo.
case AMDGPU::S_WAITCNT_EXPCNT_gfx10:
case AMDGPU::S_WAITCNT_LGKMCNT_gfx10:
case AMDGPU::S_WAITCNT_VMCNT_gfx10:
case AMDGPU::S_WAITCNT_VSCNT_gfx10:
case AMDGPU::S_WAITCNT_gfx10:
case AMDGPU::S_WAITCNT_gfx6_gfx7:
case AMDGPU::S_WAITCNT_vi:
// s_endpgm also behaves as if there is an implicit
// s_waitcnt 0, but I'm not sure if it would be appropriate
// to model this in llvm-mca based on how the iterations work
// while simulating the pipeline over and over.
return handleWaitCnt(IssuedInst, IR);
}
return 0;
}
unsigned AMDGPUCustomBehaviour::handleWaitCnt(ArrayRef<InstRef> IssuedInst,
const InstRef &IR) {
// Currently, all s_waitcnt instructions are handled except s_waitcnt_depctr.
// I do not know how that instruction works so I did not attempt to model it.
// set the max values to begin
unsigned Vmcnt = 63;
unsigned Expcnt = 7;
unsigned Lgkmcnt = 31;
unsigned Vscnt = 63;
unsigned CurrVmcnt = 0;
unsigned CurrExpcnt = 0;
unsigned CurrLgkmcnt = 0;
unsigned CurrVscnt = 0;
unsigned CyclesToWaitVm = ~0U;
unsigned CyclesToWaitExp = ~0U;
unsigned CyclesToWaitLgkm = ~0U;
unsigned CyclesToWaitVs = ~0U;
computeWaitCnt(IR, Vmcnt, Expcnt, Lgkmcnt, Vscnt);
// We will now look at each of the currently executing instructions
// to find out if this wait instruction still needs to wait.
for (const InstRef &PrevIR : IssuedInst) {
const Instruction &PrevInst = *PrevIR.getInstruction();
const unsigned PrevInstIndex = PrevIR.getSourceIndex() % SrcMgr.size();
const WaitCntInfo &PrevInstWaitInfo = InstrWaitCntInfo[PrevInstIndex];
const int CyclesLeft = PrevInst.getCyclesLeft();
assert(CyclesLeft != UNKNOWN_CYCLES &&
"We should know how many cycles are left for this instruction");
if (PrevInstWaitInfo.VmCnt) {
CurrVmcnt++;
if ((unsigned)CyclesLeft < CyclesToWaitVm)
CyclesToWaitVm = CyclesLeft;
}
if (PrevInstWaitInfo.ExpCnt) {
CurrExpcnt++;
if ((unsigned)CyclesLeft < CyclesToWaitExp)
CyclesToWaitExp = CyclesLeft;
}
if (PrevInstWaitInfo.LgkmCnt) {
CurrLgkmcnt++;
if ((unsigned)CyclesLeft < CyclesToWaitLgkm)
CyclesToWaitLgkm = CyclesLeft;
}
if (PrevInstWaitInfo.VsCnt) {
CurrVscnt++;
if ((unsigned)CyclesLeft < CyclesToWaitVs)
CyclesToWaitVs = CyclesLeft;
}
}
unsigned CyclesToWait = ~0U;
if (CurrVmcnt > Vmcnt && CyclesToWaitVm < CyclesToWait)
CyclesToWait = CyclesToWaitVm;
if (CurrExpcnt > Expcnt && CyclesToWaitExp < CyclesToWait)
CyclesToWait = CyclesToWaitExp;
if (CurrLgkmcnt > Lgkmcnt && CyclesToWaitLgkm < CyclesToWait)
CyclesToWait = CyclesToWaitLgkm;
if (CurrVscnt > Vscnt && CyclesToWaitVs < CyclesToWait)
CyclesToWait = CyclesToWaitVs;
// We may underestimate how many cycles we need to wait, but this
// isn't a big deal. Our return value is just how many cycles until
// this function gets run again. So as long as we don't overestimate
// the wait time, we'll still end up stalling at this instruction
// for the correct number of cycles.
if (CyclesToWait == ~0U)
return 0;
return CyclesToWait;
}
void AMDGPUCustomBehaviour::computeWaitCnt(const InstRef &IR, unsigned &Vmcnt,
unsigned &Expcnt, unsigned &Lgkmcnt,
unsigned &Vscnt) {
AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(STI.getCPU());
const Instruction &Inst = *IR.getInstruction();
unsigned Opcode = Inst.getOpcode();
switch (Opcode) {
case AMDGPU::S_WAITCNT_EXPCNT_gfx10:
case AMDGPU::S_WAITCNT_LGKMCNT_gfx10:
case AMDGPU::S_WAITCNT_VMCNT_gfx10:
case AMDGPU::S_WAITCNT_VSCNT_gfx10: {
// Should probably be checking for nullptr
// here, but I'm not sure how I should handle the case
// where we see a nullptr.
const MCAOperand *OpReg = Inst.getOperand(0);
const MCAOperand *OpImm = Inst.getOperand(1);
assert(OpReg && OpReg->isReg() && "First operand should be a register.");
assert(OpImm && OpImm->isImm() && "Second operand should be an immediate.");
if (OpReg->getReg() != AMDGPU::SGPR_NULL) {
// Instruction is using a real register.
// Since we can't know what value this register will have,
// we can't compute what the value of this wait should be.
WithColor::warning() << "The register component of "
<< MCII.getName(Opcode) << " will be completely "
<< "ignored. So the wait may not be accurate.\n";
}
switch (Opcode) {
// Redundant switch so I don't have to repeat the code above
// for each case. There are more clever ways to avoid this
// extra switch and anyone can feel free to implement one of them.
case AMDGPU::S_WAITCNT_EXPCNT_gfx10:
Expcnt = OpImm->getImm();
break;
case AMDGPU::S_WAITCNT_LGKMCNT_gfx10:
Lgkmcnt = OpImm->getImm();
break;
case AMDGPU::S_WAITCNT_VMCNT_gfx10:
Vmcnt = OpImm->getImm();
break;
case AMDGPU::S_WAITCNT_VSCNT_gfx10:
Vscnt = OpImm->getImm();
break;
}
return;
}
case AMDGPU::S_WAITCNT_gfx10:
case AMDGPU::S_WAITCNT_gfx6_gfx7:
case AMDGPU::S_WAITCNT_vi:
unsigned WaitCnt = Inst.getOperand(0)->getImm();
AMDGPU::decodeWaitcnt(IV, WaitCnt, Vmcnt, Expcnt, Lgkmcnt);
return;
}
}
void AMDGPUCustomBehaviour::generateWaitCntInfo() {
// The core logic from this function is taken from
// SIInsertWaitcnts::updateEventWaitcntAfter() In that pass, the instructions
// that are being looked at are in the MachineInstr format, whereas we have
// access to the MCInst format. The side effects of this are that we can't use
// the mayAccessVMEMThroughFlat(Inst) or mayAccessLDSThroughFlat(Inst)
// functions. Therefore, we conservatively assume that these functions will
// return true. This may cause a few instructions to be incorrectly tagged
// with an extra CNT. However, these are instructions that do interact with at
// least one CNT so giving them an extra CNT shouldn't cause issues in most
// scenarios.
AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(STI.getCPU());
InstrWaitCntInfo.resize(SrcMgr.size());
for (const auto &EN : llvm::enumerate(SrcMgr.getInstructions())) {
const std::unique_ptr<Instruction> &Inst = EN.value();
unsigned Index = EN.index();
unsigned Opcode = Inst->getOpcode();
const MCInstrDesc &MCID = MCII.get(Opcode);
if ((MCID.TSFlags & SIInstrFlags::DS) &&
(MCID.TSFlags & SIInstrFlags::LGKM_CNT)) {
InstrWaitCntInfo[Index].LgkmCnt = true;
if (isAlwaysGDS(Opcode) || hasModifiersSet(Inst, AMDGPU::OpName::gds))
InstrWaitCntInfo[Index].ExpCnt = true;
} else if (MCID.TSFlags & SIInstrFlags::FLAT) {
// We conservatively assume that mayAccessVMEMThroughFlat(Inst)
// and mayAccessLDSThroughFlat(Inst) would both return true for this
// instruction. We have to do this because those functions use
// information about the memory operands that we don't have access to.
InstrWaitCntInfo[Index].LgkmCnt = true;
if (!STI.hasFeature(AMDGPU::FeatureVscnt))
InstrWaitCntInfo[Index].VmCnt = true;
else if (MCID.mayLoad() && !(MCID.TSFlags & SIInstrFlags::IsAtomicNoRet))
InstrWaitCntInfo[Index].VmCnt = true;
else
InstrWaitCntInfo[Index].VsCnt = true;
} else if (isVMEM(MCID) && !AMDGPU::getMUBUFIsBufferInv(Opcode)) {
if (!STI.hasFeature(AMDGPU::FeatureVscnt))
InstrWaitCntInfo[Index].VmCnt = true;
else if ((MCID.mayLoad() &&
!(MCID.TSFlags & SIInstrFlags::IsAtomicNoRet)) ||
((MCID.TSFlags & SIInstrFlags::MIMG) && !MCID.mayLoad() &&
!MCID.mayStore()))
InstrWaitCntInfo[Index].VmCnt = true;
else if (MCID.mayStore())
InstrWaitCntInfo[Index].VsCnt = true;
// (IV.Major < 7) is meant to represent
// GCNTarget.vmemWriteNeedsExpWaitcnt()
// which is defined as
// { return getGeneration() < SEA_ISLANDS; }
if (IV.Major < 7 &&
(MCID.mayStore() || (MCID.TSFlags & SIInstrFlags::IsAtomicRet)))
InstrWaitCntInfo[Index].ExpCnt = true;
} else if (MCID.TSFlags & SIInstrFlags::SMRD) {
InstrWaitCntInfo[Index].LgkmCnt = true;
} else if (MCID.TSFlags & SIInstrFlags::EXP) {
InstrWaitCntInfo[Index].ExpCnt = true;
} else {
switch (Opcode) {
case AMDGPU::S_SENDMSG:
case AMDGPU::S_SENDMSGHALT:
case AMDGPU::S_MEMTIME:
case AMDGPU::S_MEMREALTIME:
InstrWaitCntInfo[Index].LgkmCnt = true;
break;
}
}
}
}
// taken from SIInstrInfo::isVMEM()
bool AMDGPUCustomBehaviour::isVMEM(const MCInstrDesc &MCID) {
return MCID.TSFlags & SIInstrFlags::MUBUF ||
MCID.TSFlags & SIInstrFlags::MTBUF ||
MCID.TSFlags & SIInstrFlags::MIMG;
}
// taken from SIInstrInfo::hasModifiersSet()
bool AMDGPUCustomBehaviour::hasModifiersSet(
const std::unique_ptr<Instruction> &Inst, unsigned OpName) const {
int Idx = AMDGPU::getNamedOperandIdx(Inst->getOpcode(), OpName);
if (Idx == -1)
return false;
const MCAOperand *Op = Inst->getOperand(Idx);
if (Op == nullptr || !Op->isImm() || !Op->getImm())
return false;
return true;
}
// taken from SIInstrInfo::isAlwaysGDS()
bool AMDGPUCustomBehaviour::isAlwaysGDS(uint16_t Opcode) const {
return Opcode == AMDGPU::DS_ORDERED_COUNT || Opcode == AMDGPU::DS_GWS_INIT ||
Opcode == AMDGPU::DS_GWS_SEMA_V || Opcode == AMDGPU::DS_GWS_SEMA_BR ||
Opcode == AMDGPU::DS_GWS_SEMA_P ||
Opcode == AMDGPU::DS_GWS_SEMA_RELEASE_ALL ||
Opcode == AMDGPU::DS_GWS_BARRIER;
}
} // namespace mca
} // namespace llvm
using namespace llvm;
using namespace mca;
static CustomBehaviour *
createAMDGPUCustomBehaviour(const MCSubtargetInfo &STI,
const mca::SourceMgr &SrcMgr,
const MCInstrInfo &MCII) {
return new AMDGPUCustomBehaviour(STI, SrcMgr, MCII);
}
static InstrPostProcess *
createAMDGPUInstrPostProcess(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII) {
return new AMDGPUInstrPostProcess(STI, MCII);
}
/// Extern function to initialize the targets for the AMDGPU backend
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTargetMCA() {
TargetRegistry::RegisterCustomBehaviour(getTheR600Target(),
createAMDGPUCustomBehaviour);
TargetRegistry::RegisterInstrPostProcess(getTheR600Target(),
createAMDGPUInstrPostProcess);
TargetRegistry::RegisterCustomBehaviour(getTheGCNTarget(),
createAMDGPUCustomBehaviour);
TargetRegistry::RegisterInstrPostProcess(getTheGCNTarget(),
createAMDGPUInstrPostProcess);
}
|