1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
|
//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/// \file
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineOperand.h"
#define DEBUG_TYPE "si-fold-operands"
using namespace llvm;
namespace {
struct FoldCandidate {
MachineInstr *UseMI;
union {
MachineOperand *OpToFold;
uint64_t ImmToFold;
int FrameIndexToFold;
};
int ShrinkOpcode;
unsigned UseOpNo;
MachineOperand::MachineOperandType Kind;
bool Commuted;
FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
bool Commuted_ = false,
int ShrinkOp = -1) :
UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
Kind(FoldOp->getType()),
Commuted(Commuted_) {
if (FoldOp->isImm()) {
ImmToFold = FoldOp->getImm();
} else if (FoldOp->isFI()) {
FrameIndexToFold = FoldOp->getIndex();
} else {
assert(FoldOp->isReg() || FoldOp->isGlobal());
OpToFold = FoldOp;
}
}
bool isFI() const {
return Kind == MachineOperand::MO_FrameIndex;
}
bool isImm() const {
return Kind == MachineOperand::MO_Immediate;
}
bool isReg() const {
return Kind == MachineOperand::MO_Register;
}
bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
bool needsShrink() const { return ShrinkOpcode != -1; }
};
class SIFoldOperands : public MachineFunctionPass {
public:
static char ID;
MachineRegisterInfo *MRI;
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
const GCNSubtarget *ST;
const SIMachineFunctionInfo *MFI;
bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
const MachineOperand &OpToFold) const;
bool updateOperand(FoldCandidate &Fold) const;
bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
MachineInstr *MI, unsigned OpNo,
MachineOperand *OpToFold) const;
bool isUseSafeToFold(const MachineInstr &MI,
const MachineOperand &UseMO) const;
bool
getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
Register UseReg, uint8_t OpTy) const;
bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI,
unsigned UseOpIdx,
SmallVectorImpl<FoldCandidate> &FoldList) const;
void foldOperand(MachineOperand &OpToFold,
MachineInstr *UseMI,
int UseOpIdx,
SmallVectorImpl<FoldCandidate> &FoldList,
SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const;
bool tryConstantFoldOp(MachineInstr *MI) const;
bool tryFoldCndMask(MachineInstr &MI) const;
bool tryFoldZeroHighBits(MachineInstr &MI) const;
bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
bool tryFoldFoldableCopy(MachineInstr &MI,
MachineOperand *&CurrentKnownM0Val) const;
const MachineOperand *isClamp(const MachineInstr &MI) const;
bool tryFoldClamp(MachineInstr &MI);
std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
bool tryFoldOMod(MachineInstr &MI);
bool tryFoldRegSequence(MachineInstr &MI);
bool tryFoldPhiAGPR(MachineInstr &MI);
bool tryFoldLoad(MachineInstr &MI);
bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB);
public:
SIFoldOperands() : MachineFunctionPass(ID) {
initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Fold Operands"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
"SI Fold Operands", false, false)
char SIFoldOperands::ID = 0;
char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI,
const MachineOperand &MO) {
const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg());
if (const TargetRegisterClass *SubRC =
TRI.getSubRegisterClass(RC, MO.getSubReg()))
RC = SubRC;
return RC;
}
// Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
static unsigned macToMad(unsigned Opc) {
switch (Opc) {
case AMDGPU::V_MAC_F32_e64:
return AMDGPU::V_MAD_F32_e64;
case AMDGPU::V_MAC_F16_e64:
return AMDGPU::V_MAD_F16_e64;
case AMDGPU::V_FMAC_F32_e64:
return AMDGPU::V_FMA_F32_e64;
case AMDGPU::V_FMAC_F16_e64:
return AMDGPU::V_FMA_F16_gfx9_e64;
case AMDGPU::V_FMAC_F16_t16_e64:
return AMDGPU::V_FMA_F16_gfx9_e64;
case AMDGPU::V_FMAC_LEGACY_F32_e64:
return AMDGPU::V_FMA_LEGACY_F32_e64;
case AMDGPU::V_FMAC_F64_e64:
return AMDGPU::V_FMA_F64_e64;
}
return AMDGPU::INSTRUCTION_LIST_END;
}
// TODO: Add heuristic that the frame index might not fit in the addressing mode
// immediate offset to avoid materializing in loops.
bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
const MachineOperand &OpToFold) const {
if (!OpToFold.isFI())
return false;
const unsigned Opc = UseMI.getOpcode();
if (TII->isMUBUF(UseMI))
return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
if (!TII->isFLATScratch(UseMI))
return false;
int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
if (OpNo == SIdx)
return true;
int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
return OpNo == VIdx && SIdx == -1;
}
FunctionPass *llvm::createSIFoldOperandsPass() {
return new SIFoldOperands();
}
bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const {
MachineInstr *MI = Fold.UseMI;
MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
assert(Old.isReg());
const uint64_t TSFlags = MI->getDesc().TSFlags;
if (Fold.isImm()) {
if (TSFlags & SIInstrFlags::IsPacked && !(TSFlags & SIInstrFlags::IsMAI) &&
(!ST->hasDOTOpSelHazard() || !(TSFlags & SIInstrFlags::IsDOT)) &&
AMDGPU::isFoldableLiteralV216(Fold.ImmToFold,
ST->hasInv2PiInlineImm())) {
// Set op_sel/op_sel_hi on this operand or bail out if op_sel is
// already set.
unsigned Opcode = MI->getOpcode();
int OpNo = MI->getOperandNo(&Old);
int ModIdx = -1;
if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
ModIdx = AMDGPU::OpName::src0_modifiers;
else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
ModIdx = AMDGPU::OpName::src1_modifiers;
else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
ModIdx = AMDGPU::OpName::src2_modifiers;
assert(ModIdx != -1);
ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
MachineOperand &Mod = MI->getOperand(ModIdx);
unsigned Val = Mod.getImm();
if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) {
// Only apply the following transformation if that operand requires
// a packed immediate.
switch (TII->get(Opcode).operands()[OpNo].OperandType) {
case AMDGPU::OPERAND_REG_IMM_V2FP16:
case AMDGPU::OPERAND_REG_IMM_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
// If upper part is all zero we do not need op_sel_hi.
if (!isUInt<16>(Fold.ImmToFold)) {
if (!(Fold.ImmToFold & 0xffff)) {
Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
return true;
}
Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
return true;
}
break;
default:
break;
}
}
}
}
if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
MachineBasicBlock *MBB = MI->getParent();
auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16);
if (Liveness != MachineBasicBlock::LQR_Dead) {
LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
return false;
}
int Op32 = Fold.ShrinkOpcode;
MachineOperand &Dst0 = MI->getOperand(0);
MachineOperand &Dst1 = MI->getOperand(1);
assert(Dst0.isDef() && Dst1.isDef());
bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg());
const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg());
Register NewReg0 = MRI->createVirtualRegister(Dst0RC);
MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32);
if (HaveNonDbgCarryUse) {
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY),
Dst1.getReg())
.addReg(AMDGPU::VCC, RegState::Kill);
}
// Keep the old instruction around to avoid breaking iterators, but
// replace it with a dummy instruction to remove uses.
//
// FIXME: We should not invert how this pass looks at operands to avoid
// this. Should track set of foldable movs instead of looking for uses
// when looking at a use.
Dst0.setReg(NewReg0);
for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
MI->removeOperand(I);
MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF));
if (Fold.Commuted)
TII->commuteInstruction(*Inst32, false);
return true;
}
assert(!Fold.needsShrink() && "not handled");
if (Fold.isImm()) {
if (Old.isTied()) {
int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode());
if (NewMFMAOpc == -1)
return false;
MI->setDesc(TII->get(NewMFMAOpc));
MI->untieRegOperand(0);
}
Old.ChangeToImmediate(Fold.ImmToFold);
return true;
}
if (Fold.isGlobal()) {
Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
Fold.OpToFold->getTargetFlags());
return true;
}
if (Fold.isFI()) {
Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
return true;
}
MachineOperand *New = Fold.OpToFold;
Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI);
Old.setIsUndef(New->isUndef());
return true;
}
static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
const MachineInstr *MI) {
return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; });
}
static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
MachineInstr *MI, unsigned OpNo,
MachineOperand *FoldOp, bool Commuted = false,
int ShrinkOp = -1) {
// Skip additional folding on the same operand.
for (FoldCandidate &Fold : FoldList)
if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
return;
LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
<< " operand " << OpNo << "\n " << *MI);
FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp);
}
bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
MachineInstr *MI, unsigned OpNo,
MachineOperand *OpToFold) const {
if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
// Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
unsigned Opc = MI->getOpcode();
unsigned NewOpc = macToMad(Opc);
if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
// Check if changing this to a v_mad_{f16, f32} instruction will allow us
// to fold the operand.
MI->setDesc(TII->get(NewOpc));
bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) &&
AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel);
if (AddOpSel)
MI->addOperand(MachineOperand::CreateImm(0));
bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold);
if (FoldAsMAD) {
MI->untieRegOperand(OpNo);
return true;
}
if (AddOpSel)
MI->removeOperand(MI->getNumExplicitOperands() - 1);
MI->setDesc(TII->get(Opc));
}
// Special case for s_setreg_b32
if (OpToFold->isImm()) {
unsigned ImmOpc = 0;
if (Opc == AMDGPU::S_SETREG_B32)
ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
else if (Opc == AMDGPU::S_SETREG_B32_mode)
ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
if (ImmOpc) {
MI->setDesc(TII->get(ImmOpc));
appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
return true;
}
}
// If we are already folding into another operand of MI, then
// we can't commute the instruction, otherwise we risk making the
// other fold illegal.
if (isUseMIInFoldList(FoldList, MI))
return false;
unsigned CommuteOpNo = OpNo;
// Operand is not legal, so try to commute the instruction to
// see if this makes it possible to fold.
unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
if (CanCommute) {
if (CommuteIdx0 == OpNo)
CommuteOpNo = CommuteIdx1;
else if (CommuteIdx1 == OpNo)
CommuteOpNo = CommuteIdx0;
}
// One of operands might be an Imm operand, and OpNo may refer to it after
// the call of commuteInstruction() below. Such situations are avoided
// here explicitly as OpNo must be a register operand to be a candidate
// for memory folding.
if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
!MI->getOperand(CommuteIdx1).isReg()))
return false;
if (!CanCommute ||
!TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
return false;
if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
if ((Opc == AMDGPU::V_ADD_CO_U32_e64 ||
Opc == AMDGPU::V_SUB_CO_U32_e64 ||
Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME
(OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
// Verify the other operand is a VGPR, otherwise we would violate the
// constant bus restriction.
unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
MachineOperand &OtherOp = MI->getOperand(OtherIdx);
if (!OtherOp.isReg() ||
!TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg()))
return false;
assert(MI->getOperand(1).isDef());
// Make sure to get the 32-bit version of the commuted opcode.
unsigned MaybeCommutedOpc = MI->getOpcode();
int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
return true;
}
TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
return false;
}
appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
return true;
}
// Check the case where we might introduce a second constant operand to a
// scalar instruction
if (TII->isSALU(MI->getOpcode())) {
const MCInstrDesc &InstDesc = MI->getDesc();
const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
// Fine if the operand can be encoded as an inline constant
if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) {
// Otherwise check for another constant
for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
auto &Op = MI->getOperand(i);
if (OpNo != i && !Op.isReg() && !TII->isInlineConstant(Op, OpInfo))
return false;
}
}
}
appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
return true;
}
bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI,
const MachineOperand &UseMO) const {
// Operands of SDWA instructions must be registers.
return !TII->isSDWA(MI);
}
// Find a def of the UseReg, check if it is a reg_sequence and find initializers
// for each subreg, tracking it to foldable inline immediate if possible.
// Returns true on success.
bool SIFoldOperands::getRegSeqInit(
SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
Register UseReg, uint8_t OpTy) const {
MachineInstr *Def = MRI->getVRegDef(UseReg);
if (!Def || !Def->isRegSequence())
return false;
for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
MachineOperand *Sub = &Def->getOperand(I);
assert(Sub->isReg());
for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg());
SubDef && Sub->isReg() && Sub->getReg().isVirtual() &&
!Sub->getSubReg() && TII->isFoldableCopy(*SubDef);
SubDef = MRI->getVRegDef(Sub->getReg())) {
MachineOperand *Op = &SubDef->getOperand(1);
if (Op->isImm()) {
if (TII->isInlineConstant(*Op, OpTy))
Sub = Op;
break;
}
if (!Op->isReg() || Op->getReg().isPhysical())
break;
Sub = Op;
}
Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm());
}
return true;
}
bool SIFoldOperands::tryToFoldACImm(
const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx,
SmallVectorImpl<FoldCandidate> &FoldList) const {
const MCInstrDesc &Desc = UseMI->getDesc();
if (UseOpIdx >= Desc.getNumOperands())
return false;
uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType;
if ((OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) &&
(OpTy < AMDGPU::OPERAND_REG_INLINE_C_FIRST ||
OpTy > AMDGPU::OPERAND_REG_INLINE_C_LAST))
return false;
if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
return true;
}
if (!OpToFold.isReg())
return false;
Register UseReg = OpToFold.getReg();
if (!UseReg.isVirtual())
return false;
if (isUseMIInFoldList(FoldList, UseMI))
return false;
// Maybe it is just a COPY of an immediate itself.
MachineInstr *Def = MRI->getVRegDef(UseReg);
MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) {
MachineOperand &DefOp = Def->getOperand(1);
if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) &&
TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) {
UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm());
return true;
}
}
SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
if (!getRegSeqInit(Defs, UseReg, OpTy))
return false;
int32_t Imm;
for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
const MachineOperand *Op = Defs[I].first;
if (!Op->isImm())
return false;
auto SubImm = Op->getImm();
if (!I) {
Imm = SubImm;
if (!TII->isInlineConstant(*Op, OpTy) ||
!TII->isOperandLegal(*UseMI, UseOpIdx, Op))
return false;
continue;
}
if (Imm != SubImm)
return false; // Can only fold splat constants
}
appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
return true;
}
void SIFoldOperands::foldOperand(
MachineOperand &OpToFold,
MachineInstr *UseMI,
int UseOpIdx,
SmallVectorImpl<FoldCandidate> &FoldList,
SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
if (!isUseSafeToFold(*UseMI, UseOp))
return;
// FIXME: Fold operands with subregs.
if (UseOp.isReg() && OpToFold.isReg() &&
(UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister))
return;
// Special case for REG_SEQUENCE: We can't fold literals into
// REG_SEQUENCE instructions, so we have to fold them into the
// uses of REG_SEQUENCE.
if (UseMI->isRegSequence()) {
Register RegSeqDstReg = UseMI->getOperand(0).getReg();
unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) {
MachineInstr *RSUseMI = RSUse.getParent();
if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI,
RSUseMI->getOperandNo(&RSUse), FoldList))
continue;
if (RSUse.getSubReg() != RegSeqDstSubReg)
continue;
foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList,
CopiesToReplace);
}
return;
}
if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList))
return;
if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) {
// Verify that this is a stack access.
// FIXME: Should probably use stack pseudos before frame lowering.
if (TII->isMUBUF(*UseMI)) {
if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
MFI->getScratchRSrcReg())
return;
// Ensure this is either relative to the current frame or the current
// wave.
MachineOperand &SOff =
*TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
if (!SOff.isImm() || SOff.getImm() != 0)
return;
}
// A frame index will resolve to a positive constant, so it should always be
// safe to fold the addressing mode, even pre-GFX9.
UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
const unsigned Opc = UseMI->getOpcode();
if (TII->isFLATScratch(*UseMI) &&
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) &&
!AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) {
unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc);
UseMI->setDesc(TII->get(NewOpc));
}
return;
}
bool FoldingImmLike =
OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
if (FoldingImmLike && UseMI->isCopy()) {
Register DestReg = UseMI->getOperand(0).getReg();
Register SrcReg = UseMI->getOperand(1).getReg();
assert(SrcReg.isVirtual());
const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
// Don't fold into a copy to a physical register with the same class. Doing
// so would interfere with the register coalescer's logic which would avoid
// redundant initializations.
if (DestReg.isPhysical() && SrcRC->contains(DestReg))
return;
const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
if (!DestReg.isPhysical()) {
if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
SmallVector<FoldCandidate, 4> CopyUses;
for (auto &Use : MRI->use_nodbg_operands(DestReg)) {
// There's no point trying to fold into an implicit operand.
if (Use.isImplicit())
continue;
CopyUses.emplace_back(Use.getParent(),
Use.getParent()->getOperandNo(&Use),
&UseMI->getOperand(1));
}
for (auto &F : CopyUses) {
foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList,
CopiesToReplace);
}
}
if (DestRC == &AMDGPU::AGPR_32RegClass &&
TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
CopiesToReplace.push_back(UseMI);
return;
}
}
// In order to fold immediates into copies, we need to change the
// copy to a MOV.
unsigned MovOp = TII->getMovOpcode(DestRC);
if (MovOp == AMDGPU::COPY)
return;
UseMI->setDesc(TII->get(MovOp));
MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
while (ImpOpI != ImpOpE) {
MachineInstr::mop_iterator Tmp = ImpOpI;
ImpOpI++;
UseMI->removeOperand(UseMI->getOperandNo(Tmp));
}
CopiesToReplace.push_back(UseMI);
} else {
if (UseMI->isCopy() && OpToFold.isReg() &&
UseMI->getOperand(0).getReg().isVirtual() &&
!UseMI->getOperand(1).getSubReg()) {
LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI);
unsigned Size = TII->getOpSize(*UseMI, 1);
Register UseReg = OpToFold.getReg();
UseMI->getOperand(1).setReg(UseReg);
UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
UseMI->getOperand(1).setIsKill(false);
CopiesToReplace.push_back(UseMI);
OpToFold.setIsKill(false);
// Remove kill flags as kills may now be out of order with uses.
MRI->clearKillFlags(OpToFold.getReg());
// That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
// can only accept VGPR or inline immediate. Recreate a reg_sequence with
// its initializers right here, so we will rematerialize immediates and
// avoid copies via different reg classes.
SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
const DebugLoc &DL = UseMI->getDebugLoc();
MachineBasicBlock &MBB = *UseMI->getParent();
UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
UseMI->removeOperand(I);
MachineInstrBuilder B(*MBB.getParent(), UseMI);
DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
for (unsigned I = 0; I < Size / 4; ++I) {
MachineOperand *Def = Defs[I].first;
TargetInstrInfo::RegSubRegPair CopyToVGPR;
if (Def->isImm() &&
TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
int64_t Imm = Def->getImm();
auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
BuildMI(MBB, UseMI, DL,
TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
B.addReg(Tmp);
} else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
auto Src = getRegSubRegPair(*Def);
Def->setIsKill(false);
if (!SeenAGPRs.insert(Src)) {
// We cannot build a reg_sequence out of the same registers, they
// must be copied. Better do it here before copyPhysReg() created
// several reads to do the AGPR->VGPR->AGPR copy.
CopyToVGPR = Src;
} else {
B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
Src.SubReg);
}
} else {
assert(Def->isReg());
Def->setIsKill(false);
auto Src = getRegSubRegPair(*Def);
// Direct copy from SGPR to AGPR is not possible. To avoid creation
// of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
// create a copy here and track if we already have such a copy.
if (TRI->isSGPRReg(*MRI, Src.Reg)) {
CopyToVGPR = Src;
} else {
auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
B.addReg(Tmp);
}
}
if (CopyToVGPR.Reg) {
Register Vgpr;
if (VGPRCopies.count(CopyToVGPR)) {
Vgpr = VGPRCopies[CopyToVGPR];
} else {
Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
VGPRCopies[CopyToVGPR] = Vgpr;
}
auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
BuildMI(MBB, UseMI, DL,
TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
B.addReg(Tmp);
}
B.addImm(Defs[I].second);
}
LLVM_DEBUG(dbgs() << "Folded " << *UseMI);
return;
}
if (Size != 4)
return;
Register Reg0 = UseMI->getOperand(0).getReg();
Register Reg1 = UseMI->getOperand(1).getReg();
if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1))
UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1))
UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) &&
TRI->isAGPR(*MRI, Reg1))
UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32));
return;
}
unsigned UseOpc = UseMI->getOpcode();
if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
(UseOpc == AMDGPU::V_READLANE_B32 &&
(int)UseOpIdx ==
AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
// %vgpr = V_MOV_B32 imm
// %sgpr = V_READFIRSTLANE_B32 %vgpr
// =>
// %sgpr = S_MOV_B32 imm
if (FoldingImmLike) {
if (execMayBeModifiedBeforeUse(*MRI,
UseMI->getOperand(UseOpIdx).getReg(),
*OpToFold.getParent(),
*UseMI))
return;
UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
if (OpToFold.isImm())
UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
else
UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
return;
}
if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
if (execMayBeModifiedBeforeUse(*MRI,
UseMI->getOperand(UseOpIdx).getReg(),
*OpToFold.getParent(),
*UseMI))
return;
// %vgpr = COPY %sgpr0
// %sgpr1 = V_READFIRSTLANE_B32 %vgpr
// =>
// %sgpr1 = COPY %sgpr0
UseMI->setDesc(TII->get(AMDGPU::COPY));
UseMI->getOperand(1).setReg(OpToFold.getReg());
UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
UseMI->getOperand(1).setIsKill(false);
UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
return;
}
}
const MCInstrDesc &UseDesc = UseMI->getDesc();
// Don't fold into target independent nodes. Target independent opcodes
// don't have defined register classes.
if (UseDesc.isVariadic() || UseOp.isImplicit() ||
UseDesc.operands()[UseOpIdx].RegClass == -1)
return;
}
if (!FoldingImmLike) {
if (OpToFold.isReg() && ST->needsAlignedVGPRs()) {
// Don't fold if OpToFold doesn't hold an aligned register.
const TargetRegisterClass *RC =
TRI->getRegClassForReg(*MRI, OpToFold.getReg());
if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) {
unsigned SubReg = OpToFold.getSubReg();
if (const TargetRegisterClass *SubRC =
TRI->getSubRegisterClass(RC, SubReg))
RC = SubRC;
}
if (!RC || !TRI->isProperlyAlignedRC(*RC))
return;
}
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold);
// FIXME: We could try to change the instruction from 64-bit to 32-bit
// to enable more folding opportunities. The shrink operands pass
// already does this.
return;
}
const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
const TargetRegisterClass *FoldRC =
TRI->getRegClass(FoldDesc.operands()[0].RegClass);
// Split 64-bit constants into 32-bits for folding.
if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) {
Register UseReg = UseOp.getReg();
const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
if (AMDGPU::getRegBitWidth(*UseRC) != 64)
return;
APInt Imm(64, OpToFold.getImm());
if (UseOp.getSubReg() == AMDGPU::sub0) {
Imm = Imm.getLoBits(32);
} else {
assert(UseOp.getSubReg() == AMDGPU::sub1);
Imm = Imm.getHiBits(32);
}
MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp);
return;
}
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold);
}
static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
uint32_t LHS, uint32_t RHS) {
switch (Opcode) {
case AMDGPU::V_AND_B32_e64:
case AMDGPU::V_AND_B32_e32:
case AMDGPU::S_AND_B32:
Result = LHS & RHS;
return true;
case AMDGPU::V_OR_B32_e64:
case AMDGPU::V_OR_B32_e32:
case AMDGPU::S_OR_B32:
Result = LHS | RHS;
return true;
case AMDGPU::V_XOR_B32_e64:
case AMDGPU::V_XOR_B32_e32:
case AMDGPU::S_XOR_B32:
Result = LHS ^ RHS;
return true;
case AMDGPU::S_XNOR_B32:
Result = ~(LHS ^ RHS);
return true;
case AMDGPU::S_NAND_B32:
Result = ~(LHS & RHS);
return true;
case AMDGPU::S_NOR_B32:
Result = ~(LHS | RHS);
return true;
case AMDGPU::S_ANDN2_B32:
Result = LHS & ~RHS;
return true;
case AMDGPU::S_ORN2_B32:
Result = LHS | ~RHS;
return true;
case AMDGPU::V_LSHL_B32_e64:
case AMDGPU::V_LSHL_B32_e32:
case AMDGPU::S_LSHL_B32:
// The instruction ignores the high bits for out of bounds shifts.
Result = LHS << (RHS & 31);
return true;
case AMDGPU::V_LSHLREV_B32_e64:
case AMDGPU::V_LSHLREV_B32_e32:
Result = RHS << (LHS & 31);
return true;
case AMDGPU::V_LSHR_B32_e64:
case AMDGPU::V_LSHR_B32_e32:
case AMDGPU::S_LSHR_B32:
Result = LHS >> (RHS & 31);
return true;
case AMDGPU::V_LSHRREV_B32_e64:
case AMDGPU::V_LSHRREV_B32_e32:
Result = RHS >> (LHS & 31);
return true;
case AMDGPU::V_ASHR_I32_e64:
case AMDGPU::V_ASHR_I32_e32:
case AMDGPU::S_ASHR_I32:
Result = static_cast<int32_t>(LHS) >> (RHS & 31);
return true;
case AMDGPU::V_ASHRREV_I32_e64:
case AMDGPU::V_ASHRREV_I32_e32:
Result = static_cast<int32_t>(RHS) >> (LHS & 31);
return true;
default:
return false;
}
}
static unsigned getMovOpc(bool IsScalar) {
return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
}
static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
MI.setDesc(NewDesc);
// Remove any leftover implicit operands from mutating the instruction. e.g.
// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
// anymore.
const MCInstrDesc &Desc = MI.getDesc();
unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() +
Desc.implicit_defs().size();
for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
MI.removeOperand(I);
}
MachineOperand *
SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const {
// If this has a subregister, it obviously is a register source.
if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister ||
!Op.getReg().isVirtual())
return &Op;
MachineInstr *Def = MRI->getVRegDef(Op.getReg());
if (Def && Def->isMoveImmediate()) {
MachineOperand &ImmSrc = Def->getOperand(1);
if (ImmSrc.isImm())
return &ImmSrc;
}
return &Op;
}
// Try to simplify operations with a constant that may appear after instruction
// selection.
// TODO: See if a frame index with a fixed offset can fold.
bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const {
unsigned Opc = MI->getOpcode();
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
if (Src0Idx == -1)
return false;
MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx));
if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
Opc == AMDGPU::S_NOT_B32) &&
Src0->isImm()) {
MI->getOperand(1).ChangeToImmediate(~Src0->getImm());
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
return true;
}
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
if (Src1Idx == -1)
return false;
MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx));
if (!Src0->isImm() && !Src1->isImm())
return false;
// and k0, k1 -> v_mov_b32 (k0 & k1)
// or k0, k1 -> v_mov_b32 (k0 | k1)
// xor k0, k1 -> v_mov_b32 (k0 ^ k1)
if (Src0->isImm() && Src1->isImm()) {
int32_t NewImm;
if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
return false;
bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg());
// Be careful to change the right operand, src0 may belong to a different
// instruction.
MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
MI->removeOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
return true;
}
if (!MI->isCommutable())
return false;
if (Src0->isImm() && !Src1->isImm()) {
std::swap(Src0, Src1);
std::swap(Src0Idx, Src1Idx);
}
int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
if (Opc == AMDGPU::V_OR_B32_e64 ||
Opc == AMDGPU::V_OR_B32_e32 ||
Opc == AMDGPU::S_OR_B32) {
if (Src1Val == 0) {
// y = or x, 0 => y = copy x
MI->removeOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
} else if (Src1Val == -1) {
// y = or x, -1 => y = v_mov_b32 -1
MI->removeOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
} else
return false;
return true;
}
if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 ||
Opc == AMDGPU::S_AND_B32) {
if (Src1Val == 0) {
// y = and x, 0 => y = v_mov_b32 0
MI->removeOperand(Src0Idx);
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
} else if (Src1Val == -1) {
// y = and x, -1 => y = copy x
MI->removeOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
} else
return false;
return true;
}
if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 ||
Opc == AMDGPU::S_XOR_B32) {
if (Src1Val == 0) {
// y = xor x, 0 => y = copy x
MI->removeOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
return true;
}
}
return false;
}
// Try to fold an instruction into a simpler one
bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 &&
Opc != AMDGPU::V_CNDMASK_B64_PSEUDO)
return false;
MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (!Src1->isIdenticalTo(*Src0)) {
auto *Src0Imm = getImmOrMaterializedImm(*Src0);
auto *Src1Imm = getImmOrMaterializedImm(*Src1);
if (!Src1Imm->isIdenticalTo(*Src0Imm))
return false;
}
int Src1ModIdx =
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
int Src0ModIdx =
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) ||
(Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0))
return false;
LLVM_DEBUG(dbgs() << "Folded " << MI << " into ");
auto &NewDesc =
TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
if (Src2Idx != -1)
MI.removeOperand(Src2Idx);
MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
if (Src1ModIdx != -1)
MI.removeOperand(Src1ModIdx);
if (Src0ModIdx != -1)
MI.removeOperand(Src0ModIdx);
mutateCopyOp(MI, NewDesc);
LLVM_DEBUG(dbgs() << MI);
return true;
}
bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const {
if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 &&
MI.getOpcode() != AMDGPU::V_AND_B32_e32)
return false;
MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1));
if (!Src0->isImm() || Src0->getImm() != 0xffff)
return false;
Register Src1 = MI.getOperand(2).getReg();
MachineInstr *SrcDef = MRI->getVRegDef(Src1);
if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode()))
return false;
Register Dst = MI.getOperand(0).getReg();
MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg());
MI.eraseFromParent();
return true;
}
bool SIFoldOperands::foldInstOperand(MachineInstr &MI,
MachineOperand &OpToFold) const {
// We need mutate the operands of new mov instructions to add implicit
// uses of EXEC, but adding them invalidates the use_iterator, so defer
// this.
SmallVector<MachineInstr *, 4> CopiesToReplace;
SmallVector<FoldCandidate, 4> FoldList;
MachineOperand &Dst = MI.getOperand(0);
bool Changed = false;
if (OpToFold.isImm()) {
for (auto &UseMI :
make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) {
// Folding the immediate may reveal operations that can be constant
// folded or replaced with a copy. This can happen for example after
// frame indices are lowered to constants or from splitting 64-bit
// constants.
//
// We may also encounter cases where one or both operands are
// immediates materialized into a register, which would ordinarily not
// be folded due to multiple uses or operand constraints.
if (tryConstantFoldOp(&UseMI)) {
LLVM_DEBUG(dbgs() << "Constant folded " << UseMI);
Changed = true;
}
}
}
SmallVector<MachineOperand *, 4> UsesToProcess;
for (auto &Use : MRI->use_nodbg_operands(Dst.getReg()))
UsesToProcess.push_back(&Use);
for (auto *U : UsesToProcess) {
MachineInstr *UseMI = U->getParent();
foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList,
CopiesToReplace);
}
if (CopiesToReplace.empty() && FoldList.empty())
return Changed;
MachineFunction *MF = MI.getParent()->getParent();
// Make sure we add EXEC uses to any new v_mov instructions created.
for (MachineInstr *Copy : CopiesToReplace)
Copy->addImplicitDefUseOperands(*MF);
for (FoldCandidate &Fold : FoldList) {
assert(!Fold.isReg() || Fold.OpToFold);
if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
Register Reg = Fold.OpToFold->getReg();
MachineInstr *DefMI = Fold.OpToFold->getParent();
if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
continue;
}
if (updateOperand(Fold)) {
// Clear kill flags.
if (Fold.isReg()) {
assert(Fold.OpToFold && Fold.OpToFold->isReg());
// FIXME: Probably shouldn't bother trying to fold if not an
// SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
// copies.
MRI->clearKillFlags(Fold.OpToFold->getReg());
}
LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
<< static_cast<int>(Fold.UseOpNo) << " of "
<< *Fold.UseMI);
} else if (Fold.Commuted) {
// Restoring instruction's original operand order if fold has failed.
TII->commuteInstruction(*Fold.UseMI, false);
}
}
return true;
}
bool SIFoldOperands::tryFoldFoldableCopy(
MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const {
// Specially track simple redefs of m0 to the same value in a block, so we
// can erase the later ones.
if (MI.getOperand(0).getReg() == AMDGPU::M0) {
MachineOperand &NewM0Val = MI.getOperand(1);
if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
MI.eraseFromParent();
return true;
}
// We aren't tracking other physical registers
CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical())
? nullptr
: &NewM0Val;
return false;
}
MachineOperand &OpToFold = MI.getOperand(1);
bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
// FIXME: We could also be folding things like TargetIndexes.
if (!FoldingImm && !OpToFold.isReg())
return false;
if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
return false;
// Prevent folding operands backwards in the function. For example,
// the COPY opcode must not be replaced by 1 in this example:
//
// %3 = COPY %vgpr0; VGPR_32:%3
// ...
// %vgpr0 = V_MOV_B32_e32 1, implicit %exec
if (!MI.getOperand(0).getReg().isVirtual())
return false;
bool Changed = foldInstOperand(MI, OpToFold);
// If we managed to fold all uses of this copy then we might as well
// delete it now.
// The only reason we need to follow chains of copies here is that
// tryFoldRegSequence looks forward through copies before folding a
// REG_SEQUENCE into its eventual users.
auto *InstToErase = &MI;
while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
auto &SrcOp = InstToErase->getOperand(1);
auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register();
InstToErase->eraseFromParent();
Changed = true;
InstToErase = nullptr;
if (!SrcReg || SrcReg.isPhysical())
break;
InstToErase = MRI->getVRegDef(SrcReg);
if (!InstToErase || !TII->isFoldableCopy(*InstToErase))
break;
}
if (InstToErase && InstToErase->isRegSequence() &&
MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
InstToErase->eraseFromParent();
Changed = true;
}
return Changed;
}
// Clamp patterns are canonically selected to v_max_* instructions, so only
// handle them.
const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
unsigned Op = MI.getOpcode();
switch (Op) {
case AMDGPU::V_MAX_F32_e64:
case AMDGPU::V_MAX_F16_e64:
case AMDGPU::V_MAX_F16_t16_e64:
case AMDGPU::V_MAX_F64_e64:
case AMDGPU::V_PK_MAX_F16: {
if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
return nullptr;
// Make sure sources are identical.
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (!Src0->isReg() || !Src1->isReg() ||
Src0->getReg() != Src1->getReg() ||
Src0->getSubReg() != Src1->getSubReg() ||
Src0->getSubReg() != AMDGPU::NoSubRegister)
return nullptr;
// Can't fold up if we have modifiers.
if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
return nullptr;
unsigned Src0Mods
= TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
unsigned Src1Mods
= TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
// Having a 0 op_sel_hi would require swizzling the output in the source
// instruction, which we can't do.
unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
: 0u;
if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
return nullptr;
return Src0;
}
default:
return nullptr;
}
}
// FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
const MachineOperand *ClampSrc = isClamp(MI);
if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg()))
return false;
MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
// The type of clamp must be compatible.
if (TII->getClampMask(*Def) != TII->getClampMask(MI))
return false;
MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
if (!DefClamp)
return false;
LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def);
// Clamp is applied after omod, so it is OK if omod is set.
DefClamp->setImm(1);
MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
MI.eraseFromParent();
// Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
// instruction, so we might as well convert it to the more flexible VOP3-only
// mad/fma form.
if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
Def->eraseFromParent();
return true;
}
static int getOModValue(unsigned Opc, int64_t Val) {
switch (Opc) {
case AMDGPU::V_MUL_F64_e64: {
switch (Val) {
case 0x3fe0000000000000: // 0.5
return SIOutMods::DIV2;
case 0x4000000000000000: // 2.0
return SIOutMods::MUL2;
case 0x4010000000000000: // 4.0
return SIOutMods::MUL4;
default:
return SIOutMods::NONE;
}
}
case AMDGPU::V_MUL_F32_e64: {
switch (static_cast<uint32_t>(Val)) {
case 0x3f000000: // 0.5
return SIOutMods::DIV2;
case 0x40000000: // 2.0
return SIOutMods::MUL2;
case 0x40800000: // 4.0
return SIOutMods::MUL4;
default:
return SIOutMods::NONE;
}
}
case AMDGPU::V_MUL_F16_e64:
case AMDGPU::V_MUL_F16_t16_e64: {
switch (static_cast<uint16_t>(Val)) {
case 0x3800: // 0.5
return SIOutMods::DIV2;
case 0x4000: // 2.0
return SIOutMods::MUL2;
case 0x4400: // 4.0
return SIOutMods::MUL4;
default:
return SIOutMods::NONE;
}
}
default:
llvm_unreachable("invalid mul opcode");
}
}
// FIXME: Does this really not support denormals with f16?
// FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
// handled, so will anything other than that break?
std::pair<const MachineOperand *, int>
SIFoldOperands::isOMod(const MachineInstr &MI) const {
unsigned Op = MI.getOpcode();
switch (Op) {
case AMDGPU::V_MUL_F64_e64:
case AMDGPU::V_MUL_F32_e64:
case AMDGPU::V_MUL_F16_t16_e64:
case AMDGPU::V_MUL_F16_e64: {
// If output denormals are enabled, omod is ignored.
if ((Op == AMDGPU::V_MUL_F32_e64 &&
MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64 ||
Op == AMDGPU::V_MUL_F16_t16_e64) &&
MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
return std::pair(nullptr, SIOutMods::NONE);
const MachineOperand *RegOp = nullptr;
const MachineOperand *ImmOp = nullptr;
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src0->isImm()) {
ImmOp = Src0;
RegOp = Src1;
} else if (Src1->isImm()) {
ImmOp = Src1;
RegOp = Src0;
} else
return std::pair(nullptr, SIOutMods::NONE);
int OMod = getOModValue(Op, ImmOp->getImm());
if (OMod == SIOutMods::NONE ||
TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
return std::pair(nullptr, SIOutMods::NONE);
return std::pair(RegOp, OMod);
}
case AMDGPU::V_ADD_F64_e64:
case AMDGPU::V_ADD_F32_e64:
case AMDGPU::V_ADD_F16_e64:
case AMDGPU::V_ADD_F16_t16_e64: {
// If output denormals are enabled, omod is ignored.
if ((Op == AMDGPU::V_ADD_F32_e64 &&
MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64 ||
Op == AMDGPU::V_ADD_F16_t16_e64) &&
MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
return std::pair(nullptr, SIOutMods::NONE);
// Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
Src0->getSubReg() == Src1->getSubReg() &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
return std::pair(Src0, SIOutMods::MUL2);
return std::pair(nullptr, SIOutMods::NONE);
}
default:
return std::pair(nullptr, SIOutMods::NONE);
}
}
// FIXME: Does this need to check IEEE bit on function?
bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
const MachineOperand *RegOp;
int OMod;
std::tie(RegOp, OMod) = isOMod(MI);
if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
RegOp->getSubReg() != AMDGPU::NoSubRegister ||
!MRI->hasOneNonDBGUser(RegOp->getReg()))
return false;
MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
return false;
// Clamp is applied after omod. If the source already has clamp set, don't
// fold it.
if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
return false;
LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def);
DefOMod->setImm(OMod);
MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
MI.eraseFromParent();
// Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
// instruction, so we might as well convert it to the more flexible VOP3-only
// mad/fma form.
if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
Def->eraseFromParent();
return true;
}
// Try to fold a reg_sequence with vgpr output and agpr inputs into an
// instruction which can take an agpr. So far that means a store.
bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) {
assert(MI.isRegSequence());
auto Reg = MI.getOperand(0).getReg();
if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) ||
!MRI->hasOneNonDBGUse(Reg))
return false;
SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER))
return false;
for (auto &Def : Defs) {
const auto *Op = Def.first;
if (!Op->isReg())
return false;
if (TRI->isAGPR(*MRI, Op->getReg()))
continue;
// Maybe this is a COPY from AREG
const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg());
if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg())
return false;
if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg()))
return false;
}
MachineOperand *Op = &*MRI->use_nodbg_begin(Reg);
MachineInstr *UseMI = Op->getParent();
while (UseMI->isCopy() && !Op->getSubReg()) {
Reg = UseMI->getOperand(0).getReg();
if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg))
return false;
Op = &*MRI->use_nodbg_begin(Reg);
UseMI = Op->getParent();
}
if (Op->getSubReg())
return false;
unsigned OpIdx = Op - &UseMI->getOperand(0);
const MCInstrDesc &InstDesc = UseMI->getDesc();
const TargetRegisterClass *OpRC =
TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF());
if (!OpRC || !TRI->isVectorSuperClass(OpRC))
return false;
const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg));
auto Dst = MRI->createVirtualRegister(NewDstRC);
auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
TII->get(AMDGPU::REG_SEQUENCE), Dst);
for (unsigned I = 0; I < Defs.size(); ++I) {
MachineOperand *Def = Defs[I].first;
Def->setIsKill(false);
if (TRI->isAGPR(*MRI, Def->getReg())) {
RS.add(*Def);
} else { // This is a copy
MachineInstr *SubDef = MRI->getVRegDef(Def->getReg());
SubDef->getOperand(1).setIsKill(false);
RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg());
}
RS.addImm(Defs[I].second);
}
Op->setReg(Dst);
if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) {
Op->setReg(Reg);
RS->eraseFromParent();
return false;
}
LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI);
// Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users,
// in which case we can erase them all later in runOnMachineFunction.
if (MRI->use_nodbg_empty(MI.getOperand(0).getReg()))
MI.eraseFromParent();
return true;
}
/// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and
/// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg
static bool isAGPRCopy(const SIRegisterInfo &TRI,
const MachineRegisterInfo &MRI, const MachineInstr &Copy,
Register &OutReg, unsigned &OutSubReg) {
assert(Copy.isCopy());
const MachineOperand &CopySrc = Copy.getOperand(1);
Register CopySrcReg = CopySrc.getReg();
if (!CopySrcReg.isVirtual())
return false;
// Common case: copy from AGPR directly, e.g.
// %1:vgpr_32 = COPY %0:agpr_32
if (TRI.isAGPR(MRI, CopySrcReg)) {
OutReg = CopySrcReg;
OutSubReg = CopySrc.getSubReg();
return true;
}
// Sometimes it can also involve two copies, e.g.
// %1:vgpr_256 = COPY %0:agpr_256
// %2:vgpr_32 = COPY %1:vgpr_256.sub0
const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg);
if (!CopySrcDef || !CopySrcDef->isCopy())
return false;
const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1);
Register OtherCopySrcReg = OtherCopySrc.getReg();
if (!OtherCopySrcReg.isVirtual() ||
CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister ||
OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister ||
!TRI.isAGPR(MRI, OtherCopySrcReg))
return false;
OutReg = OtherCopySrcReg;
OutSubReg = CopySrc.getSubReg();
return true;
}
// Try to hoist an AGPR to VGPR copy across a PHI.
// This should allow folding of an AGPR into a consumer which may support it.
//
// Example 1: LCSSA PHI
// loop:
// %1:vreg = COPY %0:areg
// exit:
// %2:vreg = PHI %1:vreg, %loop
// =>
// loop:
// exit:
// %1:areg = PHI %0:areg, %loop
// %2:vreg = COPY %1:areg
//
// Example 2: PHI with multiple incoming values:
// entry:
// %1:vreg = GLOBAL_LOAD(..)
// loop:
// %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop
// %3:areg = COPY %2:vreg
// %4:areg = (instr using %3:areg)
// %5:vreg = COPY %4:areg
// =>
// entry:
// %1:vreg = GLOBAL_LOAD(..)
// %2:areg = COPY %1:vreg
// loop:
// %3:areg = PHI %2:areg, %entry, %X:areg,
// %4:areg = (instr using %3:areg)
bool SIFoldOperands::tryFoldPhiAGPR(MachineInstr &PHI) {
assert(PHI.isPHI());
Register PhiOut = PHI.getOperand(0).getReg();
if (!TRI->isVGPR(*MRI, PhiOut))
return false;
// Iterate once over all incoming values of the PHI to check if this PHI is
// eligible, and determine the exact AGPR RC we'll target.
const TargetRegisterClass *ARC = nullptr;
for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) {
MachineOperand &MO = PHI.getOperand(K);
MachineInstr *Copy = MRI->getVRegDef(MO.getReg());
if (!Copy || !Copy->isCopy())
continue;
Register AGPRSrc;
unsigned AGPRRegMask = AMDGPU::NoSubRegister;
if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask))
continue;
const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc);
if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask))
CopyInRC = SubRC;
if (ARC && !ARC->hasSubClassEq(CopyInRC))
return false;
ARC = CopyInRC;
}
if (!ARC)
return false;
bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass);
// Rewrite the PHI's incoming values to ARC.
LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI);
for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) {
MachineOperand &MO = PHI.getOperand(K);
Register Reg = MO.getReg();
MachineBasicBlock::iterator InsertPt;
MachineBasicBlock *InsertMBB = nullptr;
// Look at the def of Reg, ignoring all copies.
unsigned CopyOpc = AMDGPU::COPY;
if (MachineInstr *Def = MRI->getVRegDef(Reg)) {
// Look at pre-existing COPY instructions from ARC: Steal the operand. If
// the copy was single-use, it will be removed by DCE later.
if (Def->isCopy()) {
Register AGPRSrc;
unsigned AGPRSubReg = AMDGPU::NoSubRegister;
if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) {
MO.setReg(AGPRSrc);
MO.setSubReg(AGPRSubReg);
continue;
}
// If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on
// GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try
// to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which
// is unlikely to be profitable.
//
// Note that V_ACCVGPR_WRITE is only used for AGPR_32.
MachineOperand &CopyIn = Def->getOperand(1);
if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) &&
TRI->isSGPRReg(*MRI, CopyIn.getReg()))
CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
}
InsertMBB = Def->getParent();
InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator());
} else {
InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB();
InsertPt = InsertMBB->getFirstTerminator();
}
Register NewReg = MRI->createVirtualRegister(ARC);
MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(),
TII->get(CopyOpc), NewReg)
.addReg(Reg);
MO.setReg(NewReg);
(void)MI;
LLVM_DEBUG(dbgs() << " Created COPY: " << *MI);
}
// Replace the PHI's result with a new register.
Register NewReg = MRI->createVirtualRegister(ARC);
PHI.getOperand(0).setReg(NewReg);
// COPY that new register back to the original PhiOut register. This COPY will
// usually be folded out later.
MachineBasicBlock *MBB = PHI.getParent();
BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(),
TII->get(AMDGPU::COPY), PhiOut)
.addReg(NewReg);
LLVM_DEBUG(dbgs() << " Done: Folded " << PHI);
return true;
}
// Attempt to convert VGPR load to an AGPR load.
bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) {
assert(MI.mayLoad());
if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1)
return false;
MachineOperand &Def = MI.getOperand(0);
if (!Def.isDef())
return false;
Register DefReg = Def.getReg();
if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg))
return false;
SmallVector<const MachineInstr*, 8> Users;
SmallVector<Register, 8> MoveRegs;
for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg))
Users.push_back(&I);
if (Users.empty())
return false;
// Check that all uses a copy to an agpr or a reg_sequence producing an agpr.
while (!Users.empty()) {
const MachineInstr *I = Users.pop_back_val();
if (!I->isCopy() && !I->isRegSequence())
return false;
Register DstReg = I->getOperand(0).getReg();
// Physical registers may have more than one instruction definitions
if (DstReg.isPhysical())
return false;
if (TRI->isAGPR(*MRI, DstReg))
continue;
MoveRegs.push_back(DstReg);
for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg))
Users.push_back(&U);
}
const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC));
if (!TII->isOperandLegal(MI, 0, &Def)) {
MRI->setRegClass(DefReg, RC);
return false;
}
while (!MoveRegs.empty()) {
Register Reg = MoveRegs.pop_back_val();
MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)));
}
LLVM_DEBUG(dbgs() << "Folded " << MI);
return true;
}
// tryFoldPhiAGPR will aggressively try to create AGPR PHIs.
// For GFX90A and later, this is pretty much always a good thing, but for GFX908
// there's cases where it can create a lot more AGPR-AGPR copies, which are
// expensive on this architecture due to the lack of V_ACCVGPR_MOV.
//
// This function looks at all AGPR PHIs in a basic block and collects their
// operands. Then, it checks for register that are used more than once across
// all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from
// having to create one VGPR temporary per use, which can get very messy if
// these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector
// element).
//
// Example
// a:
// %in:agpr_256 = COPY %foo:vgpr_256
// c:
// %x:agpr_32 = ..
// b:
// %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c
// %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c
// %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c
// =>
// a:
// %in:agpr_256 = COPY %foo:vgpr_256
// %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32
// %tmp_agpr:agpr_32 = COPY %tmp
// c:
// %x:agpr_32 = ..
// b:
// %0:areg = PHI %tmp_agpr, %a, %x, %c
// %1:areg = PHI %tmp_agpr, %a, %y, %c
// %2:areg = PHI %tmp_agpr, %a, %z, %c
bool SIFoldOperands::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) {
// This is only really needed on GFX908 where AGPR-AGPR copies are
// unreasonably difficult.
if (ST->hasGFX90AInsts())
return false;
// Look at all AGPR Phis and collect the register + subregister used.
DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>>
RegToMO;
for (auto &MI : MBB) {
if (!MI.isPHI())
break;
if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg()))
continue;
for (unsigned K = 1; K < MI.getNumOperands(); K += 2) {
MachineOperand &PhiMO = MI.getOperand(K);
RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO);
}
}
// For all (Reg, SubReg) pair that are used more than once, cache the value in
// a VGPR.
bool Changed = false;
for (const auto &[Entry, MOs] : RegToMO) {
if (MOs.size() == 1)
continue;
const auto [Reg, SubReg] = Entry;
MachineInstr *Def = MRI->getVRegDef(Reg);
MachineBasicBlock *DefMBB = Def->getParent();
// Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded
// out.
const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front());
Register TempVGPR =
MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC));
MachineInstr *VGPRCopy =
BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(),
TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR)
.addReg(Reg, /* flags */ 0, SubReg);
// Copy back to an AGPR and use that instead of the AGPR subreg in all MOs.
Register TempAGPR = MRI->createVirtualRegister(ARC);
BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(),
TII->get(AMDGPU::COPY), TempAGPR)
.addReg(TempVGPR);
LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy);
for (MachineOperand *MO : MOs) {
MO->setReg(TempAGPR);
MO->setSubReg(AMDGPU::NoSubRegister);
LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n");
}
Changed = true;
}
return Changed;
}
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
MRI = &MF.getRegInfo();
ST = &MF.getSubtarget<GCNSubtarget>();
TII = ST->getInstrInfo();
TRI = &TII->getRegisterInfo();
MFI = MF.getInfo<SIMachineFunctionInfo>();
// omod is ignored by hardware if IEEE bit is enabled. omod also does not
// correctly handle signed zeros.
//
// FIXME: Also need to check strictfp
bool IsIEEEMode = MFI->getMode().IEEE;
bool HasNSZ = MFI->hasNoSignedZerosFPMath();
bool Changed = false;
for (MachineBasicBlock *MBB : depth_first(&MF)) {
MachineOperand *CurrentKnownM0Val = nullptr;
for (auto &MI : make_early_inc_range(*MBB)) {
Changed |= tryFoldCndMask(MI);
if (tryFoldZeroHighBits(MI)) {
Changed = true;
continue;
}
if (MI.isRegSequence() && tryFoldRegSequence(MI)) {
Changed = true;
continue;
}
if (MI.isPHI() && tryFoldPhiAGPR(MI)) {
Changed = true;
continue;
}
if (MI.mayLoad() && tryFoldLoad(MI)) {
Changed = true;
continue;
}
if (TII->isFoldableCopy(MI)) {
Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val);
continue;
}
// Saw an unknown clobber of m0, so we no longer know what it is.
if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
CurrentKnownM0Val = nullptr;
// TODO: Omod might be OK if there is NSZ only on the source
// instruction, and not the omod multiply.
if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
!tryFoldOMod(MI))
Changed |= tryFoldClamp(MI);
}
Changed |= tryOptimizeAGPRPhis(*MBB);
}
return Changed;
}
|